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ABSTRACT

This paper considers the sparse recovery problem of multi-
ple measurement vector (MMV) model corrupted in impul-
sive noise. To ensure outlier-robust sparse recovery, we for-
mulate an MMV problem that includes the generalized ℓp-
norm (1 < p < 2) divergence data-fidelity term added to
the ℓ2,0 joint sparsity-promoting regularizer. The ℓ2,0 joint
sparse penalty, however, is non-continuous and hence non-
differentiable, which inevitably raises difficulty in optimiza-
tion when using a gradient-based method. To address this, we
build a smooth approximation for the ℓ2,0-based sparse metric
via the log-sum based sparse-encouraging surrogate function.
Then, we propose a block successive upper-bound minimiza-
tion algorithm for the smooth MMV problem by solving a
series of subproblems based on the block coordinate descent
(BCD) method. Furthermore, local convergence of the pro-
posed algorithm to a stationary point of the smooth problem
is proved. Experiments demonstrate its efficiency and robust
recovery performance for suppressing impulsive noise.

Index Terms— Compressed sensing, impulsive noise,
multiple measurement vectors, sparse signal recovery.

1. INTRODUCTION

The sparse signal recovery (SSR) problem, an emerging topic
bearing a close affinity with compressive sensing (CS) [1, 2],
has attracted considerable interest over the past few years. In
particular, as CS theories and applications mature, some spe-
cial structures beyond the classical single measurement vec-
tor model have been further exploited within SSR to further,
e.g., reduce the number of linear measurements and facilitate
more accurate sparse recovery. One such structure is the mul-
tiple measurement vector (MMV) model [3–5] which aims to
jointly recover a set of sparse vectors that share a common
support. Mathematically, given a dictionary Φ ∈ RM×N

(M < N), an MMV recovery problem requires solving for
X ∈ RN×Q to find a joint sparse (approximate) solution from
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the MMV model Y = ΦX+E where E ∈ RM×Q is the ad-
ditive noise matrix. By appropriately including a joint ℓ2,0
sparse regularizer, a well-known approach for recovering X
from the observed Y is the following denoising problem

min
X

1

2
∥Y −ΦX∥2F + λ∥X∥2,0 (1)

where ∥X∥2,0 ,
∑N

i=1 ∥xi∥02 (xi is the ith row of X), λ > 0
is a regularization parameter, ∥·∥F and ∥·∥2 denote the Frobe-
nius norm and ℓ2-norm, respectively. Indeed, the MMV prob-
lem with form (1) has been motivated by a wide range of ap-
plications such as magnetoencephalography [6] and direction-
of-arrival estimation [7, 8]. In these applications, the authors
provide a variety of excellent algorithms by using some ap-
proximate sparse-promoting penalties or ℓ2,1 convex relaxed
surrogates for the ideally ℓ2,0 sparse penalty.

However, most of the aforementioned methods rest upon
the squared (ℓ2) loss metric which is, in general, the optimal
metric to quantify the Gaussian background noise. Therefore,
the conventional ℓ2-based MMV recovery algorithms often
fall short when the observed noises E are non-Gaussian dis-
tributed and contain outliers. As a kind of very important
non-Gaussian noise, the impulsive noise, whose probability
density function has heavier tails than the Gaussian distribu-
tion, has in fact been reported in many practical applications
such as in array processing [9], spectral analysis [10], wire-
less communications [11], and image processing [12].

Motivated by a variety applications mentioned above, we
consider the generalized ℓp (1 < p < 2) norm as a divergence
metric in the MMV sparse recovery problem, which is par-
ticularly suitable for suppressing the impulsive noise. As a
result, the outlier-resistant recovery problem is formulated as
the generalized ℓp−ℓ2,0 problem. To deal with the intractabil-
ity (non-smoothness) of ℓ2,0-norm penalty, we build a smooth
approximation via the log-sum based sparse-encouraging sur-
rogate function. Then, we propose an effcient block succes-
sive minimization algorithm for the smooth MMV problem
by solving a series of upper-bound subproblems based on the
block coordinate descent (BCD) method. Additionally, we
prove that the proposed algorithm can converge a stationary
point of the smooth MMV problem. Our experiments show
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that the proposed algorithm can achieve an accurate joint s-
parse recovery and suppress the impulsive noise.

2. PROBLEM FORMULATION

To guarantee outlier-resistant sparse reconstruction, we con-
sider the generalized MMV recovery problem

min
X

Gp(X) + λ ·H(X) (2)

where Gp(X), 1
p∥vec(Y)−(IQ⊗Φ)vec(X)∥pp and H(X) ,

∥X∥02,0. Here, the ℓp-norm divergence function Gp(X) can
be used to suppress the impulsive noise embedded in E when
1 < p < 2.

3. SMOOTH SPARSE APPROXIMATION

Note that he ℓ2,0 joint sparse penalty H(X) can be expressed
as H(X) , ∥X∥02,0 =

∑N
i=1 sgn(∥xi∥2) where sgn(·) de-

notes the sign function. The sign function, i.e., sgn(∥xi∥2),
however, is discontinuous and hence non-differentiable at
∥xi∥2 = 0 or xi = 0 where 0 is a zero vector with proper
dimension. To deal with this, a natural approach is to ap-
proximate the problematic function sgn(∥xi∥2) with some
well-chosen continuous surrogate functions. In this paper, we
will consider the following log-based surrogate function

hq(∥xi∥2) =
log(1 + ∥xi∥2/q)
log(1 + 1/q)

(3)

to approximate sgn(∥xi∥2). In fact, it has been shown that the
log-based function hq(∥xi∥2) exhibits uniform superiority in
sparse optimization and usually leads to a kind of iteratively
reweighted algorithms [13–15]. Although hq(∥xi∥2) is now
a continuous function, it is still non-differentiable, i.e., non-
smooth, at ∥xi∥2 = 0, which, usually, leads to an intractable
optimization when using a gradient-based method. Therefore
following [13] on constructing smooth approximation for sin-
gle measurement vector sparse optimization, we approximate
hq(∥xi∥2) around ∥xi∥2 = 0 via a quadratic function, with
the following form

hϵ
q(∥xi∥2) =

{
a∥xi∥22, ∥xi∥2 ≤ ϵ

hq(∥xi∥2)− b, ∥xi∥2 > ϵ
(4)

where ϵ > 0 is small parameter. The continuousness and dif-
ferentiability of hϵ

q(∥xi∥2) at ∥xi∥2 = ϵ indicate that aϵ2 =

hq(ϵ) − b and 2aϵ =
dhq(∥xi∥2)

d∥xi∥2

∣∣∣
∥xi∥2=ϵ

, which eventually

result in the following smooth approximation

hϵ
q(∥xi∥2) =


∥xi∥2

2

2ϵ(q+ϵ) log(1+1/q) , ∥xi∥2 ≤ ϵ

log
(
1+

∥xi∥2
q

)
−log(1+ ϵ

q)+
ϵ

2(q+ϵ)

log(1+q) , ∥xi∥2 > ϵ.

(5)

It can be seen from (5) that when ϵ becomes further small-
er (close to zero), hϵ

q(∥xi∥) will promote better approxima-
tion for hq(∥xi∥). Meanwhile, when q → 0, hϵ

q(∥xi∥) can get
closer to sgn(∥xi∥2) and hence Hϵ

q(X) ,
∑N

i=1 h
ϵ
q(∥xi∥2)

encourages much more stronger joint (row) sparsity. Armed
with the smooth approximation Hϵ

q(X), problem (2) can be
approximated by

min
X

F (X) , Gp(X) + λ ·Hϵ
q(X). (6)

Although problem (6) is now a smooth problem and can be
solved by exploiting a gradient-based descent method, it is
still computationally intensive because it involves optimizing
with respect to the matrix variable X. This may be very im-
practical in, e.g., problems involving the big dictionary matrix
where usually N ≫ Q. In the following, we will develop an
efficient block successive minimization algorithm based on
the parallel BCD method.

4. BLOCK SUCCESSIVE MINIMIZATION
ALGORITHM

4.1. Block Coordinate Descent

Instead of directly solving (6) over X, the BCD method
[16, 17], also known as the nonlinear Gauss-Seidel method,
decomposes the whole X as a successive block variables,
xi, i = 1, . . . , N , and in each iteration, only updates a single
block variable while the other blocks are fixed. This decom-
position usually leads to a parallel optimization and hence an
efficient implementation. More specifically, given the cur-
rent iteration X(k) =

[
x
(k)
1 , . . . ,x

(k)
N

]T , the next iteration

X(k+1) =
[
x
(k+1)
1 , . . . ,x

(k+1)
N

]T
is updated by successively

solving the subproblems

min
xi

F
(
x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,xi, . . . ,x

(k)
i+1, . . . ,x

(k)
N

)
(7)

where F
(
x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,xi, . . . ,x

(k)
i+1, . . . ,x

(k)
N

)
=

Gp

(
x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,xi, . . . ,x

(k)
i+1, . . . ,x

(k)
N

)
+ λ ·Hϵ

q(
x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,xi, . . . ,x

(k)
i+1, . . . ,x

(k)
N

)
. By ignoring

the constant terms in the objective function of (7), this prob-
lem can be further simplified as

min
xi

gp(xi) + λ · hϵ
q(∥xi∥2) (8)

where gp(xi) =
1
p∥ȳ −Φixi∥pp, Φi = IQ ⊗ ϕi ∈ RMQ×Q,

IQ is the Q × Q identity matrix, ⊗ symbolizes the kro-
necker product, ϕi is the ith column of Φ, ȳ = vec

(
Y −∑i−1

n=1 ϕ
n
(
x
(k+1)
n

)T −
∑N

n=i+1 ϕ
n
(
x
(k)
n

)T )
. Despite now

a lower complexity of problem (8) when compared to (6),
it is still non-convex and not easy to handle directly due to
the non-convexity of hϵ

q(∥xi∥2). In contrast to directly solv-
ing the non-convex problem (8), the following subsection
will concentrate on how to approximately solve it with the
successive quadratic upper-bound minimization.
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4.2. Successive Quadratic Upper-Bound Minimization

The successive upper-bound minimization method [17], very
similar to the majorization-minimization method [18, 19],
aims to minimize an upper-bound approximation of the ob-
jective function. Usually, the upper-bound function requires
much easier to be implemented than the objective function.
An appropriate choice is the separable quadratic function s-
ince it has a unique closed-form solution which benefits the
convergence analysis.

In the following, we will construct the quadratic upper-
bound functions up(xi,x

(k)
i ) and uϵ

q(xi,x
(k)
i ), respectively,

for gp(xi) and hϵ
q(xi). More specifically, at iteration k we

need to construct a quadratic approximate function for gp(xi)
with the following separable quadratic weighted form

up

(
xi,x

(k)
i

)
= [ȳ −Φixi]

T
Ŵ

(k)
i [ȳ −Φixi] + α

(k)
i , (9)

where Ŵ
(k)
i = diag

(
ŵ

(k)
i

)
is a diagonal weighted matrix

formed by the vector ŵ
(k)
i ∈ RMQ and α

(k)
i is a constant

to be determined. The tightness of the upper-bound function
up(x

(k)
i ) at x(k)

i results in the following two conditions:

gp(x
(k)
i ) = up(x

(k)
i ), (10)

∇gp(x
(k)
i ) = ∇up(x

(k)
i ). (11)

By defining z
(k)
i ,

[
ȳ − Φix

(k)
i

]
and then solving (11), we

can calculate each element of the weighted vector ŵ(k)
i as

ŵ
(k)
i,j =

1

2

∣∣z(k)ij

∣∣p−2
,
∣∣z(k)i,j

∣∣ ̸= 0. (12)

where ŵ
(k)
i,j and z

(k)
i,j are the jth elements of ŵ(k)

i and z
(k)
i ,

respectively. Here, we will not explicitly calculate αk
i with

its exact expression since the constant term will not pose any
impact for the optimal solution; but with ŵ

(k)
i having been

determined in (12), it is easy to derive α
(k)
i based on the con-

dition (10). Similarly, following the derivation of the upper-
bound function up

(
xi,x

(k)
i

)
of gp(xi) from (9) to (12), the

upper-bound approximation of hϵ
q(xi) is given by

uϵ
q

(
xi,x

(k)
i

)
= xT

i W̌
(k)
i xi + β

(k)
i (13)

where β
(k)
i is also a constant term, W̌(k)

i = diag
(
w̌

(k)
i

)
=

w̌
(k)
i · IQ and w̌

(k)
i is given as

w̌
(k)
i =


1

2ϵ(q+ϵ) log(1+1/q) ,
∥∥x(k)

i

∥∥
2
≤ ϵ,

1

2 log(1+1/q)∥x(k)
i ∥2(∥x(k)

i ∥2+q)
,
∥∥x(k)

i

∥∥
2
> ϵ.

(14)

Now, up

(
xi,x

(k)
i

)
+ λuϵ

q

(
xi,x

(k)
i

)
is a global upper-

bound of the objective function of (8) and touches with it at
xi = x

(k)
i (derivation omitted here because of limited space).

By ignoring the constant terms, the upper-bound approximate
problem eventually becomes

min
xi

[ȳ −Φixi]
T
Ŵ

(k)
i [ȳ −Φixi] + λxT

i W̌
(k)
i xi (15)

and whose optimal solution, as a preparation for the next iter-
ation, is uniquely given by

x
(k+1)
i =

[
ΦiŴ

(k)
i ΦT

i + λW̌
(k)
i

]−1

ΦT
i Ŵ

(k)
i ȳ. (16)

For clarification, the iterative procedure derived above for
MMV sparse recovery is referred to the successive quadratic
upper-bound minimization (SQUM) algorithm, which is sum-
marized in Algorithm I, where the smooth piece wise function
(14) is replaced with the “if else” statement.

Algorithm 1: SQUM

Input: k ← 0, Y, Φ, λ, ϵ, p, q and X(0);
Output: X(k);
repeat

k ← k + 1;
i← (k mod N) + 1;
X̂← X(k−1);
z← vec(Y −DX̂);

Ŵ← diag
{

|z|p−2

2

}
;

if ∥x̂i∥2 ≤ ϵ then
w̌ ← 1

2ϵ(q+ϵ) log(1+1/q)
;

else
w̌ ← 1

2 log(1+1/q)∥x̂i∥2(∥x̂i∥2+q)
;

end
D← IQ ⊗ ϕi;
Ȳ ← Y −

∑i−1
n=1 ϕ

n
(
xn

)T −∑N
n=i+1 ϕ

n
(
xn

)T ;

x̂i ←
[
DŴDT + λw̌ IQ

]−1
DTŴ

(k)
i vec(Ȳ);

X(k) ← X̂;
until satisfy certain stopping criterion or reach certain

number of iterations;

4.3. Local Convergence

The SQUM algorithm is very efficient and simple with the
quadratic update (16), especially useful for the big dictio-
nary MMV recovery problems. Despite its simplicity, now a
natural question arises: through the smooth block successive
minimization, does it guarantee a convergence to a stationary
point of problem (6)? Actually, for any given initial point, the
SQUM algorithm has a local convergence, which is proved by
the following proposition.

Proposition 1. Given any initial point X(0) ∈ RN×Q, the se-
quence

{
X(k)

}
generated by the SQUM algorithm converges

to a stationary point of the problem (6).

Proof. Note that F (X) is continuous and coercive1 over its
domain X ∈ RN×Q. According to the Weierstrass’s theorem,

1We say F (X) is coercive [16] if limxi,j→∞ F (X) = ∞, ∀ i =

1, . . . , N, j = 1, . . . , Q, where xi,j is the (i, j)th element of X.
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for every η ∈ R, the sublevel set
{
X |F (X) ≤ η

}
is a com-

pact (bounded and closed) set. In addition, the upper-bound
property implies that F (X(k+1)) ≤ F (X(k)), ∀ k ≥ 0, i.e.,
the sequence {F (X(k))} is a non-increasing sequence. Natu-
rally, if we assume η0 = F (X(0)), then X(k) ∈

{
X |F (X) ≤

η0
}

and hence
{
X(k)

}
is a bounded sequence. Therefore,

there must exist a convergent subsequence, i.e, a limit point,
of

{
X(k)

}
since each bounded sequence has a convergent

subsequence. Then according to Corollary 1 of [17],
{
X(k)

}
converges to a stationary point of the problem (6).

5. SIMULATION RESULTS

We now numerically assess the performance of the proposed
SQUM algorithm in impulsive noise. Throughout this sec-
tion, the measurement matrix Φ is assumed to be a Gaussian
random matrix whose elements are drawn independently from
the standard normal distribution with mean 0 and variance 1,
and in which every column vector is normalized to 1. The
dimensions of Φ are fixed to M = 20 and N = 200. The
non-zero row (block) of the ideally sparse vectors Xtrue is
also draw independently from the zero-mean normal distribu-
tion with variance σ2

s and the number of non-zero row (group)
is set to be 2. Specifically, to model the impulsive noise, each
element of E is generated according to the generalized Gaus-
sian distribution [9] with probability density function

pe(e) =
βΓ(4/β)

2πσ2
eΓ

2(2/β)
exp

(
− e2

cσβ
e

)
(17)

where c =
(
Γ(2/β)/Γ(4/β)

) β
2 and β > 0 is the shape pa-

rameter. When β becomes smaller, the noise will be more
impulsive. In our simulations, we fix the parameter β =
0.1. The signal-to-noise ratio (SNR) is defined as SNR =
10 log

{
σ2
s/σ

2
e

}
. The dimension of Xtrue and the smoothing

parameter ϵ are, respectively, set to be 200× 10 and 10−5. To
promote sparsity, we keep the parameter q = 0.5. The initial
point of X(0) is set to be a zero matrix. The regularization pa-
rameter λ is set as 2.5 (a large number of experiments show
that λ = 2.5 lead to a better performance than other values).

We first investigate the convergence behavior of the pro-
posed SQUM algorithm under the several values of p: p =
1.0, 1.1, 1.2, 1.3, 1.4, 1.8, 2.0. Fig. 1 depicts the the normal-
ized mean square error (NMSE), defined as ∥Xtrue−X̂∥2

2

∥Xtrue∥2
2

, ver-
sus the number of iterations under the case of SNR = 5dB.
As can be seen from this figure, different values of p pose
a diverse recovery performance. As with increase of p from
1.1 to 2, the NMSE also mostly grows with different values,
while the best performance is attained with p = 1.1.

To further evaluate the performance of the proposed al-
gorithm for MMV sparse recovery, we conduct 200 inde-
pendent trials under various SNRs with range from 0 dB to
10 dB. Meanwhile, based on the above experiment result,
we choose the value of p as 1.1. The standard BCD for
separable group lasso convex ℓ2,1 [20] and the simultaneous
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p = 2.0

Fig. 1. Objective function F (X) versus number of iterations
under various values of p.
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SNR

N
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E

SQUM
BCD
SOMP

Fig. 2. NMSE versus number of iterations under various val-
ues of p.

orthogonal matching pursuit (SOMP) [5] are considered for
comparison. The corresponding result on the average NMSE
versus the SNR is shown in Fig. 2. It is seen that the pro-
posed SQUM algorithm exhibits the uniform superiority over
SOMP and BCD where they are implemented based upon the
Euclidean ℓ2 orthogonality and the ℓ2 norm fitting criteria,
which indicates that ℓp-based MMV sparse recovery is robust
to impulsive noise.

6. CONCLUSION

In this paper, we have proposed a fast algorithm for M-
MV sparse recovery problem in impulsive noise with heavy
tailed distribution. Different from the conventional ℓ2-norm
based residual metric function, the generalized ℓp-norm
(0 < p < 2) divergence function is used to suppress the
impulsive noise. To address the non-smoothness of the ℓ2,0
joint sparse penalty, we have constructed a smooth approx-
imation to facilitate implementation. Then, the smooth ap-
proximate problem is solved based on the block coordinate
descent method with successive upper-bound minimizations.
Simulation results demonstrated that the SQUM algorithm
can achieve outlier-robust sparse recovery.
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