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ABSTRACT

Characterizing the phase transitions of convex optimizations
in recovering structured signals or data is of central impor-
tance in compressed sensing, machine learning and statistics.
The phase transitions of many convex optimization signal re-
covery methods such as ¢; minimization and nuclear norm
minimization are well understood through recent years’ re-
search. However, rigorously characterizing the phase transi-
tion of total variation (TV) minimization in recovering sparse-
gradient signal is still open. In this paper, we fully character-
ize the phase transition curve of the TV minimization. Our
proof builds on Donoho, Johnstone and Montanari’s conjec-
tured phase transition curve for the TV approximate message
passing algorithm (AMP), together with the linkage between
the minmax Mean Square Error (MSE) of a denoising prob-
lem and the high-dimensional convex geometry for TV mini-
mization.

Index Terms— Phase Transition, Total Variation Mini-
mization, Gaussian width.

1. INTRODUCTION

In the last decade, using convex optimization to recover
parsimoniously-modeled signal or data from a limited num-
ber of samples has attracted significant research interests in
compressed sensing, machine learning and statistics [1-4].
Numerical results empirically show that these convex op-
timization based signal recovery algorithms often exhibit a
phase transition phenomenon: when the number of measure-
ments exceeds a certain threshold, the convex optimization
can correctly recover the structured signals with high proba-
bility; when the number of measurements is smaller than the
threshold, the convex optimization will fail to recover the un-
derlying structured signals with high probability. A series of
works studying convex geometry for linear inverse problems
have made substantial progress in theoretically characterizing
the phase transition phenomenon for convex optimizations in
recovering structured signals [2,5-8].

In spite of all this progress, characterizing the phase tran-
sition for the total variation minimization used in recovering
sparse-gradient signals is still open. Sparse-gradient signals
are signals that are piece-wise constant, and thus have a small
number of non-zero gradients. This type of signals arise nat-
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urally in applications in signal denoising and in digital image
processing [9—-11]. Let x* € R”™ be a vector representing a
one-dimensional piece-wise constant signal, and Bx* denote
the finite difference of x*, in which (Bx*); = x}, ; —x; with
x; being the ¢th element of x*. Since x* has sparse gradients,
Bx* has very few non-zero entries. Suppose one observes
y = Ax*, in which A € R"™*" is the observation matrix,
then in the total variation (TV) minimization problems, one
tries to recover x* from y by solving

m)in IIBx]|1, (1)
s.t. y = Ax.
n—1
Here, ||Bx||; = > (Bx); is called the total variation semi-
i=1

norm of x. In this paper, we assume that A has i.i.d. unit-
variance zero-mean Gaussian entries.

TV minimization has a wide range of applications, in-
cluding image reconstruction and restoration [12, 13], med-
ical imaging [14], noise removing [11], computing surface
evolution [15] and profile reconstruction [16]. However, the
understanding of the performance of TV minimization is less
complete than that of other convex optimization based meth-
ods such as ¢; minimization. In particular, the phase transi-
tion of the TV minimization has not been fully characterized
and remains an open problem. In this paper, we solve this
open problem by fully characterizing the phase transition of
the TV regularization. The starting points of our investigation
are the results obtained in [7] and [4], which we discuss in
detail in the following.

First, for a general signal recovery problem using general
proper convex penalty function f(x) given as follows,

min f (%), 2)

X

s.t. y = Ax,

the authors of [7] showed that the phase transition on the num-
ber of measurements happens at the Gaussian width of the de-
scent cone of the proper convex penalty function f(x). How-
ever, since the total variation semi-norm is a non-separable
convex penalty term, calculating the precise Gaussian width
of the descent cone of the total variation semi-norm is difficult
and remains open. This difficulty in calculating the Gaussian
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width thus prevents us from characterizing the phase tran-
sition of total variation minimization in recovering sparse-
gradient signals.

Second, in [4], the authors conjectured that the minimax
MSE for a TV-regularized denoising problem was the same as
the phase transition (the number of measurements) for the TV
approximate message passing algorithm. However, justifying
the conjecture in [4] requires the assumption that the state
evolution for the approximate message passing algorithm is
valid, which still remains to be proved. Furthermore, we do
not know whether the TV AMP and the total variation mini-
mization indeed have the same phase transition. In [17], the
authors showed that the minimax MSE of the denoising prob-
lem considered in [4] is an upper bound on the phase transi-
tion (the number of needed measurements) of total variation
minimization (as will be discussed later in this paper). How-
ever, it remains unknown whether the minimax MSE of the
denoising problem is indeed the phase transition of total vari-
ation minimization.

As our main contribution in this paper, we rigorously
prove that the minimax MSE of TV-regularized denoising
considered by [4] is indeed the phase transition of the TV
minimization (1), by showing the minimax MSE of the de-
noising problem is approximately equal to the Gaussian width
of the descent cone of the TV semi-norm, up to negligible
constants. We remark that, different from the Gaussian width,
the minimax MSE of the TV-regularized denoising can be
readily computed. We can thus characterize the phase transi-
tion of total variation minimization using the minimax MSE
of the denoising problem.

Here, we would like to compare our work with [18]. In
[18], the authors gave upper and lower bounds on the number
of needed measurements for recovering worst-case sparse-
gradient signals which have a fixed number of nonzero ele-
ments in its signal gradient, using the tool of Gaussian width.
In contrast, in this paper we will focus on the phase transition
for average-case sparse-gradient signals, where the number
of nonzero elements in signal gradient grows proportionally
with the ambient signal dimension.

The remainder of the paper is organized as follows. In
Section 2, we introduce the background and set up the nota-
tions that will be used in later analysis and proofs. In Sec-
tion 3, we verify that the TV regularizer satisfies the weak
decomposability condition in [19] and use this condition to
fully characterize the phase transition of the TV minimiza-
tion problem. In Section 4, we show numerical simulations.
In Section 5, we provide several concluding remarks.

2. BACKGROUND

2.1. Definitions and Notations

We first introduce definitions and notations that will be used
throughout the paper.

We use f(x) to denote the TV regularizer f(x) :=

|Bx/||1, which is not a norm, and B € R(~Dx" with

1 if j =1
=¢-1 ifj=i+1 3)
0 otherwise.

B

,J

Let 0f(x) be the subdifferential of f at x.
For a given non-empty set C C R", the cone obtained by
C is defined as

cone(C) :={Ax eR": x€C,\ >0} 4)
The distance from a vector g € R™ to the set C is defined
as
dist(g,C) := inf [lg — ul2, )
in which || - || is the ¢3 norm.

The mean square distance to C is defined as
D(C) = E{dist(g, )"}, ©)

in which the expectation is taken over g ~ A(0,I) with I
being the identity matrix.

Throughout the paper, we will use [k] := {1,2,---  k}
where k is a positive integer, [b, €] := {b,b+1,--- , e} where
e > b. Similarly, (b,e) .= {b+1,b+2,--- ,e—1}. LetS be
a subset of [n — 1], then S¢ denote the complement of S with
respect to [n — 1]. We will use |S| to denote the cardinality of
the set S.

Letu € R"! be a vector and S be a subset of the indices
set [n — 1], then us € R"~! is the vector such that

(uS)i — {g’m

We use us € RIS! to denote the shortened version of us
by deleting all zeros in us. To be more explicit, let S =

{817827"' 78‘5‘}’

(ws)i = us;, Vi € [|S]]. (8)

ifieS

itigs. ™

Let M € R=Dx(n=1) pe 3 matrix, and S and 7T be
subsets of [n — 1], then Mg 7 € RISXITl is the matrix
produced by deleting all rows not in S and columns not in
T from M. To be explicit, let S = {s1,52,---, 5|5} and
T = {t1,t2,--- ,ty7}

(Ms,7)ij = Mg, 1;, Vi € [|S]]and Vj € [[T]].  (9)
We also write Ms 7 as Mg q if T = [n — 1]. Similarly, if
S = [n — 1], we write Mg 7 as Mg 7.
2.2. Phase Transition for the AMP [4]

Let masap be the number of observations needed for the
AMP algorithm to succeed. [4] numerically showed that, as
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soon as marap > NMgenoiser, the AMP algorithm will be suc-
cessful in recovering x* with high probability. Here Menoiser
is the per-coordinate minimax mean squared error of the de-
noising problem when one observes y = x* + z and uses the
TV-penalized least-square denoisers.

In another line of work using convex geometry, [17]
showed that the minimax MSE Mgenoiser 1S closely related to
miny>o D(AOf(x)), where 0f(x) is the subdifferential of
f(x) at the underlying signal x. In particular, [17] showed
that 7 Mgenoiser = 1j\11>i1(r)1D()\(') f(x)). However, it is still un-

known whether min,\_zo D(M\Of(x)) provides the phase tran-
sition for the AMP or the TV minimization (1).

2.3. Phase Transition Based on Gaussian Width Calcula-
tion [6]

Using the “escape through the mesh” lemma, recent works
[5-7,20] have shown that, for a proper convex function f(-),
D(cone(df(x0))) (where xq is the original signal) is the
phase transition threshold on the number of needed Gaussian
measurements for the optimization problem (2) to recover
Xg. As discussed above, while this formula D(cone(0f (x¢)))
gives the phase transition for the TV minimization, it is not
clear how to compute it for the TV semi-norm function f(x),
which is a non-separable function. This is in contrast to the
Gaussian width calculations for separable penalty functions
such as ¢; norms.

2.4. Central Issue and Our Approach

At this point, it is not known whether miny>o D(AJf(x)) ~
D(cone(0f(x))) or not for the TV regularizer f(x). Thus
it is not clear whether the minmax MSE result derived in [4]
will directly give the phase transition of the TV minimiza-
tion. In fact, when f(x) represents a norm of x, it is known
that miny>o D(AJf(x)) ~ D(cone(df(x))) [7]. One may
thus wonder whether we can show this equality to hold for
the TV regularizer by directly applying (3.5) in [17] or (4.3)
in [7]. However, there are two obstacles for directly apply-
ing those two equations. First, the TV regularizer f(x) is not
a norm but a semi-norm instead. Secondly, even if we go
ahead with applying (3.5) in [17] or (4.3) in [7] to bound the
Gaussian width of the descent cone of the function f(x), the
approximation error is too big, since 1/f(x/||x||2) can be ar-
bitrarily big for an n-dimensional signal x, when f(x) is the
total variation semi-norm.
In this paper, we consider the phase transition on the sam-
pling ratio, namely
lim D(cone(0f(x)))/n. (10)

n— oo

As our main result, we will show that

it D(A0/ (x)) ~ D(cone(df(x)). (11

for the TV regularizer, and r){1>ing()\8 f(x)) is indeed the

phase transition of the TV regularizer.

In order to show (11), we instead build on Proposition 1
of [19]. In particular, we show that f(x) satisfies the weak
decomposability condition defined in [19], and hence we can
use Proposition 1 of [19] to obtain:

r/{lzi%D()\af(x)) < D(cone(0f(x))) + 6, (12)

which coupled with the fact that

min D(AOf(x)) > D(cone(df(x)))

A>0

proves (11).

3. MAIN RESULT

In this section, we prove that I)\n>i{)1D()\8 f(x)) is the phase

transition of (1) by showing that (11) holds. For any given
nonzero vector x € R", define v € R*~! with

1 ifx; 1 <x;
v, =14 —1 if Xit1 > X, (13)
S [—17 1] ifXZ‘+]_ = X;.

Let V denote the set of v’s that satisfy (13), then 9 f(x) can
be written as

of(x) = {BTv:v eV} (14)

Definition 1. For x # 0, the set 0 f(x) is said to satisfy the
weak decomposability assumption if there exists wqy € 0f(x)
such that

<'UJ—’U)07'LU()> :O7 (15)

simultaneously for all w € 0 f(x).

Using (14), we can rewrite (15) as
Jvg € Vs.t. (BTv — BTvg, BTwy) =0,Vo € V. (16)

We have the following result regarding the weak decom-
posability of 9 f(x).

Lemma 1. For any given nonzero x € R", 0f(x) satisfies
the weak decomposability assumption.

Proof. Due to limited space, here we only give the outline of
the proof. For omitted details, please refer to [21].
It is easy to check that (16) is equivalent to

Jug € Vst v} BBTv = vlBB vy, Yo e V.(17)
(17) indicates that (16) is satisfied if and only if we can find a
v € V such that vI BB v is a constant for all v € V.

Define the set of indices S := {i € [n — 1] : x; = x;11}.
If S = 0, (17) holds trivially, as in this case |Bx||; is differ-
entiable and V is a singular set. In the following we focus on
the case that S # ().

When S # (), S can be written as a union of consecutive
groups of indices that S = UX 11 [b;, e;], where K + 1 is the
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number of intervals in which the elements in x have the same
value, b; < e;, Vi € [K + 1] and b;y1 —e; > 1, Vi € [K].
S can also be expressed explicitly as S = {S1, 82, -+ , S5}
with elements increasing. We can define S¢ and S°¢ that have
increasing elements in a similar manner.

Using the notation introduced in (7), we can write v =
vs + vse, and hence

vy BBTv = vl BBTvs + vI BB vs.. (18)
Notice that

0, if x;11 = %y,
(US“)i = 17 ifX»H_l < X;, (19)
-1, ifxi4 > x;,

where ¢ € [n — 1]. Given x, vse is fixed and hence
viBBTvse is fixed. Since (vs); can be any real num-
ber in [—1, 1] for i € S, a necessary and sufficient condition
for the right hand side of (18) to be a constant is

viBBTvs = 0,
which can be seen by setting vs = 0. Using notations intro-
duced in (8) and (9), the equation above can be written as
vy (BB )qsvs =0, YveV
& (BB)s.s(90)s = — (BB )s a(vo)se. (20)
If (BBT)s s is invertible, from (20), we obtain

(D0)s = —((BBY)ss) '(BBT)s.s:(0)se. (21)

Hence, if the answers to the following two questions are both
yes:

1. Is (BB”)s s invertible?

2. Is (Dg)s produced by (21) feasible? Or equivalently,
does each element of (9g)s fall into the interval
(—1,1)?

then, combining (21) with (vg)s< in (19), we find a feasible
v that satisfies the weak decomposability assumption. After
closely studying the structure of (BBT)s s and (9)s, we
show that the answers to both questions above are yes (Please
refer to [21] for details). Thus we complete our proof. O

With Lemma 1, we are ready to state the main result.

Theorem 1. The phase transition of the TV minimization
problem is miny>o D(AJf (x)).

Proof. We will use Proposition 1 in [19], which also applies
to any other convex complexity measure. As Lemma 1 shows
that 0 f(x) satisfies the weak decomposability, using Propo-
sition 1 in [19], we have

D(cone(df(x))) < IglzirolD()\af(x)) < D(cone(0f(x)))+6.

(22)
Since miny>o D(AJf(x)) grows proportionally with n when
the sparsity of the gradient grow proportionally with n, as
shown in [4], the approximation error 6 is negeligible. Thus
we complete our proof. O
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4. NUMERICAL SIMULATION

In this section, we compare miny>o D(AJf(x*)) with the
empirical TV phase transition through numerical experi-
ments. We generate true signal x* &€ R™ with k-sparse
gradient. Entries from xJ to x}_, keep to be 1 and alternate
between —1 and 1 from x;,_, ., to x;,. Entries of matrix
A € R™*" are drawn from i.i.d. standard normal distri-
bution. We test the TV minimization for 100 realizations
of A, and we plot the rate of successful recovery. The TV
minimization is solved by Bregman algorithm [22,23]. The
simulation results is shown in Figure 1. The color bar shows
the probability of empirical recovery of TV minimization.
The line represents miny>o D(AJf(x*)). The optimization
problem inside the expectation is computed by constant step
scheme in [24]. The figure shows that miny>o D(AJf(x*))
matches the empirical TV phase transition. The code for
computing for this numerical simulation can be found at [25]
and [26].

n=100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Fig. 1. Simulation results when n = 100.

5. CONCLUSION

We have verified that the TV regularizer satisfies the weak de-
composability condition. We have proved miny>o D(AJ f(x))
D(cone(0f(x))) for the TV regularizer f(x). Thus the min-
max MSE result derived in Donoho’s paper [4] directly gives
the phase transition of the total variation minimization.
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