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ABSTRACT

We propose an efficient image restoration framework based on
stochastic optimization. Image restoration usually requires some it-
erative methods for solving optimization problems that characterize
restored images, where the multiplication of the observation matrix
Φ ∈ RM×N and variables has to be computed at each iteration. If
an efficient implementation of the multiplication (e.g., using FFT)
is unavailable, its computational cost becomesO(MN), which is
quite expensive since bothN andM are usually large in image
restoration. Our method needs to load and apply only a part of the
observation matrix of sizeM

b
× N (b: the number of parts), so that

the computational cost is onlyO(MN
b

). Moreover, the proposed
method accepts various nonsmooth objectives effective for image
restoration. Experiments on compressed sensing reconstruction and
non-uniform deblurring show the advantage of the proposed method
over state-of-the-art proximal optimization methods.

Index Terms— Image restoration, stochastic optimization

1. INTRODUCTION

Image restoration, such as deblurring and compressed sensing (CS)
reconstruction, is a fundamental problem in image processing. Most
image restoration problems can be seen as inverse problems of the
form: v = D(Φū), whereū ∈ RN is an unknown original image of
interest,v ∈ RM is an observation vector,Φ ∈ RM×N is a matrix
representing an observation process (e.g., blur), andD : RM → RM
is a noise contamination process that is not necessarily additive.

Variational approaches using nonsmooth regularization, e.g., to-
tal variation (TV) [1], have already been proven to be effective for
image restoration. This has led to the demand for efficient algorithms
to solve large-scale (usuallyM,N > 104) nonsmooth optimization
problems. A successful class of such algorithms isfirst-order proxi-
mal optimization methods[2]. In particular, linearized variants of the
alternating direction method of multipliers (L-ADMM) [3, 4] and
the primal-dual splitting methods (PDS) [5, 6, 7] are preferable in
the sense that they do not require matrix inversion.

However, an important issue still remains: at every iteration,
proximal optimization methods have to compute the multiplication
of the observation matrixΦ and variables. For denoising and in-
painting, this does not matter sinceΦ is a simple diagonal matrix.
For uniform deblurring with appropriate boundary conditions, the
multiplication can be efficiently computed via FFT. On the other
hand, such an efficient computation is unavailable in the case of non-
uniform deblurring due to spatially-varying blur kernels, so that ex-
isting non-uniform deblurring methods employ locally-uniform ker-
nel approximation or focus on specific blur types [8, 9, 10]. Sim-
ilarly, for CS reconstruction with random measurements [11, 12],
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each entry ofΦ is a sample of random variables (e.g., Gaussian),
implying thatΦ has no specific structure allowing efficient imple-
mentation of the multiplication. For suchcomplicatedΦ, proximal
optimization methods requireO(MN) computation per iteration,
which is expensive since bothM andN are large.

To overcome the difficulty, this paper proposes an efficient im-
age restoration framework based on a recently proposed stochastic
proximal optimization method:Stochastic Dual Coordinate Ascent
with ADMM (SDCA-ADMM) [13]. To the best of our knowledge,
this work is the first attempt to leverage stochastic proximal opti-
mization to resolve image restoration with complicatedΦ (see Re-
mark 1 for related work).1 In our framework, the observation ma-
trix Φ is decomposed intob sub-matricesΦIk ∈ R

M
b

×N (k =
1, . . . , b), whereIk is thekth mini-batchcontaining the indices of
the rows ofΦ that constructΦIk . Then, in optimization, only a ran-
domly chosenΦIk is activated per iteration, i.e., the computational
cost isO(MN

b
). Hence, the proposed method is much more effi-

cient than non-stochastic proximal optimization methods in image
restoration with complicatedΦ, demonstrated by our experiments.

2. SDCA-ADMM

In the machine learning literature, the stochastic dual coordinate as-
cent with ADMM (SDCA-ADMM) [13] was proposed to solve:

min
w∈RN

1
M

∑M
m=1 fm(z⊤mw) + ψ(B⊤w), (1)

wherew is the weight vector one wants to learn,z1, . . . , zM ∈ RN
are given vectors,fm : R→ (−∞,∞] is a loss function for themth
sample, andψ ◦B⊤ : RN → (−∞,∞] is a regularization function
(B ∈ RN×K , ψ : RK → (−∞,∞]). Assume the following:fm
andψ are proper lower semicontinuous convex, and theirproximity
operators[15] are easy to compute, where the proximity operator of
indexγ > 0 of g ∈ Γ0(RN )2 is defined by

proxγg : RN → RN : x 7→ argmin
y

g(y) + 1
2γ
∥y − x∥2.

Then, SDCA-ADMM solves Prob. (1) via its dual problem:

min
x∈RM ,y∈RK

1
M

∑M
m=1 f

∗
m(xm) + ψ∗( 1

M
y) s.t.Zx+By = 0,

whereZ := (z1 · · · zM ) ∈ RN×M (·∗ means convex conjugation).
Let Ik ⊂ {1, . . . ,M} be thekth mini-batch including the in-

dices of a subset of samples (k = 1, . . . , b, andb is the number of
mini-batches). All the mini-batches satisfy∪bk=1Ik = {1, . . . ,M}

1The preliminary version of the work appeared in a technical report [14].
2The set of all proper lower semicontinuous convex functions onRN is

denoted byΓ0(RN ).
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Algorithm 1: SDCA-ADMM

Choosex(0),y(0),w(0), ξ(0), ρ > 0, τ > 0, ηB > (σ1(B))2,
ηZIk

> (σ1(ZIk
))2, and setn = 1.

while A stopping criterion is not satisfieddo
Choosek ∈ {1, . . . , b} uniformly at random.

1 y(n) ← prox M
ρηB

ψ∗ (
1
M

(y(n−1) + 1
ρηB

B⊤(w(n−1) −

ρ(ξ(n−1) +By(n−1)))))

2 x
(n)
Ik
← prox 1

ρηZIk

f∗Ik

(x
(n−1)
Ik

+ 1
ρηZIk

Z⊤
Ik

(w(n−1) −

ρ(ξ(n−1) +By(n))))

3 ξ(n) ← ξ(n−1) + ZIk
(x

(n)
Ik
− x

(n−1)
Ik

)

4 w(n) ← w(n−1) − τρ(M(ξ(n) +By(n))− (M −
M
b
)(ξ(n−1) +By(n−1)))

n← n+ 1

andIk ∩ Ik′ ̸=k = ∅. Then, at each iteration, SDCA-ADMM ran-
domly chooses one with probability1/b from all the mini-batches,
and updates variables by only using the samples w.r.t. the mini-
batch. The detailed computation of SDCA-ADMM is given in
Alg. 1, wherefIk(xIk ) :=

∑
m∈Ik

fm(xm), andZIk ∈ RN×M
b

andxIk ∈ R
M
b are the submatrix ofZ and the subvector ofx w.r.t.

thekth mini-batch, respectively (σ1(·) is the largest singular value
of (·)). Note that using the proximity operator ofg ∈ Γ0(RN ),
the proximity operator ofg∗ ∈ Γ0(RN ) can be expressed as
proxγg∗(x) = x− γ prox 1

γ
g(

1
γ
x) [16, Theorem 14.3(ii)].

Remark1 (Other stochastic proximal optimization methods). Al-
though we adopt SDCA-ADMM in our framework due to its formu-
lation, there are several other stochastic proximal optimization meth-
ods that can be applied to (1) with more specific structures. The first
one is the SAGA algorithm [17], which can solve (1) whenfm is
Lipschitz-differentiable andproxψ◦B⊤ is computable. Iffm andψ
can be decomposed w.r.t. sub-vectors ofw, the stochastic primal-
dual proximal algorithm [18, 19] would be another choice for solv-
ing (1). We refer the readers to [20] for more information.

3. PROPOSED METHOD

3.1. Problem formulation

We consider the following variational image restoration:

min
u∈RN

Fv(Φu) +R(Fu) s.t.u ∈ C, (2)

whereFv ∈ Γ0(RM ) is a data-fidelity function,R ◦ F : RN →
(−∞,∞] is a regularization function (F ∈ RL×N , R ∈ Γ0(RL)),
andC ⊂ RN is a closed convex constraint onu. We assume
(a1)Fv is separable, i.e.,Fv(x) =

∑M
m=1 Fm(xm).

(a2) The computational costs ofproxγFm
andproxγR areO(1) and

O(L), respectively.
(a3) The multiplication ofF (andF⊤) isO(N) orO(N logN).
(a4) The computational cost ofPC isO(N) orO(N logN).3

Remark2 (Examples ofFv,R ◦ F, andC).
(Data-fidelity functionFv) The ℓ2 norm would be the most popu-
lar one and clearly separable, given byFv(x) := µ

2
∥x − v∥2 =

3Given a nonempty closed convex setC ⊂ RN , theprojection ontoC is
defined byPC : RN → RN : x 7→ argmin

y∈C
∥x− y∥2.

µ
2

∑M
m=1(xm − vm)2. Theℓ1 norm is also useful for data-fidelity

measure, especially in the case wherev contains outliers. It is de-
fined byFv(x) := µ∥x − v∥1 = µ

∑M
m=1 |xm − vm|, i.e., sep-

arable. In the case of Poisson noise contamination, thegeneralized
Kulback-Leibler divergence, which is also separable, is known as a
suitable data-fidelity function (the definition can be found in [21]).
The proximity operators of the above examples satisfy (a2).
(Regularization functionR ◦ F) TV [1] and its vectorial variants,
e.g., [22, 23, 24], are well-known edge-preserving regularizers for
images. In this case,R is a norm, usually the mixedℓ1,2 norm,
andF is a discrete gradient operator. The proximity operator of the
mixed ℓ1,2 norm is available withO(N), and the computation of
the discrete gradient operator is alsoO(N). Another well-known
example is frame regularization relying on the sparsity of images in
some transformed domain. In this case,R is the ℓ1 norm, whose
proximity operator is computable withO(L) (L is the number of the
frame coefficients), andF is a frame analysis operator, e.g., wavelet
and curvelet [25]. Most well-designed frame analysis operations
can be performed inO(N) or O(N logN). Nonlocal regulariza-
tion [26, 27, 28] and regularizaiton using learned operators [29, 30]
can also be considered in this framework if a nonlocal/learned anal-
ysis operatorF allowing efficient implementation.
(ConstraintC) One can impose some additional knowledge on the
original imageū. A simple example is a box constraint that rep-
resents a known dynamic range, e.g.,C := [0, 255]N for eight-bit
images. Imposing this type of bounded closed convex constraints
also guarantees the existence of the minimizer of (2).

3.2. Reformulation, mini-batch construction, and algorithm

By noting the separability ofFv and by using the indicator function4

of C, Prob. (2) can be rewritten as

min
u∈RN

∑M
m=1 Fm(ϕ⊤

mu) +R(Fu) + ιC(u), (3)

where ϕm ∈ RN is the mth row vector ofΦ, i.e., Φ⊤ =

(ϕ1 · · ·ϕM ). Let us defineB := (F⊤ I) ∈ RN×(L+N) and
ψ : RL+N → (−∞,∞] : y 7→ R(yL) + ιC(yN ), where
y = (y⊤

L y⊤
N )⊤. Then, Prob. (3) can be reformulated into

min
u∈RN

∑M
m=1 Fm(ϕ⊤

mu) + ψ(B⊤u), (4)

which is equivalent to Prob. (1) (except the constant1
M

). Finally,
as in the proof of [13, Lemma 1], using Fenchel-Rockafellar duality
[16, Definition 15.19], the dual problem of (4) is obtained as

min
x∈RM ,y∈RL+N

∑M
m=1 F

∗
m(xm) + ψ∗(y) s.t.Φ⊤x+By = 0.

(5)
When we apply SDCA-ADMM to Prob. (5), constructing mini-

batches suitable for the structure of the problem is quite important
for fast convergence. Indeed, according to the analysis of SDCA-
ADMM in [13], the convergence rate of SDCA-ADMM becomes
worse when samples in a mini-batch are strongly correlated to
each other. Since each entry of the observation vectorv in im-
age restoration corresponds to each sample in machine learning,
this phenomenon should be carefully considered in the proposed
method. Indeed, thespatial correlationof pixels is usually very
strong, and this correlation would be propagated to entries of the

4 For a given nonempty closed convex setC ∈ RN , the indicator function
of C is defined byιC(x) := 0, if x ∈ C; ∞, otherwise. The proximity
operator ofιC is equivalent to the projection ontoC.
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Algorithm 2: Solver for Prob. (2) based on SDCA-ADMM

Choosex(0),y
(0)
L ,y

(0)
N ,u(0), ξ(0), t(0), ρ > 0, τ > 0,

ηB > (σ1(B))2, ηΦIk
> (σ1(ΦIk))

2, and setn = 1

while A stopping criterion is not satisfieddo
Choosek ∈ {1, . . . , b} uniformly at random.

1 r(n) = u(n−1) − ρ(ξ(n−1) + t(n−1))

2 q
(n)
L = y

(n−1)
L + 1

ρηB
Fr(n)

3 q
(n)
N = y

(n−1)
N + 1

ρηB
r(n)

4 y
(n)
L ← q

(n)
L − 1

ρηB
proxρηBR(ρηBq

(n)
L )

5 y
(n)
N ← q

(n)
N − 1

ρηB
PC(ρηBq

(n)
N )

6 t(n) = F⊤y
(n)
L + y

(n)
N

7 s(n) = u(n−1) − ρ(ξ(n−1) + t(n))

8 p
(n)
Ik

= x
(n−1)
Ik

+ 1
ρηΦIk

ΦIks
(n)

9 x
(n)
Ik
← p

(n)
Ik
− 1

ρηΦIk

proxρηZIk
FIk

(ρηΦIk
p
(n)
Ik

)

10 ξ(n) = ξ(n−1) +Φ⊤
Ik

(x
(n)
Ik
− x

(n−1)
Ik

)

11 u(n) ←
u(n−1)−τρ(M(ξ(n)+t(n))− (b−1)M

b
(ξ(n−1)+t(n−1)))

n← n+ 1

observation vectorv (depending on the structure ofΦ). A typical
case is deblurring, where the entries ofv are blurred pixels.

To deal with such cases, we suggest to construct mini-batches
via spatially-uniform sampling. LetV ∈ RMv×Mh be the spatially-
correlated 2D form ofv (MvMh = M ). For simplicity, the num-
ber of mini-batchesb is assumed to be a square number, andMv

andMh are assumed to be divisible by
√
b. Then, entries ofV

belonging to thekth mini-batch are selected by thekth spatially-

uniform sampling operatorTk : RMv×Mh → R
Mv√

b
×Mh√

b , where,
for p = 1, . . . ,

√
b andq = 1, . . . ,

√
b, setk := q + (p− 1)

√
b and

Tk(V) =


Vp,q Vp,q+

√
b · · · Vp,Mh+q−

√
b

Vp+
√
b,q Vp+

√
b,q+

√
b · · · Vp+

√
b,Mh+q−

√
b

...
...

. . .
...

VMv+p−
√
b,q VMv+p−

√
b,q+

√
b · · · VMv−p+

√
b,Mh+q−

√
b

.

Consequently, all the entries in oneTk(V) are as far from each other
as possible. Thus, by using this mini-batch construction strategy, we
can alleviate the spatial correlation of the entries of each mini-batch.

Now we arrive at the point where we can apply SDCA-ADMM
to solve Prob. (5), i.e., Prob. (2). LetΦIk ∈ R

M
b

×N be a sub-
matrix of Φ w.r.t. thekth mini-batch, and defineFIk(xIk) :=∑
m∈Ik

Fm(xm). The resulting algorithm is summarized in Alg. 2.
In Alg. 2, we can see how mini-batch construction affects the

convergence behavior. Suppose that a subvector ofv corresponding
to a mini-batch has strong spatial correlation, i.e., every entry of
the subvector is composed of a linear combination of the pixels in
a local region. Then, the data-fidelity is evaluated only w.r.t. the
region (step 9). On the other hand, the effect of the regularization is
always global (step 4), so that in the other regions, the regularization
is performed without considering data-fidelity, which would result
in a slow convergence. Indeed, we will see in Sec. 4 that mini-batch
construction significantly affects the convergence speed.

Remark3 (Computational cost of Alg. 2). Alg. 2 only needs to com-
puteΦIkx andΦ⊤

Ik
y once at each iteration, implying that the pro-

posed method is much more efficient than existing non-stochastic

proximal optimization methods that require the computations ofΦx
andΦ⊤y at each iteration. We list the computational costs of the
steps involving matrix application or proximal operation in Alg. 2.
Step 2 and 6:O(N) orO(N logN) from (a4).
Step 4:O(L) from (a2).
Step 5:O(N) orO(N logN) from (a4).
Step 8 and 10:O(MN

b
).

Step 9:O(M
b
) from (a1)-(a2).

Remark4 (Convergence of Alg. 2). The convergence of SDCA-
ADMM was analyzed under a strong convexity assumption [13],
which implies that as of now, there is no convergence analysis for
general convex objectives such as (5). However, both for stochas-
tic and non-stochastic methods, such a strong convexity assumption
is usually required to achieve a linear convergence rate but is not
necessary to guarantee convergence (for example, the convergence
of another stochastic variant of ADMM [31] was proved for general
convex objectives). Indeed, Alg. 2 shows stable convergence in our
experiments (see Sec. 4).

4. EXPERIMENTS

We examined the performance of the proposed method by com-
paring it with several state-of-the-art non-stochastic proximal op-
timization methods in two specific image restoration applications
with complicatedΦ: compressed sensing (CS) reconstruction and
non-uniform deblurring, All experiments were performed using
MATLAB (R2013a), on a Windows 8.1 laptop computer.
Methods for comparison.We compared the proposed method with
the primal-dual splitting method (PDS) [5, 6] and the linearized
alternating direction method of multipliers (L-ADMM) [4], which
require no matrix inversion.
Design of Prob. (2).We employed (isotropic) TV [1] for grayscale
images and its vectorial variant [22] for color images as the reg-
ularization functionR ◦ F in Prob. (2). In this case, the ma-
trix F is equal toD := (D⊤

v D⊤
h )

⊤ ∈ R2N×N , whereDv

andDh are the vertical and horizontal discrete gradient operators
with Neumann boundary. Hence,Fx andF⊤y can be computed
with O(N) cost. The functionR is the mixedℓ1,2 norm de-

fined by∥x∥1,2 :=
∑|G|
i=1

√∑
j∈Gi

x2j , whereGi is the index set

including the indices of entries ofx belonging to theith group
(i = 1, . . . , |G|). Specifically, one group consists of vertical and
horizontal discrete gradients w.r.t. theith pixel in the TV case.
The proximity operator of∥ · ∥1,2 is given by a simpleO(N)
soft-thresholding type operation (see, e.g., [32])

For the data-fidelity functionFv, we used different ones in CS
reconstruction and non-uniform deblurring (explained later).

For the constraintC, we imposed a dynamic range constraint
[0, 255]N , onto which the projection can be calculated by pushing
the entries into[0, 255], i.e.,O(N) cost.
Parameter settings. For the proposed method, we employed the
parameter settings suggested in [13], specifically,τ = 1

M
, ρ = 0.1

andηB = 1.1(σ1(B))2 in all the experiments. Since it is not re-
alistic to use differentηΦIk

for eachk, we fixed all of them to

1.1(maxk σ1(ΦIk))
2.

For PDS and L-ADMM, we adjusted their parameters that give
best convergence behavior in each experiment, respectively.
Evaluation criterion. For evaluation of convergence, we define
the normalized root mean square error (NRMSE) between the cur-
rent estimateu(n) and the optimal solutionu⋆ of Prob. (2), i.e.,
NRMSEn := ∥u(n) − u⋆∥/∥u⋆∥. Since the optimal solutionu⋆ is
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Fig. 1. Convergence profile of PDS, L-ADMM, and Alg. 2 (Prop)
on CS reconstruction (left) and non-uniform deblurring (right).

analytically unavailable, it was pre-computed by PDS with 100000
iterations. For a fair comparison of stochastic and non-stochastic
methods, the convergence curves of the proposed method were ob-
tained after averaging uniformly 100 realizations.

4.1. Compressed sensing reconstruction

In CS reconstruction, we try to recover an original imageū from its
incomplete measurementsv = Φū, whereΦ is some measurement
matrix of sizeM × N with M < N . Theoretically, employing
random matrices asΦ is in some sense an optimal strategy for a sta-
ble CS reconstruction [33, 34]. However, such random matrices are
dense and have no specific structure allowing efficient implementa-
tion, so that the computations ofΦx andΦ⊤y become much expen-
sive and memory inefficient in large-scale problems, as pointed out
in [35]. The proposed method provides a resolution to this issue.

In this experiment, we solve

min
u∈[0,255]N

∥Du∥1,2 s.t.Φu = v. (6)

This problem appears different from Prob. (2) because the data-
fidelity is expressed as the linear constraintΦu = v, but by using
M indicator functionsιEm (m = 1, . . . ,M ) with Em := {vm},
Prob. (7) can be reduced to Prob. (2) as follows:

min
u∈[0,255]N

∑M
m=1 ιEm(ϕ⊤

mu) + ∥Du∥1,2.

SinceEm is a singleton, the computation of the proximity operator
of ιEm (the projection ontoEm) is just replacing the input byvm.

For a test image, we used a grayscaleLenaimage of size128×
128 (N = 16384). The measurement matrixΦ was set to a4096×
16384 random Gaussian matrix (M = N

4
), i.e., its entries are re-

alizations of i.i.d. random variables from a Gaussian probability
density function with mean zero and variance1

N
. In this case, all

the entries ofv is sufficiently decorrelated to each other through the
random measurement process, so that we can construct the mini-
batches by simple partitioning ofv. Note that we use a relatively
small image because PDS and L-ADMM have to load fullΦ at each
iteration.

The left of Fig. 1 shows the convergence profile of PDS, L-
ADMM, and Alg. 2 on the CS reconstruction experiment. For the
proposed method, we tested the three different numbers of mini-
batches:b = 32, 64, 128. One sees that the proposed method con-
verges much faster than PDS and L-ADMM for all the numbers of
mini-batches. The resulting images in Fig. 2 indicate the same PSNR
(26.39 [dB]), which illustrates that Alg. 2 properly works.

4.2. Non-uniform deblurring

Non-uniform deblurring is a realistic but still challenging problem
since the blur kernel is spatially variant, which precludes an efficient

Original PDS L-ADMM b = 32 b = 64 b = 128

Original Blurred PDS L-ADMM b = 4 b = 16 b = 64

Fig. 2. Resulting images on CS reconstruction (top) and non-
uniform deblurring (bottom).

optimization via FFT. In this experiment, a sharp image is restored
from a blurred observationv = Φū+ n by solving

min
u∈[0,255]N

λ
2

∑M
m=1(ϕ

⊤
mu− vm)2 + ∥Du∥1,2, (7)

where n is an additive white Gaussian noise with standard de-
viation σ. The proximity operator ofλ

2
(· − vm)2 is given by

proxλ
2
(·−vm)2(x) =

λvm+x
1+λ

.
For a test image, we used a colorCastleimage taken from [36]

of size256 × 256 (N = 2562 × 3). The blur matrixΦ was made
from spatially-varying (per-pixel) kernels simulating motion-blur.
Since the pixels of a blurred imagev are spatially correlated to each
other, we tested the two ways of mini-batch construction: (i) simple
block partitioning and (ii) the spatially-uniform sampling proposed
in Sec. 3.2. The noise standard deviation is set toσ = 2.55, and the
parameter of the data-fidelity is chosen asλ = 1000.

The right of Fig. 1 plots the convergence behavior of PDS,
L-ADMM, and Alg. 2 on the non-uniform deblurring experiment,
where the three different numbers of mini-batches:b = 4, 16, 64
are examined for Alg. 2 (for a simple implementation of (ii), we
set the number of mini-bathes to be squared numbers). One sees
that the proposed method is not much more efficient, even slower in
some cases, than PDS and L-ADMM, which is different from the
case of the CS reconstruction experiment. This is because the blur
matrixΦ is relatively sparse, so that the computational advantage of
mini-batch decomposition becomes small compared with the case of
the dense CS measurement matrix. Hence in such cases, the number
of mini-batches should be reasonably small (but not too small not to
spoil the benefit of stochastic optimization). Indeed, the proposed
method still outperforms PDS and L-ADMM withb = 4 and16.
We also remark that the use of our mini-batch construction strategy
(ii) results in much faster convergence than the use of the trivial
way (i), which demonstrates that the proposed strategy is effective
for spatially correlated cases. Finally, as in the CS reconstruction
experiment, we observe that the deblurred images in Fig. 2 (bottom)
indicate the same PSNR (26.12 [dB]).

5. CONCLUDING REMARKS

We have proposed an efficient image restoration framework based on
stochastic proximal optimization. Since the proposed method does
not require the multiplication ofΦ and variables at each iteration, it
would be a powerful choice when the structure ofΦ is complicated.

Although we focus on convex optimization situations, the pro-
posed method can be applied to image restoration with nonconvex
objectives, if the proximity(-like) operator of each function is com-
putable, e.g., theℓ0 pseudo-norm. With slight modification, one can
also use it for image restoration with separated components, such as
a recently proposed cartoon-texture decomposition [37].

4526



6. REFERENCES

[1] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,”Phys. D, vol. 60, no. 1-4, pp. 259–268,
1992.

[2] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in sig-
nal processing,” inFixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, H. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds., pp. 185–212. Springer-
Verlag, New York, 2011.

[3] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative al-
gorithm forℓ1 minimization with applications to compressed sensing,”
SIAM J. Imag. Sci., vol. 1, no. 1, pp. 143–168, 2008.

[4] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method with
adaptive penalty for low-rank representation,” inProc. Adv. Neural Inf.
Process. (NIPS), 2011.

[5] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,”J. Math. Imaging and
Vision, vol. 40, no. 1, pp. 120–145, 2010.

[6] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,”J. Op-
timization Theory and Applications, 2013.

[7] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm
for solving inclusions with mixtures of composite, Lipschitzian, and
parallel-sum type monotone operators,”Set-Valued and Variational
Analysis, vol. 20, no. 2, pp. 307–330, 2012.

[8] M. Hirsch, C. J. Schuler, S. Harmeling, and B. Scholkopf, “Fast re-
moval of non-uniform camera shake,” inProc. IEEE Int. Conf. Comput.
Vis. (ICCV), 2011.

[9] O. Whyte, J. Sivic, A. Zisserman, and J. Ponce, “Non-uniform de-
blurring for shaken images,”Int. J. Comput. Vis., vol. 98, no. 2, pp.
168–186, 2012.

[10] L. Xu, S. Zheng, and J. Jia, “Unnatural L0 sparse representation for
natural image deblurring,” inProc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2013.

[11] R. G. Baraniuk, “Compressive sensing,”IEEE Signal Process. Maga-
zine, vol. 24, no. 4, 2007.

[12] E. Cand̀es and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Process. Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[13] T. Suzuki, “Stochastic dual coordinate ascent with alternating direction
method of multipliers,” inProc. Int. Conf. Mach. Learn. (ICML), 2014.

[14] S. Ono, T. Miyata, and I. Kumazawa, “Image restoration by stochastic
proximal optimization,” Tech. Rep., IEICE, Mar. 2015.

[15] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un
espace hilbertien,”C. R. Acad. Sci. Paris Ser. A Math., vol. 255, pp.
2897–2899, 1962.

[16] H. H. Bauschke and P. L. Combettes,Convex analysis and monotone
operator theory in Hilbert spaces, Springer, New York, 2011.

[17] A. Defazio, F. Bach, and S. Lacoste-Julien, “SAGA: A fast incremen-
tal gradient method with support for non-strongly convex composite
objectives,” inProc. Adv. Neural Inf. Process. (NIPS), 2014, pp. 1646–
1654.

[18] A. Repetti, E. Chouzenoux, and J.-C. Pesquet, “A random block-
coordinate primal-dual proximal algorithm with application to 3D mesh
denoising,” inProc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), 2014.

[19] J.-C. Pesquet and A. Repetti, “A class of randomized primal-dual algo-
rithms for distributed optimization,”arXiv preprint arXiv:1406.6404,
2014.

[20] M. Pereyra, P. Schniter, E. Chouzenoux, J.-C. Pesquet, J.-Y. Tourneret,
A. Hero, and S. McLaughlin, “A survey of stochastic simula-
tion and optimization methods in signal processing,”arXiv preprint
arXiv:1505.00273, 2015.

[21] P. L. Combettes and J.-C. Pesquet, “A Douglas-Rachford splitting ap-
proach to nonsmooth convex variational signal recovery,”IEEE J. Sel.
Topics in Signal Process., vol. 1, pp. 564–574, 2007.

[22] X. Bresson and T. F. Chan, “Fast dual minimization of the vectorial to-
tal variation norm and applications to color image processing,”Inverse
Probl. Imag., vol. 2, no. 4, pp. 455–484, 2008.

[23] B. Goldluecke, E. Strekalovskiy, and D. Cremers, “The natural vecto-
rial total variation which arises from geometric measure theory,”SIAM
J. Imag. Sci., vol. 5, no. 2, pp. 537–563, 2012.

[24] S. Ono and I. Yamada, “Decorrelated vectorial total variation,” inProc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014.

[25] E. Cand̀es, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete
curvelet transforms,”SIAM J. Multi. Model. Simul., vol. 5, no. 3, pp.
861–899, 2006.

[26] G. Gilboa and S. Osher, “Nonlocal linear image regularization and
supervised segmentation,”Multiscale Model. Simul., vol. 6, no. 2, pp.
595–630, 2007.

[27] A. Danielyan, V. Katkovnik, and K. Egiazarian, “BM3D frames and
variational image deblurring,”IEEE Trans. Image Process., vol. 21,
no. 4, pp. 1715–1728, 2012.

[28] G. Chierchia, N. Pustelnik, B. Pesquet-Popescu, and J.-C. Pesquet, “A
nonlocal structure tensor-based approach for multicomponent image re-
covery problems,” IEEE Trans. Image Process., vol. 23, no. 12, pp.
5531–5544, 2014.

[29] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” inProc. IEEE Int. Conf. Comput.
Vis. (ICCV), 2009.

[30] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” inProc. IEEE Int. Conf. Comput. Vis.
(ICCV), 2011.

[31] H. Ouyang, N. He, L. Tran, and A. Gray, “Stochastic alternating direc-
tion method of multipliers,” inProc. Int. Conf. Mach. Learn. (ICML),
2013.

[32] N. Pustelnik, C. Chaux, and J.-C. Pesquet, “Parallel proximal algorithm
for image restoration using hybrid regularization,”IEEE Trans. Image
Process., vol. 20, no. 9, pp. 2450–2462, 2011.

[33] E. Cand̀es and T. Tao, “Decoding by linear programming,”IEEE Trans.
Inform. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[34] E. Cand̀es, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[35] E. Cand̀es and J. Romberg, “Sparsity and incoherence in compressive
sampling,” Inverse Problems, vol. 23, no. 3, 2007.

[36] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmenta-
tion algorithms and measuring ecological statistics,” inProc. IEEE Int.
Conf. Comput. Vis. (ICCV), 2001.

[37] S. Ono, T. Miyata, and I. Yamada, “Cartoon-texture image decompo-
sition using blockwise low-rank texture characterization,”IEEE Trans.
Image Process., vol. 23, no. 3, pp. 1128–1142, 2014.

4527


