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ABSTRACT resampling filter corresponds to a uniformly sampled versio

This paper derives lower bounds on the-norms of digi- of an underlying. anglog signal,. all;-norms wiII.be slightly

tal resampling filters with zero-valued input samples. ThisSmaller than unity, if the filter is properly designed. In the
ase of a nonuniformly sampled version, on the other hand,

emanates from uniform-grid sampling but where some of

the samples are missing. One application is found in time3°Me of the resampling filterss-norms become much larger

interleaved analog-to-digital converters with missinmptes than unity. Thelz-norms can be reduced by incorporating a

due to calibration at certain time instances. The square enalty factor on them in the filter design, but it turns ot th

the Ly-norms correspond to scaling of the round-off noiset ere are lower bounds that one cannot go below.

that in practice is always present at the input of the resam-  This paper derives such lower bounds for a particular class
pling filter. As will be shown through the derived bounds, theof nonuniform-sampling grids, namely a uniform-sampling
Ly-norm of the corresponding filter that recovers the missingyrid but with one missing sample at an arbitrary location in
samples is generally much larger than unity. Consequently batch of consecutive samples. Mathematically, this can be
the noise variance is generally much larger for the recalerenandled by setting the corresponding sample to zero in a reg-
samples than for the other samples obtained in the samplingar uniform-grid-sampling digital signal. In the signa-r
process. Based on this observation, the paper also proposggmpling, it corresponds to setting one of the filter taps to
an alternative resampling scheme for which the maximum ofero (details are provided in Section 3). This type of sam-
all Ly-norms in the resampling is reduced. pling appears, e.g., in time-interleaved analog-to-digion-
Index Terms— L-norms, missing samples, nonuniform verter§ (T.I-ADCs) with missing samples.[4—6.], where some
sampling, resampling, time-interleaved ADCs. sampling instances are reserv_ed fqr a calibration S|gr_1abwh
samples are then used for estimating the channel mismatches
that are always present in TI-ADCs [7]. As will be shown in
this paper, based on the derived bounds,ihenorm of the
- . . ... .. corresponding filter that recovers the missing samplesris ge
t[;'?'(ﬁ:er;fz;?g;% \(/:v?t% Zetirzir—r\llzorly(i):g; .an;ljgz ?esdr'g;e;lef':)rerally_much larger than unity. Consequently, the noise-vari
equivalently, a set of time-invariant resampling filiersgen- ance is generally much larger for the recovered samples than
S A for the other samples obtained in the sampling process.dBase
eral an infinite set) [1, 2]. In practice, it is customary te as

. i . on this observation, the paper also proposes an altermative
sume a certain amount of oversampling to account for filte

» . . gampling scheme for which the maximum of A§-norms in
fransition bands. In other words, the underlying signaldo b.the resampling is reduced. Reference [6] also observed the

L(;snzmﬁ)rl]e?hgavi ;y bgnnSv(\:/;jr:hag‘h"’i‘;\'lz Zﬂ:ﬁ:iwir%g?fagg?&%rg.e L-norm of the filter that recovers the missing samples,
imatién errors in t'he resampling process, with a reasonablbut ltdid no'.[ congderthe more gengra! resampling caspﬁhat
filter order ' &ddressed in this paper. Interpolation in the presenceiséno

' has also been considered, see e.qg. [8, 9], but to the best of th

¢ _nHowe\r/E_r, tth enn:]pl_Jt o_fnthzdri_sirr:plltug f|I_ter: TIVY?K S Conr']authors’ knowledge, the.-norm bounds presented here have
ains quantization noise in addition to the signal. The quan i\ ,oen reported before.

tization is typically not bandlimited but can in many cases
be appropriately modeled as a wide-sense stationary (WSS) Following this introduction, Section 2 provides the nec-
white-noise process with zero mean and a certain variancessary prerequisites of digital resampling filters. Sec8o
Then, since the resampling filter is time varying, the noisalerives the lower bounds on tlig-norms for the resampling

at the output will not be WSS and each output sample wilfilters under consideration. Section 4 considers design ex-
have a noise variance that is scaled by the squasedorm  amples that verify the results and give some further insight
of the corresponding filter [3]. When the digital input of the Finally, Section 5 concludes the paper.

1. INTRODUCTION
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2. RESAMPLING FILTERS

Lo-norm of H,,(e/“T"). Hence, the noise at the output of the
resampling filter has a time-varying variance according to

Assume that we have an analog (continuous-time) signal

4(t) with the Fourier transfornX, (jw) = [ 4 (t)e 7*'dt

that is bandlimited tav. < /7. Then assume that we

samplez, (t) uniformly with a sampling period of" (sam-
pling frequency of1/T), resulting in the digital signal
(sequence)t(n) = xz,(nT) with the Fourier transform
X(e*T) = 3> x(n)e”7*T", Due to the bandlimi-

n—=—oo

tation ofz, (t), the Nyquist criterion for alias-free (error-free)

o = 0® || Ha(e™T)I[3

n

(6)

where||H,, (e7T)||2 are the squarefl,-norms of H,, (e7«7)
given by [2,3,12F

1 ™

Hn JwT\[12
A = o

[Ho(e7“T)Pd(wT).  (7)

—T

sampling and reconstruction is satisfied and we have the Apove, it was assumed that(n) is a uniformly sam-

following relation in the frequency domain [10]:

- 1
X(e?¥T) = TXa(jw), |wT'| < weT < . (1)
Assume next that we wish to resampig(t) at the time
instances,, = nT+d,, T, where|d,,| < 1. Thisis carried out
by convolvingz(n) with a time-varying linear digital system
with the impulse responge, (k), which gives

N

> w(n—k)hn(k).

k=—N

y(n) = 2

Utilizing the inverse Fourier transform in (2), and (L)n)
can be rewritten as

1 weT ) ) )
y(n) = o THn(e'wT)X(e]“T)e]‘“T"d(wT)
1 [ee , ,
= 5 H, (7T X, (jw)e? T dw (3)
where
Hy(e™T) = 3 hn(k)e 7Tk, (4)

k=—N

It is seen that the desired resuf{n) = z,(nT + d,,T), is
obtained when
H,(e9%T) = ed*Tdn  |uT| < w.T < 7.

(5)

pled version ofz,(t). This means that alk, (k) are free
parameters. One can then desigp(e’“7) to approximate
e/“Tdn in the low-frequency regiohwT| < w.T and keep
|H,,(e’“T)| small (ideally zero) in the remaining frequency
regionw.T < |wT| < m. The lower bounds on thEs-norm

are in this case independent of time and apparently obtained
whenH,, (e?“T) are zero fow.T < |wT| < w. Hence,

weT

1 Hn (T[5> vn.

<1,

(8)

3. LOWER BOUNDS ON THE L2-NORMS OF
RESAMPLING FILTERS WITH ZERO-VALUED
INPUT SAMPLES

We now turn our attention to the case where one of the sam-
ples in each block & N + 1 consecutive samples in the input
sequence(n) is zero. This corresponds to a class of nonuni-
form sampling which occurs in, e.g., TI-ADCs with missing
samples where some sampling instances are reserved for a
calibration signal whose samples are used for estimatisg mi
matches between the channel ADCs [42.6/lathematically,

a missing sample at, say,= ng, can be handled by setting
the corresponding sampl€n,) to zero instead of using the
valuezx, (noT).

In the extreme case, wheé¥i = oo, the bounds to be de-
rived below hold when there is only one zero-valued sample
in the whole input sequence. However, in practice, when FIR
resampling filters are used] is finite in which case:(n) can

Hence, as is well known [1, 2, 11], resampling correspondsontain more missing samples. In such cases, the bourds stil

to time-varying fractional-delay filtering, since eaett” -

is the frequency response of a fractional-delay filter with &lock contains only one zero-valued sample.

delay ofd,, T [s].

As discussed in the introduction, the input:) of the re-
sampling filter also contains quantization errors, denbtred
ase(n). In many cases, like for the output of an AD&n)

can be appropriately modeled as a WSS white-noise process

with zero mean and variane@. Sinceh,, (k) is time varying,

hold but are not tight. The bounds are tight as long as each
In TI-ADCs
with missing samples, eve)/th sample inz(n) is zero, and
the bounds are then tight whéd > 2N.

Under the assumption that one of the samples(im) is
zero (missing), in each block a@fV + 1 consecutive samples,

2Alternatively, || Hy, (e77)||3 can be computed a5 % |hn(K)|?
due to Parseval’s relation, i.e., tlig-norm equals thé;-norm.

the noise at the output is, however, not WSS and each output 3in TI-ADCs, there are also additional small deviations frtma desired
sample will have a noise variance that is scaled by the squareampling instancesT" due to mismatch errors (typically in the order of a

1in the examples of this paper, as well as often in practicéeflangth
impulse response (FIR) filters are used, in which c&sks a finite number.
However, the lower bounds derived in the paper hold in génimas includ-
ing the case wher&/ = co.

percent ofI"). However, such small deviations have no essential effect o
the Le-norms. Details will be considered in a full-length papedenway.
Further, the bounds derived in this paper are still appl&alf the small
deviations have been compensated for first, before recaydhe missing
sample or resampling.
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(1)—(7) in Section 2 still hold, if we impose the additional
restriction that the corresponding tap/in(k) is zero. To be
precise, this is because computip@:) in (2) with a zero-
valued samples(ng), no € [n — N, n + NJ, is equivalent
to computingy(n) without settingz(ng) to zero [thus using
z(no) = x4 (neT)] but instead setting the corresponding filter
tap to zero, i.e.h, (k) = 0 for k,, = n — no.

Expressingh,, (k) in terms of its inverse Fourier trans-
form, we thus have the additional restriction

s

1

:%7ﬂ

B (Kr) H, (e7T)ed*Tkn q(wT) = 0.  (9)

Inserting the desired functiofl,,(e/“”) = e/“Tdn in the
low-frequency regiofwT'| < w.T', and utilizing that all com-
plex quantities involved are conjugate symmetric, (9) can b
rewritten as

hn(kjﬂ) = i wel ejWT(k'n‘Fdn,)d(wT)
) 2w J 1
1 jwT\ _jwTk
o H, (¢ e’ "d(wT
2T S, T <)ot <n ( ) (wT)
= Iin(weT, kn,dn) + Ton(weT, kn, dn) = 0 (10)
where
[l g 4 d, £ 0
Il”l(wcTa k’rhdn) — w.T
(11)

and

1

Iop(weT ke, dy) = — / R{H, (e’T)el*Thn L d(wT).
™ weT

12)
Due to the conjugate symmetry we also have
1 ) .
— S{H, (7T )ed*Thn Y d(wT) = 0. (13)
2m wT<|wT| <7
To ensurer, (k,) = 0, we thus have the restriction
IQn (wcT: kna dn) = _Iln (WCT7 k’ru dn) (14)

d, =0

Noise gain [dB]
Noise gain [dB]
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Fig. 1. Lower bounds of the squardgh-norm||H,, (e?<7)||3
(noise gain) versus bandwidih T'.

it can be shown that the solution that minimizes this quan-
tity, subject to (5) and (14), iR{H,,(e/*T)elwThn} =
Ay, (W T, ky, dy), where A, (w.T, kn,d,), for each set of
parameter value$w. T, ky, d,, ), iS @ constant given by

™
71171,

An(wcT7 kn7dn) = - T
T — We

(weT, knydy).  (16)

The proof is omitted here due to the space limitation, but fol
lows that provided in [6] for the special case whéfe =

d,, = 0, which corresponds to the recovery of a missing sam-
ple centered at the mid-tap of the filter.

Further, since (14) is independent of the imaginary part
S{H, (e/*T)el* Tk} due to (13), the imaginary-part contri-
bution £ [T (S{H,(e?*T)e’ 5 })2d(wT) can ideally be
zero. It now follows that the lower bounds ¢, (e7“T)||3
are time dependent and given by

||Hn(e)))3 > wel | 7 wCTAi(wCT, o, dn)
T
wcT s 2
= —F1 T kn,dn). (17
T T —wT tn(weT, )(17)

Subject to (5) and (14), we now wish to find lower bounds

on the squared.,-norms of H,,(e/“7T), i.e, the minima of
||H,,(e7“T)||2. Noting that

1 Hn (T3 = [[Hn (7T )e? T |3, (15)

this amounts to minimizing the quantity

1

™

/ T|Hn(ej‘”T)ej“Tk"|2d(wT).

Considering the real-part contribution alone, i.e.,

1

™

/ ”T<%{Hn<ej“>efw”"}>2d<wT>,

It is noted that, in the special case whére + d,, = 0,
L (wT, kn,d,) = w1 /7, and we obtain

wT
7 —w.T’

|| H (e77)]]3 > kyn+d, =0, (18)

which goes to infinity whew T approaches the whole digital
bandwidthzr.

As can be seen from Fig. 1, the lower bounds on
||H, (e7“T)||2 increase with the bandwidth.7. Also, the
lower bounds on|H,,(e’~T)||2 are generally much larger
for the filters whose center tap is located at or around the
zero-valued input samplé{ = 0).
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4. NUMERICAL EXAMPLE

In this section, we first provide an example showing that,
compared to the recovery of the zero-valued samgple €
k, = 0), the maximum of all thel.,-norms in the resam-
pling can be reduced by selecting an alternative resampling
schemé. We assume that the bandwidthisT = 0.87. It
can be seen from Table 1 that by using a resampling scheme
with d,, = 0.5, the maximum of allL,-norms is reduced as
compared with the case whedg = k, = 0% In a full-
length paper under way, we address the problem of selecting
d,, such that they together minimize the maximum of all the . ‘
Ls-norms. 50 100
Further, in order to validate the lower bounds derived in
Section 3, we consider the case where resampling is carriq._qg 5
out using FIR filters of orde2N. Like in Section 3, it is L
assumed that there exists only one zero-valued sample
each block oR2N + 1 consecutive input samples. Here, we
assume that resampling is performed usihg = 0.5 and
k, = 0, and that the signal reconstruction error shall be les: 2
than—40 dB. The coefficients of each resampling filtgs(k)
are determined such that the correspondjig, (e’ 7)||3 is
minimized subject to the constraint that the signal reqoigst
tion error be less than40 dB. Figure 2 plotg| H,,(e/*T)||3
(in dB) versus the filter order. The figure also includes a ‘ ‘
horizontal line which is the lower boundl.¢0 dB) com- 0 02 Ou'iT [Xma%f 08 1
puted using (17) withk,, = 0 andd,, = 0.5. Moreover, as
can be seen from Fig. 3, which plots, the real and imagi-
nary parts ofH,, (e?“T)e/“Tk»  the real part approximates
a negative-valued constant in the regiofl’ < wT < 7
whereas the imaginary part in the same region approxi
mates zero. This validates the results in Section 3 where w
showed that for thé,, (e/“T) that minimized| H,, (e7T)||3, 05, 02 oz 06 08 1
R{H,,(e7°T)es*Tkn ) is equal to a constant,, (w. T, ky, d,,) wel' [xm rad]
(—3.03 in this example) whereaS§{H, (e¢/T)e/*Tkn} is
equal to zero, in the regian. T < wT < 7. Fig. 3. Real and imaginary parts &f,, (¢7“T)e/“T*» for the
example in Section 4 whete.T = 0.87, k,, = 0, d,, = 0.5,
2N = 250, andA,, (w.T, kn, d,) = —3.03.

(1. (e7<T)e/“ T3 [dB]

150 200 250
Order, 2N

Plot of squaredL,-norm ||H,(e’“T)||3 =
“]Hn(ej“T)ejWTkn |13 versus filter ordeRN for the example
in Section 4. Herep. T = 0.8, k,, = 0, andd,, = 0.5.

R{H, (e/T)eI«Thn}

H, (e]J;T)eijk,,}

S{

5. CONCLUSION

This paper derived lower bounds on thg-norms of resam-  apje 1. Comparison of the lower bounds on the squated
pling filters with zero-valued input samples. Recovering a,orms of the reconstruction filters corresponding to the-zer
zero-valued sample is a special case, and the derived bounglg ;o4 sample recovery casé,(= k, = 0) and with the

are thus applicable for the missing sample recovery prOble%sampling casel(, = 0.5). In both cases, the bandwidth is
as well. Using the lower bounds, it was shown that the fil- , » _"( g

ter which recovers (resamples) the zero-valued samplerhas a

GwT\[|2 GwT\[|2
Ls-norm that is much larger than unity. With the help of a [Hn(e™)[2 (dB) [[Hn (e )2 (dB)
numerical example, it was then also shown that a reduction of| &, | d, =0 | d, =05 | k, | dy =0 | d, =0.5
the maximum of allL,-norms can be achieved through alter- 0 6.02 4.20
native resampling schemes. 1 0.11 4.20 1 -0.11 -0.57

4The cases wheré, = 0 andk,, # 0 do not correspond to the recovery 2 0.39 -0.57 2 -0.39 0.97
of missing samples, but instead to low-pass filtering castrsaxzero-tap for -3 -0.70 -0.97 3 -0.70 -0.89
hn(kn). Then, agk,| increases, one reaches the bound in (8). -4 -0.91 -0.89 4 -0.91 -0.85
SItis noted thatf ,, (e’“T") depend om via d,, andk,,. Hence, ifd,, = -5 -0.97 -0.85 5 -0.97 -0.89

dn, andk"o = kn,, thenHH’no(ejWT)H% = HHTM (eij)H%
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