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ABSTRACT each entry of® is a sample of random variables (e.g., Gaussian),

- . . implying that® has no specific structure allowing efficient imple-
We propose an efficient image restoration framework based Ofentation of the multiplication. For suctomplicated®, proximal

stochastic optimization. Image restoration usually requires some intimization methods requir@(MN) computation per iteration,
erative methods for solving optimization problems that characterizg ich is expensive since boft and N are large

restored images, where the multiplication of the observation matrix 1, overcome the difficulty, this paper proposes an efficient im-

MXxN : . .
P € ﬁR _ 'ancli variables hafs tr? be clo'ml.pute.d at each iteration. If 4o yotoration framework based on a recently proposed stochastic
an efficient implementation of the muitiplication (€.g., using .FFT)proximaI optimization methodStochastic Dual Coordinate Ascent
is _unavallablg, its _computatlonal cost becond®s\/ N), vx_/hu_:h S Wwith ADMM (SDCA-ADMM) [13]. To the best of our knowledge,
quite expensive since both and A/ are usually large in image s \ork is the first attempt to leverage stochastic proximal opti-
restoration. Our methqd n[eeds to load and apply only a part of th,i; ation 10 resolve image restoration with complicatedsee Re-
observation matrlx of S'Z% x N I(VI;:Nthe number of parts), so that 41 1 for related workJ. In our framework, the observation ma-
the computational cost is onkp(=5"). Moreover, the_propos.ed trix ® is decomposed intd sub-matricesPz, € R% *N k =
method_accepts various nonsmooth obJectlve_s effective for image b), whereZ, is the kth mini-batchcontaining the indices of
restoration. Experiments on compressed sensing reconstruction a{}’% O’WS’ ofb that construc®-, . Then, in optimization, only a ran-
non-uniform deblurring show the 'ad.van.tage of the proposed mEtho&iomly chosenbz, is activatedk per iter,ation, i.e., the c’omputational
over state-of-the-art proximal optimization methods. cost isO(%). Hence, the proposed method is much more effi-
Index Terms— Image restoration, stochastic optimization cient than non-stochastic proximal optimization methods in image
restoration with complicate®, demonstrated by our experiments.

1. INTRODUCTION
2. SDCA-ADMM

Image restoration, such as deblurring and compressed sensing (CS)
reconstruction, is a fundamental problem in image processing. Mosn the machine learning literature, the stochastic dual coordinate as-
image restoration problems can be seen as inverse problems of thent with ADMM (SDCA-ADMM) [13] was proposed to solve:
form: v = D(®1), wherea € R" is an unknown original image of v . -
interest,y € R™ is an observation vecto® € R™*" is a matrix min 37 370 fm (2 W) + (BT W), @
representing an observation process (e.g., blunan&™ — RM wer
is a noise contamination process that is not necessarily additive. \yherew is the weight vector one wants to leam, . .., zy € RY

Variational approaches using nonsmooth regularization, €.9., ©ye given vectorsf,, : R — (—oo, ool is a loss function for thenth
tal variation (TV) [1], have already been proven to be effective forsample, ands o B' : RN — (—o0, 0] is a regularization function
image restoration. This has led to the demand for efficientalgorithm§B € RV*E 4 . RE 5 (00, 00]). Assume the following:f,,
to solve large-scale (usually/, N > 10*) nonsmooth optimization  and are proper lower semicontinuous convex, and thesximity
problems. A successful class of such algorithniirss-order proxi-  gperators[15] are easy to compute, where the proximity operator of
mal optimization methodg]. In particular, linearized variants of the index~y > 0 of g € To(R™)? is defined by
alternating direction method of multipliers (L-ADMM) [3, 4] and
the primal-dual splitting methods (PDS) [5, 6, 7] are preferable in
the sense that they do not require matrix inversion.

However, an important issue still remains: at every iteration, o
proximal optimization methods have to compute the multiplication! hen, SDCA-ADMM solves Prob. (1) via its dual problem:
of the observation matrix® and variables. For denoising and in- . M e .
painting, this does not matter sindeis a simple diagonal matrix. —, cp i yerx A Dot frn(@m) + 97 (57y) st Zx + By = 0,
For uniform deblurring with appropriate boundary conditions, the
multiplication can be efficiently computed via FFT. On the otherwhereZ := (z; - - - zp/) € RV*™ (-* means convex conjugation).
hand, such an efficient computation is unavailable in the case of non- et 7, {1,..., M} be thekth mini-batch including the in-

uniform deblurring due to spatially-varying blur kernels, so that ex-gices of a subset of samplds & 1, ..., b, andb is the number of
isting non-uniform deblurring methods employ locally-uniform ker- minj-batches). All the mini-batches satisf_, Zx = {1,..., M}
nel approximation or focus on specific blur types [8, 9, 10]. Sim-

ilarly, for CS reconstruction with random measurements [11, 12], The preliminary version of the work appeared in a technical report [14].
2The set of all proper lower semicontinuous convex function®éhis
The work was supported by JSPS Grants-in-Aid: 15H06197; 15K06078denoted byl (R™V).

prox, : RY = RY : x — argmin g(y) + %Hy — x|
y
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Algorithm 1: SDCA-ADMM
Choosex(©), y(©), w(®, £©), p > 0,7 > 0,15 > (01(B))?,
nz7, > (01(Zz,))% and seh = 1.

while A stopping criterion is not satisfiedb
Choosek € {1,...,b} uniformly at random.

1 — 1 —
y(n) (_proxﬁw*(ﬁ(y(n 1) 4 %BT(w(n 1) _
p(&"1 + By("=1))))
x0TV

1
Pz,

x prox__ 1 «
Tk Pz fIk
I, Tk

P 4+ By()))

g(n) . g(n—l) +Zz, (X(IZ) _ x(Iifl))

w(™ — wn=1 _ oM (g™ 4+ By(™) — (M —
M) (61 4 By(n-)))

n+<—n+1

z;k (w(n=1)

andZ, N Iy ., = 0. Then, at each iteration, SDCA-ADMM ran-
domly chooses one with probability/b from all the mini-batches,
and updates variables by only using the samples w.r.t. the min
batch. The detailed computation of SDCA-ADMM is given in
Alg. 1, wherefr, (xz,) == },.cz, fm(zm), andZz, € RN x4
andxz, € R% are the submatrix o and the subvector of w.r.t.

the kth mini-batch, respectivelyof (-) is the largest singular value
of ()). Note that using the proximity operator gf € I'o(RY),
the proximity operator ofg* € T'o(R") can be expressed as
prox_ .« (x) = x — ’yprox%g(%x) [16, Theorem 14.3(ii)].

Remarkl (Other stochastic proximal optimization method#)l-

£ ]‘mlzl(xm — vm)? Thet, norm is also useful for data-fidelity

measure, especially in the case whereontains outliers. It is de-
fined by Fo(x) := pllx — v|li = pM_, [Tm — vml, i.€., SEP-
arable. In the case of Poisson noise contaminationgémeralized
Kulback-Leibler divergengavhich is also separable, is known as a
suitable data-fidelity function (the definition can be found in [21]).
The proximity operators of the above examples satisfy (a2).
(Regularization functioR o F') TV [1] and its vectorial variants,
e.g., [22, 23, 24], are well-known edge-preserving regularizers for
images. In this caseR is a norm, usually the mixeé, » norm,
andF is a discrete gradient operator. The proximity operator of the
mixed ¢1,2 norm is available withO(V), and the computation of
the discrete gradient operator is al&§N). Another well-known
example is frame regularization relying on the sparsity of images in
some transformed domain. In this cage,is the¢; norm, whose
proximity operator is computable witd(L) (L is the number of the
frame coefficients), anH' is a frame analysis operator, e.g., wavelet
and curvelet [25]. Most well-designed frame analysis operations
can be performed 0 () or O(N log N). Nonlocal regulariza-
tion [26, 27, 28] and regularizaiton using learned operators [29, 30]
can also be considered in this framework if a nonlocal/learned anal-
ysis operatoiF allowing efficient implementation.

(ConstraintC') One can impose some additional knowledge on the
original imageu. A simple example is a box constraint that rep-
resents a known dynamic range, e@.;= [0,255]" for eight-bit
images. Imposing this type of bounded closed convex constraints
also guarantees the existence of the minimizer of (2).

3.2. Reformulation, mini-batch construction, and algorithm

By noting the separability oF, and by using the indicator functidn

though we adopt SDCA-ADMM in our framework due to its formu- of ¢, Prob. (2) can be rewritten as
lation, there are several other stochastic proximal optimization meth-

ods that can be applied to (1) with more specific structures. The first

one is the SAGA algorithm [17], which can solve (1) whép is
Lipschitz-differentiable angrrox,, g+ is computable. Iff,,, andy
can be decomposed w.r.t. sub-vectorsagfthe stochastic primal-
dual proximal algorithm [18, 19] would be another choice for solv-
ing (1). We refer the readers to [20] for more information.

3. PROPOSED METHOD

3.1. Problem formulation

We consider the following variational image restoration:

min Fy(®u) + R(Fu) s.t.ue C,

2
uckN ( )

whereF, € I'o(RM) is a data-fidelity functionR o F : RY —

(—o0, 00] is a regularization function € R**N R ¢ T'o(R%)),

andC c R" is a closed convex constraint en We assume

(al) Fy is separablei.e., Fy(x) = SN Fon(zm).

(a2) The comp_utational costspfox, - ~andprox, areO(1) and

O(L), respectively.

(a3) The multiplication of (andF ") is O(N) or O(N log N).

(a4) The computational cost & is O(N) or O(N log N).2

Remark2 (Examples ofF,, R o F, andC).
(Data-fidelity functionF,) The ¢> norm would be the most popu-
lar one and clearly separable, given By (x) := £|x — v||

3Given a nonempty closed convex €&tc RV, theprojection ontoC is
defined byPo : RV — RY : x + argmin ||x — y/||2.
yel
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min SN Fp (¢, u) + R(Fu) + o (),

ueRN

®)

where ¢,, € RY is the mth row vector of ®, i.e., &'
(¢, ). Let us defineB (FT I) € RVXE+N) and
P REFY o (—o0,00] ¢y = R(yL) + te(yn), where
y = (yL yx)". Then, Prob. (3) can be reformulated into

min S0, F(9m) + (B w), @
which is equivalent to Prob. (1) (except the constﬁlpx Finally,

as in the proof of [13, Lemma 1], using Fenchel-Rockafellar duality
[16, Definition 15.19], the dual problem of (4) is obtained as

SN F(am) + ¢ (y) st.®Tx+ By =0.

®)

When we apply SDCA-ADMM to Prob. (5), constructing mini-
batches suitable for the structure of the problem is quite important
for fast convergence. Indeed, according to the analysis of SDCA-
ADMM in [13], the convergence rate of SDCA-ADMM becomes
worse when samples in a mini-batch are strongly correlated to
each other. Since each entry of the observation veetar im-
age restoration corresponds to each sample in machine learning,
this phenomenon should be carefully considered in the proposed
method. Indeed, thepatial correlationof pixels is usually very
strong, and this correlation would be propagated to entries of the

min
x€RM yeRL+N

4 For a given nonempty closed convex 6t R, the indicator function
of C is defined by.c(x) := 0, if x € C; oo, otherwise. The proximity
operator of. is equivalent to the projection ont@.



Algorithm 2: Solver for Prob. (2) based on SDCA-ADMM

Choosex(®, y{? v @ ¢© t© , 0,7 >0,
n8 > (01(B))%, na,, > (01(®z,))”, and set = 1
while A stopping criterion is not satisfiedb

Choosek € {1, ...,b} uniformly at random.
r(n) _ u(n—l) _ p(g(n—l) +t(n—1))

af =y 4+ SLE

ay) =y Y+ ™

v« af” — -L prox,, (msal”)

yi) —ay) - S Po(omealy’)

1 — FTy(Ln) +y§\7)

proximal optimization methods that require the computation®of
and® "y at each iteration. We list the computational costs of the
steps involving matrix application or proximal operation in Alg. 2.
Step 2 and 60(N) or O(N log N) from (a4).

Step 4:0O(L) from (a2).

Step 5:O(N) or O(N log N) from (a4).

Step 8 and 100 (41,

Step 9:0(4%) from (al)-(a2).

Remark4 (Convergence of Alg. 2) The convergence of SDCA-
ADMM was analyzed under a strong convexity assumption [13],
which implies that as of now, there is no convergence analysis for
general convex objectives such as (5). However, both for stochas-
tic and non-stochastic methods, such a strong convexity assumption

is usually required to achieve a linear convergence rate but is not

(n) — yr—1 _ (n—1) (n)
! so=u p(€ +£7) necessary to guarantee convergence (for example, the convergence

8 P(IT,Z) = X(IZ '+ pn;I ®z,s™ of another stochastic variant of ADMM [31] was proved for general

(n) (n) " (n) convex objectives). Indeed, Alg. 2 shows stable convergence in our
ol *me TPn T Gaey PM%ngy o, (P22, Pz,) experiments (see Sec. 4).
w0 | €M =g 4 @ (x5 - xf )

k k k

u | u™ 4. EXPERIMENTS

(n=1) 1 (M (£ g (W) _ (=DM (¢(n=1) | 4(n—1)

Z<_ n+71p( (€ (€ * ) We examined the performance of the proposed method by com-

= paring it with several state-of-the-art non-stochastic proximal op-
timization methods in two specific image restoration applications
with complicated®: compressed sensing (CS) reconstruction and
observation vector (depending on the structure &). A typical non-uniform deblurring, AI_I experiments were performed using
case is deblurring, where the entriesvodire blurred pixels. MATLAB (R2013a), on a Windows 8.1 laptop computer.

To deal with such cases, we suggest to construct mini-batchdgethods for comparison. We compared the proposed method with
via spatially-uniform samplingLet V € RMv*¥u pe the spatially-  the prlmal—dl_JaI sphttmg method (PpS_) [5, 6] and the Ilnea_nzed
correlated 2D form ok (M, M, = M). For simplicity, the num-  alternating direction method of multipliers (L-ADMM) [4], which
ber of mini-batche$ is assumed to be a square number, afid ~ r€quire no matrix inversion.
and M, are assumed to be divisible byb. Then, entries oV Design of Prob. (2).We employed (isotropic) TV [1] for grayscale
belonging to thekth mini-batch are selected by tlhigh spatially-  images and its vectorial variant [22] for color images as the reg-
uniform sampling operatafy : RM»*Mn _, RMW x ”\% where, ;J!arizat_ion functionR o_F inTProbT. (TZ). In QtIUiXchase, the ma-

rix F is equal toD := (D, D,) € R , WhereD,,
forp=1,....vbandg=1,..., Vb seth := g+ (p—1)vband 4 D,, are the vertical and horizontal discrete gradient operators
with Neumann boundary. Henc&x andF "y can be computed

Vo Voa+vs VoM +a—E X X . ]
V) Vo Vi Vot VBat VB Vo VB +a—E with O(N) cost. The functionR is the mixed¢; 2 norm de-
k =
: : : i — 191 2 i i
B : o : fined by [|x|1,2 == 327 /> cq, =5, Whereg; is the index set
Vn{ﬁp—\/&q VMﬁp—\/E;qu\/E T ‘A\rfv—er\/E.n[,ﬁrq—\/E

including the indices of entries ot belonging to theith group
Consequently, all the entries in ofig(V) are as far from each other (¢ = 1,...,|G|). Specifically, one group consists of vertical and
as possible. Thus, by using this mini-batch construction strategy, worizontal discrete gradients w.r.t. thith pixel in the TV case.
can alleviate the spatial correlation of the entries of each mini-batchThe proximity operator of| - [|1,2 is given by a simpleO(N)
Now we arrive at the point where we can apply SDCA-ADMM soft-thresholding type operation (see, e.g., [32])
to solve Prob. (5), i.e., Prob. (2). Léz, € REXN pe a sub- For the_data—fidelity functiod—‘v, we ysed diﬁerent ones in CS
matrix of ® w.rt. the kth mini-batch, and definé"z, (xz,) := reconstruction and non-unlfo_rm deblurring (exp_lalned later). _
Y,.cz. Fm(xm). The resulting algorithm is summarized in Alg. 2. ForNthe constrng, we mpqsed a dynamic range constraint
In Alg. 2, we can see how mini-batch construction affects thel0» 255", onto which the projection can be calculated by pushing
convergence behavior. Suppose that a subvectoragiiresponding ~ the entries intd0, 255], i.e., O(V) cost.
to a mini-batch has strong spatial correlation, i.e., every entry oParameter settings. For the proposed method, we employed the
the subvector is composed of a linear combination of the pixels iparameter settings suggested in [13], specifically; 47, p = 0.1
a local region. Then, the data-fidelity is evaluated only w.r.t. theandne = 1.1(o1(B))? in all the experiments. Since it is not re-
region (step 9). On the other hand, the effect of the regularization iglistic to use different)s, for eachk, we fixed all of them to
Qlways global (s_tep 4), so t_hat i_n the othe_r re_gions,_the regularization, 1 (max;, o (®1,))° '
is performed without considering data-fidelity, which would result  For PDS and L-ADMM, we adjusted their parameters that give
in a slow convergence. Indeed, we will see in Sec. 4 that mini-batcRest convergence behavior in each experiment, respectively.
construction significantly affects the convergence speed. Evaluation criterion. For evaluation of convergence, we define
Remark3 (Computational cost of Alg. 2)Alg. 2 only needs to com- the normalized root mean square error (NRMSE) between the cur-
pute®z, x andé}ky once at each iteration, implying that the pro- rent estimateu™ and the optimal solutiom* of Prob. (2), i.e.,
posed method is much more efficient than existing non-stochastidRMSE, := ||u™ — u*||/[lu*||. Since the optimal solution* is
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NRMSE,
NRMSE,

Fig. 1. Convergence profile of PDS, L-ADMM, and Alg. 2 (Prop) === s
on CS reconstruction (left) and non-uniform deblurring (right). Original  Blurred ~ PDS L-ADMM  b=4 b=16

analytically unavailable, it was pre-computed by PDS with 100000719: 2 Resulting images on CS reconstruction (top) and non-
iterations. For a fair comparison of stochastic and non-stochastigniform deblurring (bottom).

methods, the convergence curves of the proposed method were Qistimization via FFT. In this experiment, a sharp image is restored

tained after averaging uniformly 100 realizations. from a blurred observation = ®1 + n by solving
. A M T 2
4.1. Compressed sensing reconstruction wepan N2 m=1 (@t — vm)” + [[Dul1 2, )

In CS reconstruction, we try to recover an original imagom its  \here n is an additive white Gaussian noise with standard de-
incomplete measurements= ®u, where® is some measurement yation o. The proximity operator o2 (- — vm)? is given by
matrix of sizeM x N with M < N. Theoretically, employing _ Auptz 2
random matrices a® is in some sense an optimal strategy for a sta %3 (—vm)? (_x) o 1+A .
ble CS reconstruction [33, 34]. However, such random matrices are, FOr a test image, we used a cofastleimage taken from [36]
dense and have no specific structure allowing efficient implementd2f Siz€256 x 256 (N = 2567 x 3). The blur matrix® was made
tion, so that the computations @x and® "y become much expen- 11om spatially-varying (per-pixel) kernels simulating motion-blur.
sive and memory inefficient in large-scale problems, as pointed out!NCe the pixels of a blurred imageare spatially correlated to each
in [35]. The proposed method provides a resolution to this issue. OtNer, we tested the two ways of mini-batch construction: (i) simple
In this experiment, we solve _block partitioning a_nd (ii) the spatlal_ly—_unlf_orm sampling proposed
in Sec. 3.2. The noise standard deviation is set to 2.55, and the
min _ |Dul12 st ®u="v. (6) parameter of the dgta—fidelity is chosendas: 1000. _
uel0,255|N The right of Fig. 1 plots the convergence behavior of PDS,
L-ADMM, and Alg. 2 on the non-uniform deblurring experiment,
This problem appears different from Prob. (2) because the datgghere the three different numbers of mini-batches= 4, 16, 64
fidelity is expressed as the linear constrainh = v, but by using  are examined for Alg. 2 (for a simple implementation of (ii), we
M indicator functions g, (m = 1,..., M) with En := {vm},  set the number of mini-bathes to be squared numbers). One sees

Prob. (7) can be reduced to Prob. (2) as follows: that the proposed method is not much more efficient, even slower in
. M T some cases, than PDS and L-ADMM, which is different from the
ue[?égsw Y=t tBn (@) + [[Duf1 2. case of the CS reconstruction experiment. This is because the blur

matrix @ is relatively sparse, so that the computational advantage of

SinceE,, is a singleton, the computation of the proximity operator mini-batch decomposition becomes small compared with the case of
of tz,, (the projection ontds,,) is just replacing the input by, ,. the dense CS measurement matrix. Hence in such cases, the number

For a test image, we used a graysdad@aimage of sizel28 x of mini-batches should be reasonably small (but not too small not to
128 (N = 16384). The measurement matrii was set to @096 x spoil the benefit of stochastic optimization). Indeed, the proposed
16384 random Gaussian matri{ = %), i.e., its entries are re- method still outperforms PDS and L-ADMM with = 4 and 16.
alizations of i.i.d. random variables from a Gaussian probability¥Ve also remark that the use of our mini-batch construction strategy
density function with mean zero and Varian%e In this case, all (ii) results in much faster convergence than the use of the trivial
the entries o is sufficiently decorrelated to each other through theway (i), which demonstrates that the proposed strategy is effective
random measurement process, so that we can construct the mifigr spatially correlated cases. Finally, as in the CS reconstruction
batches by simple partitioning of. Note that we use a relatively €xperiment, we observe that the deblurred images in Fig. 2 (bottom)
small image because PDS and L-ADMM have to load itat each  indicate the same PSNR (26.12 [dB]).
iteration.

The left of Fig. 1 shows the convergence profile of PDS, L- 5. CONCLUDING REMARKS
ADMM, and Alg. 2 on the CS reconstruction experiment. For the
proposed method, we tested the three different numbers of miniwe have proposed an efficientimage restoration framework based on
batches:b = 32,64, 128. One sees that the proposed method con-stochastic proximal optimization. Since the proposed method does
verges much faster than PDS and L-ADMM for all the numbers ofnot require the multiplication o® and variables at each iteration, it
mini-batches. The resulting images in Fig. 2 indicate the same PSNfRould be a powerful choice when the structurefofs complicated.

(26.39 [dB]), which illustrates that Alg. 2 properly works. Although we focus on convex optimization situations, the pro-
posed method can be applied to image restoration with nonconvex
4.2. Non-uniform deblurring objectives, if the proximity(-like) operator of each function is com-

putable, e.g., thé, pseudo-norm. With slight modification, one can
Non-uniform deblurring is a realistic but still challenging problem also use it for image restoration with separated components, such as
since the blur kernel is spatially variant, which precludes an efficiena recently proposed cartoon-texture decomposition [37].
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