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ABSTRACT

We propose a new regularization function, named asArranged Struc-
ture tensor Total Variation(ASTV), for multichannel image restora-
tion. Since the standard structure tensor is a matrix whose eigen-
values well encodes local neighborhood information of an image,
there has been proposed vectorial total variation based on the struc-
ture tensor for image regularization. However, the correlation among
the channels cannot be measured by the structure tensor because the
discrete differences of all the channels are just summed up in the
entries of the structure tensor. On the other hand, ASTV is based
on a newly-definedarranged structure tensorthat becomes an ap-
proximately low-rank matrix when multichannel images have strong
correlation among their channels. This suggests that penalizing the
nuclear norm of the arranged structure tensor is a reasonable regular-
ization for multichannel images, leading to the definition of ASTV.
Experimental results illustrate the advantage of ASTV over a state-
of-the-art vectorial total variation based on the structure tensor.

Index Terms— Multichannel image restoration, regularization,
structure tensor

1. INTRODUCTION

The restoration of multichannel images, such as color image denois-
ing/deblurring, demosaicking, multispectral/hyperspectral imaging,
and compressed sensing, is an important task in many signal pro-
cessing applications. Such restoration problems are usually ill-posed
or ill-conditioned inverse problems, so that one requires somereg-
ularizationbased on underlying properties of multichannel images.
A successful class of regularization techniques for multichannel im-
ages would be vectorial total variation (VTV) [1, 2, 3, 4, 5] and its
higher-order/semilocal/nonlocal generalizations [6, 7, 8, 9, 10].

Among them, we focus on the Structure tensor Total Variation
(STV) [8]1 because of the following reasons. First, as mentioned
in [8], STV exploitslocal neighborhood information, so that it can
avoid several drawbacks of VTV such as producing the staircasing
effect. Second, since STV is not a nonlocal regularization, STV is
free from chicken-and-egg self-similarity evaluation.

As the name indicates, STV is defined as a function of the eigen-
values of the so-calledstructure tensor[11, 12], a matrix whose
eigenvalues summarize the prevailing direction of the gradient of
an image. The structure tensor has been used in many applications,
such as anisotropic diffusion [13], optical flow [14], and corner de-
tection [15]. Specifically, the structure tensor at a pixel location of a
multichannel image is a2 × 2 matrix constructed from vertical and
horizontal differences in the local neighborhood (e.g.,3×3 window)

The work was supported by JSPS Grants-in-Aid: 15H06197; 15K06076.
1Both grayscale and multichannel images are considered in [8], but we

are only interested in multichannel cases.

of the pixel location. Thereby, its eigenvalues have a rich informa-
tion on local spatial variations.

However, for a multichannel image, thecorrelation among the
channelscannot be fully evaluated by the structure tensor because
the discrete differences of all the channels are just summed up in the
entries of the structure tensor (see Sec. 2.1 for details). Since mul-
tichannel images usually have strong correlation among their chan-
nels, this should be properly incorporated into regularization.

We should remark that several existing VTVs [4, 5] explicitly
take the correlation into account. However, the one proposed in [4] is
anisotropic, i.e., the vertical and horizontal gradients are decoupled,
resulting in the generation of blocky artifacts around contours. The
one proposed in [5] overcame this drawback but it can be applied
only to color images since it uses a color transform. In addition to
the above things, structure-tensor-based approaches, which leverage
information on local spatial variations, are not considered in [4, 5].

Based on the above discussion, we propose a new vectorial total
variation with a newly-definedarranged structure tensorfor multi-
channel image restoration, which is termed asArranged Structure
tensor TV(ASTV). The arranged structure tensor is a2M × 2M
matrix with M ∈ N being the number of channels, so that it has
2M eigenvalues. As will be explained in Sec. 2.1, when a multi-
channel image of interest has strong correlation among its channels,
the arranged structure tensor becomes an approximately (but not ex-
actly) low-rank matrix. This observation suggests that penalizing
the nuclear norm, the tightest convex relaxation of the rank function
[16], of the arranged structure tensor is a reasonable regularization
for multichannel images, leading to the definition of ASTV. The ad-
vantage of ASTV over STV is demonstrated by experiments on de-
noising and compressed sensing reconstruction.

2. PROPOSED METHOD

2.1. Arranged structure tensor

Let u ∈ RMN be an image withM channelsu1, . . . ,uM ∈ RN

(N is the number of pixels), e.g.,M = 3 in the case of color im-
ages. Note that we treat an image/channel as a vector by stacking
its columns on top of one another. Also letDv andDh be vertical
and horizontal discrete difference operators that map one channel in
RN to its (vectorized) vertical/horizontal gradient map inRN , re-
spectively. We denote pixel locations byn ∈ {1, . . . , N}, the set of
pixel locations in local neighborhood (usually a square window) at
the pixel locationn by In (NOTE: n ∈ In), and a sub-vector of a
given vectorx ∈ RN consisting of its weighted entries at the pixel
locations inIn by xw

In
∈ R|I| with the weight vectorw ∈ R|I|

+

(R+ stands for the set of all positive real numbers). Here we assume
that the same shape of local neighborhood and the same weight vec-
tor are applied to every pixel location, so that the cardinalities (the
number of pixels in local neighborhood) ofI1, . . . , IN are equiva-
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lent, denoted by|I| (NOTE: To handle local neighborhood around
image boundaries, we use periodic boundary extension).

Then, thearranged structure tensorof u at the pixel locationn
is defined by

S(n)
u,w := L(n)⊤

u,w L(n)
u,w ∈ R2M×2M , (1)

L(n)
u,w := ([Dvu1]

w
In

[Dhu1]
w
In

· · · [DvuM ]wIn
[DhuM ]wIn

). (2)

We remark that the arranged structure tensor defined in (1) is differ-
ent from the standard structure tensor ofu at the pixel locationn:
S̃
(n)
u,w := L̃

(n)⊤
u,w L̃

(n)
u,w ∈ R2×2, where

L̃(n)
u,w :=

(
[Dvu1]

w⊤
In

· · · [DvuM ]w⊤
In

[Dhu1]
w⊤
In

· · · [DhuM ]w⊤
In

)⊤

∈ RM|I|×2. (3)

The difference between the standard and arranged structure tensors
are depicted in Fig. 1 (left). Note that there are totallyN arranged
(standard) structure tensors for one image, i.e.,L

(1)
u,w, . . . ,L

(N)
u,w.

Since the square root of each eigenvalue of the arranged (or
standard) structure tensor equals to each singular value ofL

(n)
u,w (or

L̃
(n)
u,w), we can discuss the difference of their properties through

L
(n)
u,w andL̃(n)

u,w. First, it is clear that every singular value of both
L

(n)
u,w andL̃(n)

u,w becomes small if the local neighborhood is smooth,
so that essentially, suppressing some norm ofL

(n)
u,w or L̃(n)

u,w results
in a smoothing effect onu. Indeed, the Frobenius norms ofL(n)

u,w

andL̃(n)
u,w take the same value because they consist of the same en-

tries (but their arrangements are different).
Things change when we focus on their singular values from the

view of the correlation of channels. We see in (3) that the (verti-
cal/horizontal) discrete differences of all the channels are stacked
into one column iñL(n)

u,w, implying that information on the correla-
tion is almost lost in the singular values ofL̃

(n)
u,w. On the other hand,

the information is stillalive in the singular values ofL(n)
u,w because

the discrete differences of each channel are arranged horizontally in
(2). More specifically, if the channels ofu have strong correlation
then the columns ofL(n)

u,w become approximately linearly depen-
dent, so that the singular values except the first one are expected to
be very small. This observation naturally leads to the definition of
our regularization function in the next subsection.

2.2. Vectorial total variation based on arranged structure tensor

To promote the spatial smoothness of multichannel images with con-
sidering the correlation among channels, we propose a regularization
function based on the arranged structure tensor as follows:

ASTVw(u) :=
∑N

n=1 ∥L
(n)
u,w∥∗, (4)

where∥ · ∥∗ is the nuclear norm, i.e., the sum of all the singular
values of(·). Following the prior work [8], we name this function as
Arranged Structure tensor Total Variation(ASTV). We remark that
for single channel images, ASTV and STV (the one proposed in [8])
are equivalent sinceL(n)

u,w = L̃
(n)
u,w.

The set of discussions in the previous subsection suggests the
two things: (i) suppressing all the singular values ofL

(n)
u,w makes

restored images smooth, and (ii) promoting the approximate low-
rankness ofL(n)

u,w is suitable for images with strong correlation
among channels. Hence, we adopt the nuclear norm for evaluating
L

(n)
u,w because the nuclear norm is the sum of the singular values and

the tightest convex relaxation of the rank function [16].

2.3. Multichannel image restoration by ASTV

2.3.1. Problem formulation

Consider to restore an original multichannel imageū ∈ RMN from
observation data, which is cast as inverse problems of the form:v =
D(Φū), whereΦ ∈ RR×MN (R ≤ MN ) is a matrix representing
some degradation (e.g., blur and/or random sampling),D : RR →
RR is a noise contamination process, andv ∈ RR is an observation.

Based on the above model, we formulate multichannel image
restoration by ASTV as the following convex optimization problem:

min
u

ASTV(u) + Fv(Φu) s.t.u ∈ C, (5)

whereFv ∈ Γ0(RR)2 is a data-fidelity function, andC ⊂ RMN

is a closed convex constraint onu. We assume that theproximity
operator3 [17] of Fv can be computed efficiently. We also assume
that the computation of the projection4 ontoC is efficient.

We give several examples ofFv in Remark 1. Meanwhile, a
typical example ofC is a box constraint, a known dynamic range of
ū (e.g.,C := [0, 255]MN for eight-bit images).

Remark1 (Examples ofFv). The ℓ2 norm data-fidelity, given by
Fv(x) :=

µ
2
∥x− v∥2, would be the most popular choice for Gaus-

sian noise cases. Theℓ1 norm is a useful data-fidelity measure for
impulse noise cases, which is given byFv(x) := µ∥x− v∥1. They
can also be used asdata-fidelity constraints, i.e.,Fv(x) := ιB(x),
whereB := {x ∈ RR| ∥x − v∥1 or 2 ≤ ε}, andιB is the indi-
cator function5 of B defined byιB(x) := 0, if x ∈ B; ∞, other-
wise. It is worth noting that such a constraint-type data-fidelity fa-
cilitates the parameter setting becauseε has a clearer meaning than
µ, as addressed in [18, 19, 20]. For Poisson noise cases, thegeneral-
ized Kullback-Leibler divergenceis known as a suitable data-fidelity
function (the definition can be found in [21]). The proximity opera-
tors of these examples can be computed efficiently.

2.3.2. Optimization

Since Prob. (5) is a highly nonsmooth optimization problem, we have
to use some iterative algorithms for solving it. In this paper, we adopt
a primal-dual splitting method [22], which does not require matrix
inversion. It solves convex optimization problems of the form:

min
x∈X

g(x) + h(Ax), (6)

whereg ∈ Γ0(X ) andh ∈ Γ0(Y) (X andY are some Euclidean
spaces) andA : X → Y is a linear operator.

The algorithm is given by⌊
x(k+1) = proxγ1g

(x(k) − γ1A
⊤y(k)),

y(k+1) = proxγ2h∗(y(k) + γ2A(2x(k+1) − x(k))),

whereh∗ the convex conjugate function6 of h, andγ1, γ2 > 0 satisfy

2The set of all proper lower semicontinuous convex functions onRN is
denoted byΓ0(RN ).

3The proximity operator of indexγ > 0 of f ∈ Γ0(RN ) is defined by
proxγf : RN → RN : x 7→ argmin

y
f(y) + 1

2γ
∥y − x∥2.

4Given a nonempty closed convex setC ⊂ RN , theprojection ontoC is
defined byPC : RN → RN : x 7→ argmin ∥x− y∥ s.t.y ∈ C.

5The proximity operator of the indicator function of a nonempty closed
convex setC equals to the projection ontoC, i.e.,proxγιC = PC .

6The proximity operator off∗ can be computed via that off , i.e.,
proxγf∗ (x) = x− γ proxγ−1f (γ

−1x) (see, e.g., [23, Theorem 14.3(ii)].
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Fig. 1. Construction of the standard and arranged structure tensors (left) and comparison of STV [8] and ASTV (proposed) in terms of the
ratio of the function values on noisy and clean images (right).

γ1γ2∥A∥2op ≤ 1 (∥ · ∥op stands for the operator norm of·). Under
some mild conditions ong, h, andA, the sequence(x(k))k∈N con-
verges to a solution of Prob. (6). To apply the primal-dual splitting
method to Prob. (5), we reformulate it into Prob. (6).

First, since the definition of ASTV in (4) is not amenable to
optimization due to its structure involving several linear operations
to u, we give an alternative expression of ASTV. Specifically, we
separate these operations and define them as matrices as follows:

ASTVw(u) := ∥WPDu∥∗,N . (7)

Here,D : RMN → R2MN is a discrete difference operator that
maps all the channels ofu to their vertical and horizontal differ-
ence images,P : R2MN → R2|I|MN is an expansionoperator
that makes|I| copies ofDu, W : R2|I|MN → R2|I|MN is a
weighting operator that applies the weights inw to local neighbor-
hood at every location, and∥ · ∥∗,N : R2|I|MN → R is the sum
of the nuclear norm of the arranged structure tensor at every loca-
tion. One sees that inWPDu, local neighborhood at any location
does not overlap each other, which means that the arranged structure
tensor at every location can be constructed fromWPDu without
reusing the entries, i.e.,WPDu and(L(1)

u,w), . . . , (L
(1)
u,w) are bijec-

tive. This makes the proximity operator of∥ · ∥∗,N readily available
by computing the proximity operator of the nuclear norm of the ar-
ranged structure tensor at each location. Specifically, forL

(n)
u,w with

its singular value decompositionU(n) diag(σ
(n)
1 , . . . , σ

(n)
2M )V(n)⊤,

the proximity operator of the nuclear norm of the arranged structure
tensor at the locationn is given by

proxγ∥·∥∗(L
(n)
u,w) = U(n)Σ(n)

γ V(n)⊤, (8)

Σ(n)
γ := diag(max{σ(n)

1 − γ, 0}, . . . ,max{σ(n)
2M − γ, 0}).

Second, by introducing the indicator function ofC, Prob (5) can
be rewritten as

min
u

∥WPDu∥∗,N + Fv(Φu) + ιC(u). (9)

Finally, by letting

g : RMN → R ∪ {∞} : u 7→ ιC(u),

h : R2|I|MN+R → R ∪ {∞} : (y1,y2) 7→ ∥y1∥∗,N + Fv(y2),

A : RMN → R2|I|MN+R : u 7→ (WPDu,Φu),

Prob. (9) is reduced to Prob. (6). The resulting algorithm based on

Algorithm 1: Primal-dual splitting method for Prob. (4)

input : u(0), y(0)
1 , y(0)

2
1 while A stopping criterion is not satisfieddo

2 u(k+1) = PC(u(k) − γ1(D⊤P⊤W⊤y
(k)
1 +Φ⊤y

(k)
2 ));

3 y
(k)
1 ← y

(n)
1 + γ2WPD(2u(k+1) − u(k));

4 y
(k)
2 ← y

(n)
2 + γ2Φ(2u(k+1) − u(k));

5 y
(k+1)
1 = y

(k)
1 − γ2 prox 1

γ2
∥·∥∗,N

( 1
γ2

y
(k)
1 );

6 y
(k+1)
2 = y

(k)
2 − γ2 prox 1

γ2
Fv

( 1
γ2

y
(k)
2 );

7 n← n+ 1;

the primal-dual splitting method is summarized in Alg. 1, where Step
2 and 6 are computable from the assumptions on Prob. (5), and see
(8) for Step 5. We also note that clearly,D, P, W and thier trans-
poses can be computed efficiently.

3. EXPERIMENTS

ASTV can serve as a building block in various multichannel image
restoration scenarios. In the experiments, we apply ASTV to two
specific problems: denoising and compressed sensing (CS) recon-
struction, and compare it with STV [8].

All the experiments were performed using MATLAB (R2014a,
64bit), on a Windows 8.1 (64bit) laptop computer with an Intel
Core i7 2.1 GHz processor and 8 GB of RAM. For test images, we
took color images (i.e.,M = 3) from the Berkeley Segmentation
Database7 [24], and their dynamic range was normalized, i.e., ev-
ery pixel value is in[0, 1]. We use PSNR (Peak Signal-to-Noise
Ratio)8 for objective evaluation of restored images. The shape of
local neighborhood in ASTV and STV was set to a3 × 3 square
window, and we consider two cases for the entries of the weight
vectorw: (i) uniform (all the weights set to1/9) and (ii) a3 × 3

Gaussian kernel with standard deviationσw =
√
0.5, which is the

same setting suggested in [8].

3.1. Denoising

First, we conducted Gaussian noise removal experiments, where
clean test images were contaminated by an additive white Gaussian

7For each image, the center region of size256× 256 is cropped.
8PSNR is defined by10 log10(MN/∥u− ū∥2).
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7.85 23.21 23.66 27.53 26.47

Fig. 2. Resulting images on denoising (top) and CS reconstruction (bottom) experiments: From left to right, original, observation, STV
(uniformw), STV (Gaussianw), ASTV (uniformw), andASTV (Gaussianw).

noisen with standard deviationσ = 0.1, i.e.,v = ū+n. Following
the discussion in Remark 1, theℓ2-norm data-fidelity constraint was
adopted, where for a fair comparison, we set the radiusε as the
oracle value for each image, i.e.,ε = ∥ū − v∥. Specifically, we
solve the following problem:

min
u∈RMN

J(u) + ιBv,ε(u) s.t.u ∈ [0, 1]MN , (10)

whereJ denotes STV or ASTV, andBv,ε := {x |∥x − v∥2 ≤ ε}.
Clearly, this problem is a special case of Prob. (5).

Results onCastle image are shown in Fig. 2 (top) with their
PSNR [dB]. One can see that the images restored by ASTV are better
than those by STV in terms of PSNR, and that ASTV well reduces
color smearing in restored images. Aside from the visualized im-
ages, we measured the gain by ASTV from STV in terms of PSNR
averaged over 10 test images, and the result was 1.41 [dB], which
also illustrates the effectiveness of ASTV over STV for denoising.
Interestingly, the uniform weightw is preferable for ASTV, whereas
STV favors the Gaussian weightw as addressed in [8]. This sug-
gests that the inter-channel correlation in local neighborhood should
be evaluated without spatial weighting.

To demonstrate the suitability of ASTV as a regularization func-
tion for multichannel images, we evaluated the function values of
STV and ASTV both on clean and noisy images. Specifically, since
the scale of STV and ASTV are different, we computed the ratio
of STV or ASTV on noisy images and that on clean images, i.e.,
J(v)/J(ū) (J denotes STV or ASTV), for measuring how much
the function value is increased by noise. Figure 1 (right) indicates
the average ofJ(v)/J(ū) for STV or ASTV based on 300 im-
ages (σ = 0.05, 0.1, 0.15, 0.2). One observes the function value
of ASTV is rapidly increased by noise compared with STV, which
implies that ASTV well distinguishes clean and noisy images.

The computational difference between STV and ASTV in op-
timization only lies in the associated proximity operator. The CPU
time of the computation of the proximity operator in the case of STV
is 2.32 sec, and that in the case of ASTV is4.64 sec (N = 65536
andM = 3), i.e., ASTV is more expensive than STV. This is be-
cause the size of the arranged structure tensor isM times larger than
that of the standard structure tensor, which is a limitation of ASTV

compared with STV. Note that all the program codes were imple-
mented by MATLAB without parallelization.

3.2. Compressed sensing reconstruction

We also conducted experiments on compressed sensing (CS) recon-
struction [25, 26] that arises in imaging problems, such as coded
aperture imaging and computational photography [27, 28]. Here, we
try to recover an original imagēu from its incomplete measurements
v = Φū + n, whereΦ ∈ RR×MN (R = 0.2MN ) is a random
Noiselet measurement matrix [29], andn ∈ RM is an additive white
Gaussian noise with standard deviationσ = 0.1. Since CS recon-
struction is a highly ill-posed problem, we need some regularization,
leading to the following optimization problem

min
u∈RMN

J(u) + ιBv,ε(Φu) s.t.u ∈ [0, 1]MN , (11)

which is also a special case of Prob. (5). The radiusε was set to the
oracle value, i.e.,ε = ∥Φū− v∥.

Figure 2 (bottom) is a showcase of results onMap image, where
the use of ASTV results in higher PSNR than the use of STV. One
can see that the resulting images obtained by ASTV have less false-
color-like artifacts than those obtained by STV. As in the case of
denoising, adopting the uniform weightw is suitable for ASTV. Fi-
nally, we note that the gain of ASTV from STV in terms of PSNR
averaged over 10 test images was 3.26 [dB], i.e., ASTV is also a
better regularization than STV for CS reconstruction.

4. CONCLUDING REMARKS

We have proposed a new vectorial total variation with the arranged
structure tensor for multichannel image restoration. The arranged
structure tensor has a notable property: it becomes an approxi-
mately low-rank matrix when a multichannel image of interest has
strong correlation among its channels. Thanks to this property, our
proposed VTV, named the arranged structure tensor total variation
(ASTV), properly incorporates both local spatial variations and
inter-channel correlation, resulting in a reasonable regularization
for multichannel images. Combining ASTV with cartoon-texture
decomposition [30, 31] is an interesting future work.

4531



5. REFERENCES

[1] P. Blomgren and T. F. Chan, “Color TV: Total variation methods for
restoration of vector valued images,”IEEE Trans. Image Process., vol.
7, no. 3, pp. 304–309, 1998.

[2] X. Bresson and T. F. Chan, “Fast dual minimization of the vectorial to-
tal variation norm and applications to color image processing,”Inverse
Probl. Imag., vol. 2, no. 4, pp. 455–484, 2008.

[3] B. Goldluecke, E. Strekalovskiy, and D. Cremers, “The natural vecto-
rial total variation which arises from geometric measure theory,”SIAM
J. Imag. Sci., vol. 5, no. 2, pp. 537–563, 2012.

[4] T. Miyata, “Total variation defined by weighted L infinity norm for
utilizing inter channel dependency,” inProc. IEEE Int. Conf. Image
Process. (ICIP), 2012.

[5] S. Ono and I. Yamada, “Decorrelated vectorial total variation,” inProc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014.

[6] K. Bredies, “Recovering piecewise smooth multichannel images by
minimization of convex functionals with total generalized variation
penalty,” inEfficient Algorithms for Global Optimization Methods in
Computer Vision, pp. 44–77. Springer, 2014.

[7] L. Condat, “Semi-local total variation for regularization of inverse
problems,” inProc. Eur. Signal Process. Conf. (EUSIPCO), 2014, pp.
1806–1810.

[8] S. Lefkimmiatis and A. Roussos.and P. Maragos.and M. Unser, “Struc-
ture tensor total variation,”SIAM J. Imag. Sci., vol. 8, no. 2, pp. 1090–
1122, 2015.

[9] G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet, “A
nonlocal structure tensor-based approach for multicomponent image re-
covery problems,” IEEE Trans. Image Process., vol. 23, no. 12, pp.
5531–5544, 2014.

[10] S. Lefkimmiatis and S. Osher, “Nonlocal structure tensor functionals
for image regularization,”IEEE Trans. Comput. Imag., vol. 1, no. 1,
pp. 16–29, 2015.

[11] S. Di Zenzo, “A note on the gradient of a multi-image,”Comput. vis.
graph. image process., vol. 33, no. 1, pp. 116–125, 1986.

[12] J. Bigun and G. H. Granlund, “Optimal orientation detection of linear
symmetry,” inProc. IEEE Int. Conf. Comput. Vis. (ICCV), 1987, pp.
433–438.

[13] J. Weickert,Anisotropic diffusion in image processing, vol. 1, Teubner
Stuttgart, 1998.

[14] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets
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