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ABSTRACT

This paper derives lower bounds on theL2-norms of digi-
tal resampling filters with zero-valued input samples. This
emanates from uniform-grid sampling but where some of
the samples are missing. One application is found in time-
interleaved analog-to-digital converters with missing samples
due to calibration at certain time instances. The square of
the L2-norms correspond to scaling of the round-off noise
that in practice is always present at the input of the resam-
pling filter. As will be shown through the derived bounds, the
L2-norm of the corresponding filter that recovers the missing
samples is generally much larger than unity. Consequently,
the noise variance is generally much larger for the recovered
samples than for the other samples obtained in the sampling
process. Based on this observation, the paper also proposes
an alternative resampling scheme for which the maximum of
all L2-norms in the resampling is reduced.

Index Terms— L2-norms, missing samples, nonuniform
sampling, resampling, time-interleaved ADCs.

1. INTRODUCTION

Digital resampling can be carried out through a digital fil-
ter (linear system) with a time-varying impulse response or,
equivalently, a set of time-invariant resampling filters (in gen-
eral an infinite set) [1, 2]. In practice, it is customary to as-
sume a certain amount of oversampling to account for filter
transition bands. In other words, the underlying signal to be
resampled has a bandwidth that is smaller than the Nyquist
band. In this way, one can achieve arbitrarily small approx-
imation errors in the resampling process, with a reasonable
filter order.

However, the input of the resampling filter always con-
tains quantization noise in addition to the signal. The quan-
tization is typically not bandlimited but can in many cases
be appropriately modeled as a wide-sense stationary (WSS)
white-noise process with zero mean and a certain variance.
Then, since the resampling filter is time varying, the noise
at the output will not be WSS and each output sample will
have a noise variance that is scaled by the squaredL2-norm
of the corresponding filter [3]. When the digital input of the

resampling filter corresponds to a uniformly sampled version
of an underlying analog signal, allL2-norms will be slightly
smaller than unity, if the filter is properly designed. In the
case of a nonuniformly sampled version, on the other hand,
some of the resampling filters’L2-norms become much larger
than unity. TheL2-norms can be reduced by incorporating a
penalty factor on them in the filter design, but it turns out that
there are lower bounds that one cannot go below.

This paper derives such lower bounds for a particular class
of nonuniform-sampling grids, namely a uniform-sampling
grid but with one missing sample at an arbitrary location in
a batch of consecutive samples. Mathematically, this can be
handled by setting the corresponding sample to zero in a reg-
ular uniform-grid-sampling digital signal. In the signal re-
sampling, it corresponds to setting one of the filter taps to
zero (details are provided in Section 3). This type of sam-
pling appears, e.g., in time-interleaved analog-to-digital con-
verters (TI-ADCs) with missing samples [4–6], where some
sampling instances are reserved for a calibration signal whose
samples are then used for estimating the channel mismatches
that are always present in TI-ADCs [7]. As will be shown in
this paper, based on the derived bounds, theL2-norm of the
corresponding filter that recovers the missing samples is gen-
erally much larger than unity. Consequently, the noise vari-
ance is generally much larger for the recovered samples than
for the other samples obtained in the sampling process. Based
on this observation, the paper also proposes an alternativere-
sampling scheme for which the maximum of allL2-norms in
the resampling is reduced. Reference [6] also observed the
largeL2-norm of the filter that recovers the missing samples,
but it did not consider the more general resampling case thatis
addressed in this paper. Interpolation in the presence of noise
has also been considered, see e.g. [8,9], but to the best of the
authors’ knowledge, theL2-norm bounds presented here have
not been reported before.

Following this introduction, Section 2 provides the nec-
essary prerequisites of digital resampling filters. Section 3
derives the lower bounds on theL2-norms for the resampling
filters under consideration. Section 4 considers design ex-
amples that verify the results and give some further insights.
Finally, Section 5 concludes the paper.
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2. RESAMPLING FILTERS

Assume that we have an analog (continuous-time) signal
xa(t)with the Fourier transformXa(jω) =

´∞

−∞
xa(t)e

−jωtdt
that is bandlimited toωc < π/T . Then assume that we
samplexa(t) uniformly with a sampling period ofT (sam-
pling frequency of1/T ), resulting in the digital signal
(sequence)x(n) = xa(nT ) with the Fourier transform
X(ejωT ) =

∑∞
n=−∞ x(n)e−jωTn. Due to the bandlimi-

tation ofxa(t), the Nyquist criterion for alias-free (error-free)
sampling and reconstruction is satisfied and we have the
following relation in the frequency domain [10]:

X(ejωT ) =
1

T
Xa(jω), |ωT | ≤ ωcT < π. (1)

Assume next that we wish to resamplexa(t) at the time
instancestn = nT+dnT , where|dn| < 1. This is carried out
by convolvingx(n) with a time-varying linear digital system
with the impulse responsehn(k), which gives1

y(n) =
N
∑

k=−N

x(n− k)hn(k). (2)

Utilizing the inverse Fourier transform in (2), and (1),y(n)
can be rewritten as

y(n) =
1

2π

ˆ ωcT

−ωcT

Hn(e
jωT )X(ejωT )ejωTnd(ωT )

=
1

2π

ˆ ωc

−ωc

Hn(e
jωT )Xa(jω)e

jωTndω (3)

where

Hn(e
jωT ) =

N
∑

k=−N

hn(k)e
−jωTk. (4)

It is seen that the desired result,y(n) = xa(nT + dnT ), is
obtained when

Hn(e
jωT ) = ejωTdn , |ωT | ≤ ωcT < π. (5)

Hence, as is well known [1, 2, 11], resampling corresponds
to time-varying fractional-delay filtering, since eachejωTdn

is the frequency response of a fractional-delay filter with a
delay ofdnT [s].

As discussed in the introduction, the inputx(n) of the re-
sampling filter also contains quantization errors, denotedhere
ase(n). In many cases, like for the output of an ADC,e(n)
can be appropriately modeled as a WSS white-noise process
with zero mean and varianceσ2. Sincehn(k) is time varying,
the noise at the output is, however, not WSS and each output
sample will have a noise variance that is scaled by the squared

1In the examples of this paper, as well as often in practice, finite-length
impulse response (FIR) filters are used, in which caseN is a finite number.
However, the lower bounds derived in the paper hold in general, thus includ-
ing the case whereN = ∞.

L2-norm ofHn(e
jωT ). Hence, the noise at the output of the

resampling filter has a time-varying variance according to

σ2
n = σ2||Hn(e

jωT )||22 (6)

where||Hn(e
jωT )||22 are the squaredL2-norms ofHn(e

jωT )
given by [2,3,12]2

||Hn(e
jωT )||22 =

1

2π

ˆ π

−π

|Hn(e
jωT )|2d(ωT ). (7)

Above, it was assumed thatx(n) is a uniformly sam-
pled version ofxa(t). This means that allhn(k) are free
parameters. One can then designHn(e

jωT ) to approximate
ejωTdn in the low-frequency region|ωT | ≤ ωcT and keep
|Hn(e

jωT )| small (ideally zero) in the remaining frequency
regionωcT < |ωT | ≤ π. The lower bounds on theL2-norm
are in this case independent of time and apparently obtained
whenHn(e

jωT ) are zero forωcT < |ωT | ≤ π. Hence,

||Hn(e
jωT )||22 ≥

ωcT

π
< 1, ∀n. (8)

3. LOWER BOUNDS ON THE L2-NORMS OF
RESAMPLING FILTERS WITH ZERO-VALUED

INPUT SAMPLES

We now turn our attention to the case where one of the sam-
ples in each block of2N +1 consecutive samples in the input
sequencex(n) is zero. This corresponds to a class of nonuni-
form sampling which occurs in, e.g., TI-ADCs with missing
samples where some sampling instances are reserved for a
calibration signal whose samples are used for estimating mis-
matches between the channel ADCs [4–6]3. Mathematically,
a missing sample at, say,n = n0, can be handled by setting
the corresponding samplex(n0) to zero instead of using the
valuexa(n0T ).

In the extreme case, whenN = ∞, the bounds to be de-
rived below hold when there is only one zero-valued sample
in the whole input sequence. However, in practice, when FIR
resampling filters are used,N is finite in which casex(n) can
contain more missing samples. In such cases, the bounds still
hold but are not tight. The bounds are tight as long as each
block contains only one zero-valued sample. In TI-ADCs
with missing samples, everyM th sample inx(n) is zero, and
the bounds are then tight whenM > 2N .

Under the assumption that one of the samples inx(n) is
zero (missing), in each block of2N +1 consecutive samples,

2Alternatively, ||Hn(ejωT )||22 can be computed as
∑N

k=−N |hn(k)|2

due to Parseval’s relation, i.e., theL2-norm equals thel2-norm.
3In TI-ADCs, there are also additional small deviations fromthe desired

sampling instancesnT due to mismatch errors (typically in the order of a
percent ofT ). However, such small deviations have no essential effect on
theL2-norms. Details will be considered in a full-length paper under way.
Further, the bounds derived in this paper are still applicable, if the small
deviations have been compensated for first, before recovering the missing
sample or resampling.
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(1)–(7) in Section 2 still hold, if we impose the additional
restriction that the corresponding tap inhn(k) is zero. To be
precise, this is because computingy(n) in (2) with a zero-
valued samplex(n0), n0 ∈ [n − N, n + N ], is equivalent
to computingy(n) without settingx(n0) to zero [thus using
x(n0) = xa(n0T )] but instead setting the corresponding filter
tap to zero, i.e.,hn(kn) = 0 for kn = n− n0.

Expressinghn(k) in terms of its inverse Fourier trans-
form, we thus have the additional restriction

hn(kn) =
1

2π

ˆ π

−π

Hn(e
jωT )ejωTknd(ωT ) = 0. (9)

Inserting the desired functionHn(e
jωT ) = ejωTdn in the

low-frequency region|ωT | ≤ ωcT , and utilizing that all com-
plex quantities involved are conjugate symmetric, (9) can be
rewritten as

hn(kn) =
1

2π

ˆ ωcT

−ωcT

e
jωT (kn+dn)

d(ωT )

+
1

2π

ˆ

ωcT<|ωT |≤π

Hn(e
jωT )ejωTknd(ωT )

= I1n(ωcT, kn, dn) + I2n(ωcT, kn, dn) = 0 (10)

where

I1n(ωcT, kn, dn) =

{

sin(ωcT (kn+dn))
π(kn+dn)

, kn + dn 6= 0
ωcT
π

, kn + dn = 0
(11)

and

I2n(ωcT, kn, dn) =
1

π

ˆ π

ωcT

ℜ{Hn(e
jωT )ejωTkn}d(ωT ).

(12)
Due to the conjugate symmetry we also have

1

2π

ˆ

ωcT<|ωT |≤π

ℑ{Hn(e
jωT )ejωTkn}d(ωT ) = 0. (13)

To ensurehn(kn) = 0, we thus have the restriction

I2n(ωcT, kn, dn) = −I1n(ωcT, kn, dn). (14)

Subject to (5) and (14), we now wish to find lower bounds
on the squaredL2-norms ofHn(e

jωT ), i.e, the minima of
||Hn(e

jωT )||22. Noting that

||Hn(e
jωT )||22 = ||Hn(e

jωT )ejωTkn ||22, (15)

this amounts to minimizing the quantity

1

π

ˆ π

ωcT

|Hn(e
jωT )ejωTkn |2d(ωT ).

Considering the real-part contribution alone, i.e.,

1

π

ˆ π

ωcT

(ℜ{Hn(e
jωT )ejωTkn})2d(ωT ),
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Fig. 1. Lower bounds of the squaredL2-norm||Hn(e
jωT )||22

(noise gain) versus bandwidthωcT .

it can be shown that the solution that minimizes this quan-
tity, subject to (5) and (14), isℜ{Hn(e

jωT )ejωTkn} =
An(ωcT, kn, dn), whereAn(ωcT, kn, dn), for each set of
parameter values,(ωcT, kn, dn), is a constant given by

An(ωcT, kn, dn) = −
π

π − ωcT
I1n(ωcT, kn, dn). (16)

The proof is omitted here due to the space limitation, but fol-
lows that provided in [6] for the special case wherekn =
dn = 0, which corresponds to the recovery of a missing sam-
ple centered at the mid-tap of the filter.

Further, since (14) is independent of the imaginary part
ℑ{Hn(e

jωT )ejωTkn}, due to (13), the imaginary-part contri-
bution 1

π

´ π

ωcT
(ℑ{Hn(e

jωT )ejωTkn})2d(ωT ) can ideally be

zero. It now follows that the lower bounds on||Hn(e
jωT )||22

are time dependent and given by

||Hn(e
jωT )||22 ≥

ωcT

π
+

π − ωcT

π
A

2
n(ωcT, kn, dn)

=
ωcT

π
+

π

π − ωcT
I
2
1n(ωcT, kn, dn).(17)

It is noted that, in the special case wherekn + dn = 0,
I1n(ωcT, kn, dn) = ωcT/π, and we obtain

||Hn(e
jωT )||22 ≥

ωcT

π − ωcT
, kn + dn = 0, (18)

which goes to infinity whenωcT approaches the whole digital
bandwidthπ.

As can be seen from Fig. 1, the lower bounds on
||Hn(e

jωT )||22 increase with the bandwidthωcT . Also, the
lower bounds on||Hn(e

jωT )||22 are generally much larger
for the filters whose center tap is located at or around the
zero-valued input sample (kn = 0).
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4. NUMERICAL EXAMPLE

In this section, we first provide an example showing that,
compared to the recovery of the zero-valued sample (dn =
kn = 0), the maximum of all theL2-norms in the resam-
pling can be reduced by selecting an alternative resampling
scheme4. We assume that the bandwidth isωcT = 0.8π. It
can be seen from Table 1 that by using a resampling scheme
with dn = 0.5, the maximum of allL2-norms is reduced as
compared with the case wheredn = kn = 05. In a full-
length paper under way, we address the problem of selecting
dn such that they together minimize the maximum of all the
L2-norms.

Further, in order to validate the lower bounds derived in
Section 3, we consider the case where resampling is carried
out using FIR filters of order2N . Like in Section 3, it is
assumed that there exists only one zero-valued sample in
each block of2N + 1 consecutive input samples. Here, we
assume that resampling is performed usingdn = 0.5 and
kn = 0, and that the signal reconstruction error shall be less
than−40 dB. The coefficients of each resampling filterhn(k)
are determined such that the corresponding||Hn(e

jωT )||22 is
minimized subject to the constraint that the signal reconstruc-
tion error be less than−40 dB. Figure 2 plots||Hn(e

jωT )||22
(in dB) versus the filter order. The figure also includes a
horizontal line which is the lower bound (4.20 dB) com-
puted using (17) withkn = 0 anddn = 0.5. Moreover, as
can be seen from Fig. 3, which plots, the real and imagi-
nary parts ofHn(e

jωT )ejωTkn , the real part approximates
a negative-valued constant in the regionωcT < ωT ≤ π
whereas the imaginary part in the same region approxi-
mates zero. This validates the results in Section 3 where we
showed that for theHn(e

jωT ) that minimizes||Hn(e
jωT )||22,

ℜ{Hn(e
jωT )ejωTkn} is equal to a constantAn(ωcT, kn, dn)

(−3.03 in this example) whereasℑ{Hn(e
jωT )ejωTkn} is

equal to zero, in the regionωcT < ωT ≤ π.

5. CONCLUSION

This paper derived lower bounds on theL2-norms of resam-
pling filters with zero-valued input samples. Recovering a
zero-valued sample is a special case, and the derived bounds
are thus applicable for the missing sample recovery problem
as well. Using the lower bounds, it was shown that the fil-
ter which recovers (resamples) the zero-valued sample has an
L2-norm that is much larger than unity. With the help of a
numerical example, it was then also shown that a reduction of
the maximum of allL2-norms can be achieved through alter-
native resampling schemes.

4The cases wheredn = 0 andkn 6= 0 do not correspond to the recovery
of missing samples, but instead to low-pass filtering cases with a zero-tap for
hn(kn). Then, as|kn| increases, one reaches the bound in (8).

5It is noted thatHn(ejωT ) depend onn via dn andkn. Hence, ifdn0
=

dn1
andkn0

= kn1
, then||Hn0

(ejωT )||22 = ||Hn1
(ejωT )||22
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Fig. 2. Plot of squaredL2-norm ||Hn(e
jωT )||22 =

||Hn(e
jωT )ejωTkn ||22 versus filter order2N for the example

in Section 4. Here,ωcT = 0.8π, kn = 0, anddn = 0.5.
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Fig. 3. Real and imaginary parts ofHn(e
jωT )ejωTkn for the

example in Section 4 whereωcT = 0.8π, kn = 0, dn = 0.5,
2N = 250, andAn(ωcT, kn, dn) = −3.03.

Table 1. Comparison of the lower bounds on the squaredL2-
norms of the reconstruction filters corresponding to the zero-
valued sample recovery case (dn = kn = 0) and with the
resampling case (dn = 0.5). In both cases, the bandwidth is
ωcT = 0.8π.

||Hn(e
jωT )||22 (dB) ||Hn(e

jωT )||22 (dB)

kn dn = 0 dn = 0.5 kn dn = 0 dn = 0.5

0 6.02 4.20
-1 -0.11 4.20 1 -0.11 -0.57
-2 -0.39 -0.57 2 -0.39 -0.97
-3 -0.70 -0.97 3 -0.70 -0.89
-4 -0.91 -0.89 4 -0.91 -0.85
-5 -0.97 -0.85 5 -0.97 -0.89
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