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ABSTRACT of the pixel location. Thereby, its eigenvalues have a rich informa-
o . tion on local spatial variations.
We propose a new regularization function, namedranged Struc- However, for a multichannel image, ticerrelation among the
ture tensor Total VariatiofASTV), for multichannel image restora-  cpannelscannot be fully evaluated by the structure tensor because
tion. Since the standard structure tensor is a matrix whose eigefye giscrete differences of all the channels are just summed up in the
values well encodes local neighborhood information of an imagegntries of the structure tensor (see Sec. 2.1 for details). Since mul-
there has been proposed vectorial total variation based on the strugspannel images usually have strong correlation among their chan-
ture tensor for image regularization. However, the correlation amonge|s, this should be properly incorporated into regularization.
the channels cannot be measured by the structure tensor because theyye should remark that several existing VTVs [4, 5] explicitly

discrete ;:Iifrzerences of all the channr?ls a[‘e juhst summed up in thee the correlation into account. However, the one proposed in [4] is
entries of the structure tensor. On the other hand, ASTV is baseghisatropig i.e., the vertical and horizontal gradients are decoupled,

on a newly-definedrranged structure tensahat becomes an ap- oqiting in the generation of blocky artifacts around contours. The
proximately low-rank matrix when multichannel images have strong, o proposed in [5] overcame this drawback but it can be applied
correlation among their channels. This suggests that penalizing the, 16 color images since it uses a color transform. In addition to
nuclear norm of the arranged structure tensor is a reasonable regulgia g ove things, structure-tensor-based approaches, which leverage
ization for multichannel images, leading to the definition of ASTV. inormation on local spatial variations, are not considered in [4, 5.
Experimental results illustrate the advantage of ASTV over a state- Based on the above discussion, we propose a new vectorial total
of-the-art vectorial total variation based on the structure tensor. | - i-vio0 with a newly-definedrrang’ed structure tensdor multi-

Index Terms— Multichannel image restoration, regularization, channel image restoration, which is termedAasanged Structure
structure tensor tensor TV(ASTV). The arranged structure tensor i2& x 2M
matrix with M € N being the number of channels, so that it has
2M eigenvalues. As will be explained in Sec. 2.1, when a multi-
channel image of interest has strong correlation among its channels,

h . ¢ multich i h lor d .the arranged structure tensor becomes an approximately (but not ex-
The restoration of multichannel images, such as color image denoigy |ow-rank matrix. This observation suggests that penalizing

ing/deblurring, demosaicking, multispectral/hyperspectral imagingyq 1 clear norm, the tightest convex relaxation of the rank function
and compressed sensing, is an important task in many signal prorg) of the arranged structure tensor is a reasonable regularization
cessing applications. Such restoration problems are usually ill-pos r multichannel images, leading to the definition of ASTV. The ad-

or ill-conditioned inverse problems, so that one requires s@Be | antage of ASTV over STV is demonstrated by experiments on de-
ularizationbased on underlying properties of multichannel images,,,ising and compressed sensing reconstruction.

A successful class of regularization techniques for multichannel im-

ages would be vectorial total variation (VTV) [1, 2, 3, 4, 5] and its

higher-order/semilocal/nonlocal generalizations [6, 7, 8, 9, 10]. 2. PROPOSED METHOD
Among them, we focus on the Structure tensor Total Variation

(STV) [8]* because of the following reasons. First, as mentioned-1. Arranged structure tensor

in [8], STV exploitslocal neighborhood informatigrso that it can

X ! “A Letu € RMY pe an image with\/ channelsuy, ..., uy € RY
avoid several drawbacks of VTV such as producing the stalrcasmgN is the number of pixels), e.gM — 3 in the case of color im-

. S . Sages. Note that we treat an image/channel as a vector by stacking
free from chicken-and-egg self-similarity evaluation. _its columns on top of one another. Also Bt, andD}, be vertical
As the name indicates, STV is defined as a function of the €igens,q horizontal discrete difference operators that map one channel in
values of the so-calledtructure tensof11, 12], a matrix whose  pN 4 g (vectorized) vertical/horizontal gradient mapRA', re-
eigenvalues summarize the prevailing direction of the gradient o? ectively. We denote pixel locations bye {1, ..., N}, the set of
rb%el locations in local neighborhood (usually a square window) at
the pixel locatiom by Z,, (NOTE: n € Z,), and a sub-vector of a
agiven vectorx € RY consisting of its weighted entries at the pixel
locations inZ,, by x¥ € RIZ! with the weight vectow € R'/!
(R stands for the set of all positive real numbers). Here we assume
The work was supported by JSPS Grants-in-Aid: 15H06197; 15K06076that the same shape of local neighborhood and the same weight vec-
1Both grayscale and multichannel images are considered in [8], but wéor are applied to every pixel location, so that the cardinalities (the
are only interested in multichannel cases. number of pixels in local neighborhood) 8§, . .., Zy are equiva-

1. INTRODUCTION

an image. The structure tensor has been used in many applicatio
such as anisotropic diffusion [13], optical flow [14], and corner de-
tection [15]. Specifically, the structure tensor at a pixel location of
multichannel image is 2 x 2 matrix constructed from vertical and
horizontal differences in the local neighborhood (e3g 3 window)
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lent, denoted byZ| (NOTE: To handle local neighborhood around 2.3. Multichannel image restoration by ASTV
image boundaries, we use periodic boundary extension).
Then, thearranged structure tensasf u at the pixel locatiom

is defined by Consider to restore an original multichannel image R™™ from
S . LT o g2Mx2M (1) observation data, whi%h iAs“gast as inversg problems of the fortjﬂ:
ww ww Tu,w ’ D(®u), where® € R™* (R < MN) is a matrix representing
Lg’f‘)ﬂ, = (Dow1]¥, Drwi]Y, -+ [Dvun]?, [Drumly,). (2)  some degradation (e.g., blur and/or random samplifg), R —
R% is a noise contamination process, and R¥ is an observation.
We remark that the arranged structure tensor defined in (1) is differ-  Based on the above model, we formulate multichannel image
ent from the standard structure tensoruoét the pixel locatiom:  restoration by ASTV as the following convex optimization problem:
ST, = LI LYY, € R?*2, where

2.3.1. Problem formulation

. muin ASTV(u) 4+ Fy(®u) st.ueC, (5)
L . D.w]y - [Douml?] e RMIZIX2 (3
WA Dw)Y - [Drualy) : where F, € T'o(RF)? is a data-fidelity function, and’ ¢ RM¥

is a closed convex constraint an We assume that thgroximity
The difference between the standard and arranged structure tensejserator [17] of 7, can be computed efficiently. We also assume
are depicted in Fig. 1 (left). Note that there are totallyarranged  that the computation of the projectibantoC is efficient.
(standard) structure tensors for one image,Lél;l\,, .. ,LSNV)V We give several examples dof, in Remark 1. Meanwhile, a
Since the square root of each eigenvalue of the arranged (aypical example of” is a box constraint, a known dynamic range of
standard) structure tensor equals to each singular vall&f (or @ (e.g.,C = [0, 255~ for eight-bit images).

ijff‘),.,), we can discuss the difference of their properties througtRemarkl (Examples ofF.). The ¢> norm data-fidelity, given by
LE,’fv)v andLS.’?’,ZV. First, it is clear that every singular value of both 7, (x) := §[x — vH2, would be the most popular choice for Gaus-

L{), andL{, becomes small if the local neighborhood is smooth,sian noise cases. The norm is a useful data-fidelity measure for

so that essentially, suppressing some norh @, or L, results ~ IMPUlse noise cases, which is given By (x) := y|x — v||.. They
can also be used amta-fidelity constraintsi.e., 7y (x) := tp(x),

. . . n)
in afzj)oothlng effect om. Indeed, the Frobenlus.norms I)f.,w whereB i— {x € R¥| |jx — v|1or2 < e}, and.z is theindi-
andLy, w take the same value because they consist of the same e@sior functiord of B defined bys(x) := 0, if x € B; oo, other-

tries (but their arrangements are different). wise. It is worth noting that such a constraint-type data-fidelity fa-

_ Things change when we focus on their singular values from thjjitates the parameter setting becaudeas a clearer meaning than
view of the correlation of channels. We see in (3) that the (vertl-M’ as addressed in [18, 19, 20]. For Poisson noise casegetiseal-
cal/horizontal) discrete differences of all the channels are stacke@eq Kullback-Leibler divergende known as a suitable data-fidelity
into one column inL{",, implying that information on the correla- function (the definition can be found in [21]). The proximity opera-
tion is almost lost in the singular valuesbi.’f‘),v. On the other hand, tors of these examples can be computed efficiently.

the information is stillalive in the singular values d;ﬁ,’fzv because

the discrete differences of each channel are arranged horizontally %13 2 Optimization

(2). More specifically, if the channels of have strong correlation

then the columns OLSf‘)” become approximately linearly depen- Since Prob. (_5) isghighly r_nonsmooth optim_ization_problem,we have
dent, so that the singular values except the first one are expected fdUSe Some iterative algorithms for solvingit. In this paper, we adopt

be very small. This observation naturally leads to the definition oft Primal-dual splitting method [22], which does not require matrix
our regularization function in the next subsection. inversion. It solves convex optimization problems of the form:

min g(x) + h(Ax) (6)
2.2. Vectorial total variation based on arranged structure tensor xex 7

To promote the spatial smoothness of multichannel images with cowhereg € T'o(X) andh € T'o(Y) (¥ andy are some Euclidean
sidering the correlation among channels, we propose a regularizatiaces) and. : X' — Y is a linear operator.
function based on the arranged structure tensor as follows: The algorithm is given by

k+1) __ k T, (k
ASTVa(w) i= 320 1L -, 4) X = prox,, (xB —mATy®),
. . . y( +1) _ PIoX.,, ;- (y( ) +72A(2x< +1) _ )))7

where|| - ||« is the nuclear norm, i.e., the sum of all the singular
values of(-). Following the prior work [8], we name this function as whereh* the convex conjugate functibof , and:, v > 0 satisfy
Arranged Structure tensor Total VariatiddSTV). We remark that > o i .
for single channel images, ASTV and STV (the one proposed in [8]) “The set of a]I\II proper lower semicontinuous convex function®&éhis
are equivalent sinck{"}, = L™ denoted byl'o (R'). . _

Th t of di W “‘t’;] . bsecti ts t 3The proximity operator of index > 0 of f € T'o(RY) is defined by

e set of discussions in the previous subsec |on) suggests 'ﬁ?oxyf ‘RN 5 RV : x s argmin f(y) + %”y —x|2.

two things: (i) suppressing all the singular vaIuesIéfw makes . y N o )
restored images smooth, and (ii) promoting the approximate low- _ Givenanonempty closed convex 61C R™, theprojection ontoC' is

' N N .
(n) . . : . defined byPo : RY — R : x — argmin ||[x — y|| s.t.y € C.

rankness ofLuw is suitable for images with strong Correlatlon. 5The proximity operator of the indicator function of a nonempty closed

ar(rlt))ng channels. Hence, we adppt the nuclear norm for evaluatingyex seC equals to the projection ont, i.e.prox., , = Po.

Ly, because the nuclear norm is the sum of the singular values and 6The proximity operator off* can be computed via that of, i.e.,

the tightest convex relaxation of the rank function [16]. prox., « (x) = x — yprox_—1 (77 ') (see, e.g., [23, Theorem 14.3(ii)].
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Fig. 1. Construction of the standard and arranged structure tensors (left) and comparison of STV [8] and ASTV (proposed) in terms of th
ratio of the function values on noisy and clean images (right).

7172l|All5, < 1(|| - [lop Stands for the operator norm 9f Under Algorithm 1: Primal-dual splitting method for Prob. (4)
some mild conditions op, h, andA, the sequencéx®).cr con-
verges to a solution of Prob. (6). To apply the primal-dual splitting
method to Prob. (5), we reformulate it into Prob. (6). Rtl) k) T T (k) T ().
First, since the definition of ASTV in (4) is not amenable to uik) : 7(]:)C(u( ) —m(D (I:HYV y(lm _+(I) va )i
optimization due to its structure involving several linear operations * ylk <y +72WPD(u —ut);
to u, we give an alternative expression of ASTV. Specifically, we 4 | ys* « y{" +@@ut+t) —u®);
separate these operations and define them as matrices as follows: s | y{**" =y{* —yprox1 | (Zy{*);
72 *»

1 ’
wN- @) 6 yék+l) — yék) — 2 prox%Fv(%yék));
v2

input : u(®, y§0), yg))

1 while A stopping criterion is not satisfiedb

ASTV(u) := ||[WPDu|

Here,D : RMN _ R2MN js a discrete difference operator that '~ L "< " +5h

maps all the channels af to their vertical and horizontal differ-
ence imagesP : R*MYN _ R2ZIMN i5 anexpansionoperator
that makesZ| copies of Du, W : R2ZIMN _y R2ZIMN jg g
weighting operator that applies the weightswnto local neighbor-
hood at every location, anfl- ||.,x : RZFIMY — R is the sum
of the nuclear norm of the arranged structure tensor at every loc
tion. One sees that iIWPDu, local neighborhood at any location
does not overlap each other, which means that the arranged structure

the primal-dual splitting method is summarized in Alg. 1, where Step

2 and 6 are computable from the assumptions on Prob. (5), and see
a(_8) for Step 5. We also note that clearly, P, W and thier trans-
poses can be computed efficiently.

tensor at every location can be constructed ffd@PDu without 3. EXPERIMENTS
reusing the entries, i.éWPDu and(Lff}”), ce (Lﬁl,l.,) are bijec-

tive. This makes the proximity operator [bf ||.. v readily available ASTV can serve as a building block. in various multichannel image
by computing the proximity operator of the nuclear norm of the ar-restoration scenarios. In the experiments, we apply ASTV to two
ranged structure tensor at each location. SpecificalyL.{8t, with ~ SPecific problems: denoising and compressed sensing (CS) recon-
L i n(n) 1 (n) (n)\xr(n)T struction, and compare it with STV [8].

its singular value decompositidd‘™ diag(o;"’,...,053) V™",

S All the experiments were performed using MATLAB (R2014a,
the proximity operator of the nuclear norm of the arranged structur%4bit) on a Windows 8.1 (64bit) laptop computer with an Intel
tensor at the location is given by !

Core i7 2.1 GHz processor and 8 GB of RAM. For test images, we

)y _ 1) (M) ()T took color images (i.e.M = 3) from the Berkeley Segmentation
Prox ., (buw) = UM BV, ®)  Databasé [24], and their dynamic range was normalized, i.e., ev-
E(W") = diag(max{ag") —7,0},.. .,max{aéﬁ} —v,0}). ery pixel value is in[0,1]. We use PSNR (Peak Signal-to-Noise

Ratiof for objective evaluation of restored images. The shape of
Second, by introducing the indicator function@f Prob (5) can  local neighborhood in ASTV and STV was set t8a< 3 square
be rewritten as window, and we consider two cases for the entries of the weight
vectorw: (i) uniform (all the weights set ta/9) and (ii) a3 x 3
Gaussian kernel with standard deviatiogy = /0.5, which is the
same setting suggested in [8].

m&n [WPDu||.,n + Fv(®u) + tc(u). 9)

Finally, by letting

g:RMY S RU {00} : urs to(u), 3.1. Denoising
b R2TIMN+R wN + Fu(y2), First, we conducted Gaussian noise removal experiments, where

clean test images were contaminated by an additive white Gaussian

— RU{oo}: (y1,¥2) = |ly1l
A RMY o RIFIMNTR .y (WPDu, $u),

“For each image, the center region of sk x 256 is cropped.
Prob. (9) is reduced to Prob. (6). The resulting algorithm based on 8PSNR is defined by0log, (M N/||u — a@l?).
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7.85 23.21 23.66 27.53 26.47
Fig. 2. Resulting images on denoising (top) and CS reconstruction (bottom) experiments: From left to right, original, observation, STV
(uniformw), STV (Gaussiaw), ASTV (uniformw), andASTV (Gaussiarw).

noisen with standard deviatioa = 0.1, i.e.,v = u+n. Following ~ compared with STV. Note that all the program codes were imple-
the discussion in Remark 1, tiig-norm data-fidelity constraint was mented by MATLAB without parallelization.

adopted, where for a fair comparison, we set the radias the

oracle value for each image, i.e.,= ||u — v||. Specifically, we 3.2 Compressed sensing reconstruction

solve the following problem: ) )
We also conducted experiments on compressed sensing (CS) recon-

min J(u) + 5, . (u) stuelo, 1My, (10)  struction [25, 26] that arises in imaging problems, such as coded
uek aperture imaging and computational photography [27, 28]. Here, we
where.J denotes STV or ASTV, and, . := {x [||x — v]|2 < ¢} try to recover an original image from its incomplete measurements

Clearly, this problem is a special case of Prob. (5). v = ®u+ n, where® ¢ RRXMN (R = %Q.MN) is a random

. N ) . Noiselet measurement matrix [29], ance R™ is an additive white
Resuilts onCastleimage are _shown in Fig. 2 (top) with their Gaussian noise with standard deviation= 0.1. Since CS recon-

PSNR [dB]. One can see that the images restored by ASTV are bettgq (o s 4 highly ill-posed problem, we need some regularization,

than those by STV in terms of PSNR, and that ASTV well reducesfeading to the following optimization problem

color smearing in restored images. Aside from the visualized im-

ages, we measured the gain by ASTV from STV in terms of PSNR min_J(u) 4 ¢z, . (Pu) stue 0,1V, (11)

averaged over 10 test images, and the result was 1.41 [dB], which ueRMN '

also illustrates the effectiveness of ASTV over STV for denoising

Interestingly, the uniform weight is preferable for ASTV, whereas oracle value, i.es = || ®a — v

STV favors th_e Gaussian weight as ad_dressed in [8]. This sug- Figure 2 (bottom) is a showcase of results\dapimage, where
gests that the |r_1ter-chanm_al corr_elat_lon in local neighborhood shoulﬁl]e use of ASTV results in higher PSNR than the use of STV. One
be evaluated without spatial weighting. can see that the resulting images obtained by ASTV have less false-
To demonstrate the suitability of ASTV as a regularization func-color-like artifacts than those obtained by STV. As in the case of
tion for multichannel images, we evaluated the function values oflenoising, adopting the uniform weight is suitable for ASTV. Fi-
STV and ASTV both on clean and noisy images. Specifically, sinceally, we note that the gain of ASTV from STV in terms of PSNR
the scale of STV and ASTV are different, we computed the raticaveraged over 10 test images was 3.26 [dB], i.e., ASTV is also a
of STV or ASTV on noisy images and that on clean images, i.e.better regularization than STV for CS reconstruction.
J(v)/J(u) (J denotes STV or ASTV), for measuring how much
the function value is increased by noise. Figure 1 (right) indicates
the average of/(v)/J(u) for STV or ASTV based on 300 im- 4. CONCLUDING REMARKS
ages ¢ = 0.05,0.1,0.15,0.2). One observes the function value \ye have proposed a new vectorial total variation with the arranged
of ASTV is rapidly increased by noise compared with STV, which gircture tensor for multichannel image restoration. The arranged
implies that ASTV well distinguishes clean and noisy images. structure tensor has a notable property: it becomes an approxi-
The computational difference between STV and ASTV in op-mately low-rank matrix when a multichannel image of interest has
timization only lies in the associated proximity operator. The CPUstrong correlation among its channels. Thanks to this property, our
time of the computation of the proximity operator in the case of STVproposed VTV, named the arranged structure tensor total variation
is 2.32 sec, and that in the case of ASTV4%4 sec (N = 65536 (ASTV), properly incorporates both local spatial variations and
andM = 3), i.e.,, ASTV is more expensive than STV. This is be- inter-channel correlation, resulting in a reasonable regularization
cause the size of the arranged structure tenshf ténes larger than  for multichannel images. Combining ASTV with cartoon-texture
that of the standard structure tensor, which is a limitation of ASTVdecomposition [30, 31] is an interesting future work.

‘which is also a special case of Prob. (5). The radiuss set to the

4531



(1]

2

—

3

=

[4

=

5

-

6

-

[7

—

8

—

9

—

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

5. REFERENCES

P. Blomgren and T. F. Chan, “Color TV: Total variation methods for
restoration of vector valued image$EEE Trans. Image Processol.
7, no. 3, pp. 304-309, 1998.

X. Bresson and T. F. Chan, “Fast dual minimization of the vectorial to-
tal variation norm and applications to color image processilygrse
Probl. Imag, vol. 2, no. 4, pp. 455-484, 2008.

B. Goldluecke, E. Strekalovskiy, and D. Cremers, “The natural vecto-
rial total variation which arises from geometric measure the@iAM
J. Imag. Sci.vol. 5, no. 2, pp. 537-563, 2012.

T. Miyata, “Total variation defined by weighted L infinity norm for
utilizing inter channel dependency,” iroc. IEEE Int. Conf. Image
Process. (ICIP)2012.

S. Ono and I. Yamada, “Decorrelated vectorial total variationPiac.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPE)14.

K. Bredies, “Recovering piecewise smooth multichannel images by{28]

minimization of convex functionals with total generalized variation
penalty,” inEfficient Algorithms for Global Optimization Methods in
Computer Visionpp. 44—77. Springer, 2014.

L. Condat, “Semi-local total variation for regularization of inverse
problems,” inProc. Eur. Signal Process. Conf. (EUSIPGQP14, pp.
1806-1810.

S. Lefkimmiatis and A. Roussos.and P. Maragos.and M. Unser, “Struc-
ture tensor total variation, SIAM J. Imag. Scjvol. 8, no. 2, pp. 1090—
1122, 2015.

G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet, “A
nonlocal structure tensor-based approach for multicomponent image re-
covery problems,” [EEE Trans. Image Processvol. 23, no. 12, pp.
5531-5544, 2014.

S. Lefkimmiatis and S. Osher, “Nonlocal structure tensor functionals
for image regularization,”IEEE Trans. Comput. Imagvol. 1, no. 1,
pp. 16-29, 2015.

S. Di Zenzo, “A note on the gradient of a multi-image&Zbmput. vis.
graph. image processvol. 33, no. 1, pp. 116-125, 1986.

J. Bigun and G. H. Granlund, “Optimal orientation detection of linear
symmetry,” inProc. IEEE Int. Conf. Comput. Vis. (ICCV}987, pp.
433-438.

J. Weickert,Anisotropic diffusion in image processingl. 1, Teubner
Stuttgart, 1998.

A. Bruhn, J. Weickert, and C. Scbrr, “Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methodsy.
J. Comput. Vis.vol. 61, no. 3, pp. 211-231, 2005.

C. Harris and M. Stephens, “A combined corner and edge detector.,” in
Alvey vision conferencé 988.

M. Fazel, Matrix Rank Minimization with ApplicationsPh.D. thesis,
Stanford University, 2002.

J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,"C. R. Acad. Sci. Paris Ser. A Mathvol. 255, pp.
2897-2899, 1962.

M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented La-
grangian approach to the constrained optimization formulation of imag-
ing inverse problems,JEEE Trans. Image Processiol. 20, no. 3, pp.
681-695, 2011.

G. Chierchia, N. Pustelnik, J.-C. Pesquet, and B. Pesquet-Popescu,
“Epigraphical projection and proximal tools for solving constrained
convex optimization problemsSignal, Image and Video Procesgp.

1-13, 2014.

S. Ono and I. Yamada, “Signal recovery with certain involved convex
data-fidelity constraintsJEEE Trans. Signal Processcol. 99, no. 99,
pp. —, 2015, (Early Access).

P. L. Combettes and J.-C. Pesquet, “A Douglas-Rachford splitting ap-
proach to nonsmooth convex variational signal recoved&EE J. Sel.
Topics in Signal Processvol. 1, pp. 564-574, 2007.

4532

[22]

[23]

[24]

[25]
[26]

[27]

[29]

[30]

[31]

A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging),’ Math. Imaging and
Vision vol. 40, no. 1, pp. 120-145, 2010.

H. H. Bauschke and P. L. CombetteSpnvex analysis and monotone
operator theory in Hilbert spacesSpringer, New York, 2011.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,Piac. IEEE Int.

Conf. Comput. Vis. (ICCVR001.

R. G. Baraniuk, “Compressive sensingEEE Signal Process. Maga-
zine vol. 24, no. 4, 2007.

E. Canes and M. Wakin, “An introduction to compressive sampling,”
|EEE Signal Process. Magazineol. 25, no. 2, pp. 21-30, 2008.

J. Romberg, “Imaging via compressive samplin¢dZEE Signal Pro-
cess. Magazinevol. 25, no. 2, pp. 14-20, 2008.

M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, Ting Sun, K.F.
Kelly, and R.G. Baraniuk, “Single-pixel imaging via compressive sam-
pling,” IEEE Signal Process. Magazinel. 25, no. 2, pp. 83-91, 2008.

R. Coifman, F. Geshwind, and Y. Meyer, “Noiselets&pplied and
Computational Harmonic Analysisol. 10, pp. 27—44, 2001.

J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, “Structure-texture image
decomposition - modeling, algorithms, and parameter selectib,”
J. Comput. Vis.vol. 67, no. 1, pp. 111-136, 2006.

S. Ono, T. Miyata, and I. Yamada, “Cartoon-texture image decompo-
sition using blockwise low-rank texture characterizatidEEE Trans.
Image Processvol. 23, no. 3, pp. 1128-1142, 2014.



