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ABSTRACT

We develop an unbiased estimate of mean-squared error (MSE),
where the observations are assumed to be drawn from a Gaussian
mixture (GM) distribution. Stein’s unbiased risk estimate (SURE) is
an unbiased estimate of the MSE, and was originally proposed for
independent and identically distributed (i.i.d.) multivariate Gaus-
sian observations. Subsequently, it was extended to the exponential
family of distributions. In this paper, we extend the idea of SURE
to observations drawn from a Gaussian mixture distribution (GMD).
Since Gaussian mixture models (GMM) can model any given dis-
tribution sufficiently accurately, this generalized framework allows
us to apply the SURE technique to the observations drawn from an
arbitrary distribution. As an application, we consider the problem of
denoising speech corrupted by a GM distributed noise. It is observed
that the denoising performance of the algorithm developed using
SURE based on GMD is superior in terms of the signal-to-noise
ratio (SNR) and average segmental SNR (ASSNR), compared with
that obtained using SURE based on the single Gaussian assumption.

Index Terms— Stein’s unbiased risk estimate (SURE), Mean-
squared error, Gaussian mixture model, Stein’s lemma, Speech en-
hancement.

1. INTRODUCTION

In a statistical estimation framework, the parameter to be estimated
is obtained by minimizing a cost function (risk), which measures the
proximity between the actual parameter and its estimate. The actual
risk such as mean-squared error (MSE) (which is the expected value
of squared error between the actual parameter and its estimate) is
a function of the unknown parameter or its statistics, which is dif-
ficult to get in real-world problems. An alternative approach is to
assume that the parameter to be estimated is deterministic and use a
risk estimation framework. In a risk estimation framework, instead
of minimizing the original risk, an unbiased estimate of the risk,
which is a function of the observation is minimized to obtain the un-
known parameter. Stein’s unbiased risk estimate (SURE) is an unbi-
ased estimate of the MSE originally proposed in [1]; it assumes that
the observations are independent and identically distributed (i.i.d.)
(Gaussian). Stein further showed that the shrinkage type estima-
tor of the mean of an i.i.d. multivariate Gaussian, that minimizes
SURE dominates the classical least-squares estimate, if the obser-
vation dimension is greater than or equal to three [2]. The main
idea in SURE theory is to replace the original risk by an unbiased
estimate that depends only on the observations. Recently, many im-
age and speech denoising applications optimizing SURE have been
proposed [3-25]. The original formulation of SURE based on Gaus-
sian i.i.d. assumption was extended in [26] to certain distributions

of the continuous exponential family. The discrete exponential case
is discussed in [27]. Both [26] and [27] are based on the assumption
of i.i.d. observations. SURE for any non-i.i.d multivariate distri-
bution belonging to the exponential family was recently proposed
in [19]. Even though the SURE formulation allows us to directly
approximate the MSE based on an estimate obtained from the ob-
servations, existing formulations are specific to a particular class of
probability density function (p.d.f.) of the observations. This lim-
its the applicability of the SURE technique to the case where the
observations come from a distribution other than a member of the
exponential family. This precludes application of the SURE theory
in many practical cases. Since Gaussian mixture model (GMM) can
model any p.d.f. with finite number of discontinuities sufficiently
closely [31] [32], we can circumvent the problem of the observa-
tions following arbitrary p.d.f.s by modeling them using a GMM
and develop an unbiased estimate of the MSE based on the Gaussian
mixture distribution (GMD). In this paper, we derive an unbiased
estimate of MSE assuming that the observations are drawn from a
GMD. This generalization of SURE framework for GMD (GMD-
SURE) allows us to apply SURE-based techniques to any given dis-
tribution. Moreover, the proposed formulation does not assume any
particular structure on the estimator, and enables us to handle a wide
class of estimators. To illustrate its usefulness, we compare the per-
formance of speech denoising, based on SURE and GMD-SURE,
where noise follows a Gaussian mixture (GM) distribution. A point-
wise shrinkage estimator in discrete cosine transform (DCT) domain
is used as the denoising function. In Section 2, SURE for GMD is
formulated. In Section 3, we show how to estimate the parameters
of the point-wise denoising function based on the theory developed
in Section 2.

2. SURE FORMULATION FOR GMD

Let observation x ∈ Rn be distributed according to a GMD

fx (x) =

M∑
m=1

αmN (x; θm + s,Cm) , (1)

where M is the number of Gaussian components in the mixture, αm

s are the mixture weights andN (w; θm + s,Cm) represents multi-
variate Gaussian distribution with covariance matrix Cm and mean
θm + s. The goal is to obtain an estimate h(x), of the (non-random)
parameter s ∈ Rn, from the observation x that minimizes the MSE:

R = E
{
‖s− h(x)‖2

}
(2)

= E
{

sTs
}
− 2E

{
sTh(x)

}
+ E

{
h(x)Th(x)

}
.
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We observe that, in the preceding cost function, the first term is not a
function of h(x), and hence does not affect the minimization of R.
Instead of minimizingR, one could minimize the function

J (s,h(x)) = −2E
{

sTh(x)
}
+ E

{
h(x)Th(x)

}
. (3)

Direct minimization of the above function results in an unrealiz-
able estimator, which is a function of the unknown parameter to
be estimated. An alternative to this approach is the SURE-based
approach. The key idea of SURE-based estimation is that instead
of minimizing the risk J directly, one minimizes an unbiased es-
timate Ĵ , of J , to find the optimum estimator h. In order to find
an unbiased estimate of J , one requirement is an unbiased estimate
of the term E

{
sTh(x)

}
. Let V(x) be a function of the observa-

tion x such that it is an unbiased estimate of E
{
sTh(x)

}
, that is,

E
{
sTh(x)

}
= E {V(h(x))}, then the unbiased estimate of J be-

comes

Ĵ = −2V(h(x)) + h(x)Th(x). (4)

The unbiased estimate V(h(x)) depends on the p.d.f. of the obser-
vations. In this paper, we develop a method to determine Ĵ .

Theorem: Let x denote a random vector with probabil-
ity density function given by (1), and let um = C−1

m x . Let
h(um) be an arbitrary function of um that is weakly differ-
entiable in um and such that E {|hi(um)|} is bounded, then
E
{
sTh(x)

}
= Eu1...uM {T (u1, . . . ,uM )}, where,

Eu1...uM {T (u1, . . . ,uM )} = −
M∑

m=1

αm

(
Eum

{
h(Cmum)Tθm

}
+Eum

{
h(Cmum)T

∂ ln q(um)

∂um

}
+ Eum

{
Tr

(
∂h(Cmum)

∂um

)})
,

and an unbiased estimate of Eu1...uM {T (u1, . . . ,uM )} becomes

T (u1, . . . ,uM ) = −
M∑

m=1

αm

({
h(Cmum)T

∂ ln q(um)

∂um

}

+

{
Tr

(
∂h(Cmum)

∂um

)}
+
{

h(Cmum)Tθm
})

,

where q(um) =
1

(2π)n/2|C−1
m |1/2

exp

{
−1

2
uT

mCmum

}
, and

hi(um) is ith component of h(um).

Proof : Using the p.d.f. of x given in (1)

E
{

sTh(x)
}
=

M∑
m=1

∫
sTh(x)αmN (x; θm + s,Cm) dx, (5)

=

M∑
m=1

n∑
i=1

∫
hi(x)siαmN (x; θm + s,Cm) dx,

where hi(x) and si are the ithcomponents in the vector h(x) ∈ Rn

and s ∈ Rn, respectively. The expectation of the ith component is
given by

E {hi(x)si} =
M∑

m=1

∫
hi(x)siαmN (x; θm + s,Cm) dx. (6)

Considering the contribution of the mth Gaussian component sepa-
rately (in the mixture model (1)), we get that

Ex,m {hi(x)si} =
∫
hi(x)siN (x; θm + s,Cm) dx. (7)

Substituting um = C−1
m x in (7), yields

Ex,m {hi(x)si} =
∫
sihi (Cmum) q(um) (8)

exp
{

uT
m (θm + s)− g (θm + s)

}
dum,

where q(um) =
1

(2π)n/2|C−1
m |1/2

exp

{
−1

2
uT

mCmum

}
, and

g (θm + s) =

{
1

2
(θm + s)TC−1

m (θm + s)

}
. Note that we have

siexp
{

uT
m(θm + s)− g(θm + s)

}
(9)

=
∂exp

{
uT
m(θm + s)− g(θm + s)

}
∂um,i

−θm,iexp
{

uT
m(θm + s)− g(θm + s)

}
,

where um,i and θm,i are the ith components of the vectors um and
θm, respectively. We have

Eum {hi(Cmum)θm,i} ,
∫
hi(Cmum)θm,iq(um) (10)

exp
{

uT
m(θm + s)− g(θm + s)

}
dum,

and using integration by parts, we arrive at

+∞∫
−∞

hi(Cmum)q(um)
∂exp

{
uT
m(θm + s)− g(θm + s)

}
∂um,i

dum,i (11)

= −
+∞∫
−∞

∂hi(Cmum)q(um)

∂um,i
exp

{
uT
m(θm + s)− g(θm + s)

}
dum,i,

where

∂hi(Cmum)q(um)

∂um,i
= hi(Cmum)

∂q(um)

∂um,i
+ q(um)

∂hi(Cmum)

∂um,i
.

We have assumed that hi(Cmum) is weakly differentiable and
E{|hi(Cmum)|} is bounded. Since E{|hi(Cmum)|} is bounded,
in order to arrive at the RHS of (11), we have used the property that

lim
|um,i|→∞

∣∣∣hi(Cmum)q(um)exp
{

uT
m(θm + s)− g(θm + s)

}∣∣∣ = 0.

Substituting (9) in (8), and using (10) and (11), we arrive at∫
sihi(Cmum)q(um)exp

{
uT
m(θm + s)− g(θm + s)

}
dum (12)

= −

(
Eum {hi(Cmum)θm,i}+ Eum

{
∂hi(Cmum)

∂um,i

}

+Eum

{
hi(Cmum)

∂ ln q(um)

∂um,i

})
.
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Using (12), we express

Ex,m

{
sTh(x)

}
= −

n∑
i=1

(
Eum {hi(Cmum)θm,i} (13)

+Eum

{
∂hi(Cmum)

∂um,i

}
+ Eum

{
hi(Cmum)

∂ ln(um)

∂um,i

})

= −

(
Eum

{
h(Cmum)T

∂ ln q(um)

∂um

}

+Eum

{
Tr

(
∂h(Cmum)

∂um

)}
+ Eum

{
h(Cmum)Tθm

})
.

Substituting (13) in (5), we get

E
{

sTh(x)
}
= −

M∑
m=1

αm

(
Eum

{
h(Cmum)T

∂ ln q(um)

∂um

}
(14)

+Eum

{
Tr

(
∂h(Cmum)

∂um

)}
+ Eum

{
h(Cmum)Tθm

})
.

We can write, E
{
sTh(x)

}
= Eu1...uM {T (u1, . . . ,uM )}, where

T (u1, . . . ,uM ) = −
M∑

m=1

αm

({
h(Cmum)T

∂ ln q(um)

∂um

}
(15)

+

{
Tr

(
∂h(Cmum)

∂um

)}
+
{

h(Cmum)Tθm
})

.

One can observe that T (u1, . . . ,uM ) is an unbiased estimate of
Eu1...uM {T (u1, . . . ,uM )}, where the expectation is with re-
spect to the random variables u1, . . . ,uM , which are functions of
x. Thus, an unbiased estimate of E

{
sTh(x)

}
, after the variable

transformation is obtained as T (u1, . . . ,uM ). Thus, the proof is
complete. Using the substitution um = C−1

m x, we obtain

E
{

h(x)Th(x)
}
=

M∑
m=1

αmEum

{
h(Cmum)Th(Cmum)

}
. (16)

The risk (3) is simplified as

J (s,h(x)) =
M∑

m=1

αm

(
2Eum

{
h(Cmum)T

∂ ln q(um)

∂um

}
(17)

+2Eum

{
Tr

(
∂h(Cmum)

∂um

)}
+ 2Eum

{
h(Cmum)Tθm

}
+Eum

{
h(Cmum)Th(Cmum)

})
.

From (17), an unbiased estimate of J (s,h(x)) is obtained as

Ĵ (h(x)) =
M∑

m=1

αm

(
2
{

h(Cmum)Tθm
}

(18)

+2

{
Tr

(
∂h(Cmum)

∂um

)}
+ 2

{
h(Cmum)T

∂ ln q(um)

∂um

}
+
{

h(Cmum)Th(Cmum)
})

,

that is, J = Eu1...uM{Ĵ }. When the observation distribution is a

GMD as given in (1), Ĵ is an unbiased estimate of J , and to obtain
the optimum h, we minimize (18) with respect to h. The derivation
of Ĵ does not assume any specific form on h. Hence, it is possible
to use GMD-SURE to estimate parameters for different classes of h.

3. APPLICATION TO SPEECH DENOISING

We assume an additive noise model: x̄ = s̄ + w̄ where s̄ ∈ Rn

is the clean signal parameter vector and w̄ ∈ Rn is the noise

vector with distribution fw̄ (w̄) =

M∑
m=1

αmN
(
w̄; θ̄m, C̄m

)
.

As a consequence of the additive model, x̄ has the distribution

fx̄ (x̄) =

M∑
m=1

αmN
(
x̄; θ̄m + s̄, C̄m

)
. We perform denoising

in the DCT domain [22]. Let D denote the DCT; x = Dx̄
is the noisy speech DCT vector and follows the additive model
x = s + w, where s ∈ Rn and w ∈ Rn are clean signal and
noise DCT vectors, respectively. The distribution of x is a GMD,

fx (x) =

M∑
m=1

αmN (x; θm + s,Cm) where θm = Dθ̄m, s = Ds̄

and Cm = DC̄mDT. Our goal is to estimate s ∈ Rn from the
noisy observations x ∈ Rn such that the estimate results in the
minimum value of the MSE.
We consider a point-wise shrinkage estimator for denoising, that
is h(x) = Ax, where A = diag(a1, a2, · · · , an) [22]. The
optimum shrinkage parameter A is obtained by the minimiza-
tion of Ĵ (18), which is an unbiased estimate of J (17), ie
Ã = argmin

A
Ĵ (Ax). The clean signal DCT vector estimate

is ŝ = Ãx, where Ã = diag(ã1, ã2, · · · , ãn). To obtain the
optimum shrinkage parameter ãi, we solve ∂Ĵ

∂ai
= 0, which results

in

ãi =

∑M
j=1 αj

[
(Ci,juj)

2 − θj,i(Ci,juj)− ci,i,j
]∑M

m=1 αm(Ci,mum)2
, (19)

where M is the number of mixture components, αj is the mixture
weight of jth Gaussian, Ci,j is the ith row of the covariance matrix
Cj of jth Gaussian, ci,i,j is the (i, i)th element of Cj and θj,i is
the ith component of the mean vector θj of jth Gaussian. It can be
easily seen that if fw̄ (w̄) is zero mean i.i.d. Gaussian, then the es-
timator (19) reduces to the standard James-Stein estimator [22]. To
illustrate the performance differences of SURE and GMD-SURE,
we consider the application of speech denoising. A synthetic noise
vector distributed according to GMD is generated and added to the
clean speech signal vector to generate the noisy signal. In our sim-
ulations, we consider frame-wise processing of the speech signal,
where each frame has length 20 ms (160 samples, at 8 kHz sampling
frequency) and apply the optimum point-wise shrinkage in DCT do-
main to achieve denoising.

4. EXPERIMENTAL RESULTS

The GMD-SURE formulation proposed in this paper is applicable to
real-world noise distributions that can be approximated by a GMM.
Also, since no specific form for h is assumed, parameter estima-
tion for a wide class of estimators is possible. To generate the noisy
speech, add clean speech with a synthetic GM noise (with number
of Gaussian components equal to 3, component weights [0.3 , 0.4 ,
0.3 ], covariance matrices [ 0.01 × In, 0.02 × In, 0.04 × In] and
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Fig. 1. (Color online) Spectrograms of (a) Clean speech, (b) Noisy
speech corrupted by GMD noise, (c) Denoised speech using SURE
(single Gaussian), and (d) Denoised speech using GMD-SURE.
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Fig. 2. (Color online) SSNR plot of enhanced speech using SURE
and GMD-SURE.

component means [0.1 × 1n, −0.1 × 1n, 0.4 × 1n], where In is
n × n identity matrix, 1n is an n × 1 vector with all entries equal
to unity). The noisy speech, at input SNR of 5 dB, and segmental
SNR (SSNR) of 0.57 dB, is denoised using the point-wise shrinkage
estimator in the DCT domain. For input SNR of 5 dB, speech denois-
ing based on SURE (single Gaussian assumption) yielded an output
SNR=5.76 dB, and SSNR=0.76 dB, whereas GMD-SURE yielded
an output SNR=11.69 dB, and SSNR=5.87 dB. Figures 1 and 2
contain the spectrogram plots and SSNR plots of noisy speech and
denoised speech using SURE and GMD-SURE. We observe from
the spectrograms that GMD-SURE based denoising has higher noise
attenuation while maintaining the speech distortion is low compared
with the standard SURE approach. In the spectrogram (color plot)
of standard SURE-based denoising, high residual noise is present in
the low-frequency region (near zero), but it is absent in GMD-SURE
based denoising. SSNR plots show approximately 4 dB improve-
ment for GMD-SURE based technique over the SURE-based one in
all the frames. Figure 3 shows a comparison of the denoising per-
formance of SURE and GMD-SURE for different input SNR val-
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Fig. 3. (Color online) Comparison of denoising performance of
SURE and GMD-SURE for different input SNR, where noise is GM
distributed (a) Output SNR, (b) ASSNR averaged over 100 indepen-
dent realizations of noise.

ues, where noise is GM distributed with the same parameters used
in Figure 1. It is observed that SNR and ASSNR improvement is
high for the case of GMD-SURE, compared to SURE. Since noise
is distributed according to GMD, performance degradation in stan-
dard SURE-based approach reveals the importance of unbiased risk
estimator based on the correct noise p.d.f.. Performance degradation
in ordinary SURE-based approach is due to the model mismatch of
the noise p.d.f.. Better modeling of the p.d.f. of the observations and
unbiased estimator based on this p.d.f. leads to a better estimate of
the MSE. Since we minimize the same cost function, and the form of
the estimator is the same in both standard SURE and GMD-SURE,
the SNR improvement obtained is due to a more accurate estimate of
the MSE in the case of GMD-SURE. We considered speech denois-
ing to illustrate the effectiveness of GMD-SURE over the standard
SURE approach, when noise distribution is not Gaussian. The de-
noising framework proposed in this paper is also applicable to other
signals. Even though other performance metrics are available to as-
sess the quality of the denoised speech, we limited our evaluation to
the widely used SNR-based metrics [28–30], because we are con-
cerned about the estimate of MSE, which is an inverse function of
SNR. Hence, SNR improvement is directly attributed to the improve-
ment in the MSE estimate.

5. CONCLUSIONS

We developed an unbiased estimator of the MSE where the observa-
tions are distributed according to a GMD. SURE, which is an unbi-
ased estimator originally proposed for i.i.d Gaussian noise and later
extended to specific class of p.d.f., cannot be applied when the obser-
vations follow a different p.d.f.. Since a GMM can model any given
p.d.f. sufficiently closely, an unbiased estimator of MSE for GMD
gives generalizability to the SURE framework and allows us to ap-
ply it to any given p.d.f.. The proposed formulation does not assume
any specific structure on the signal estimator. Hence, GMD-SURE
can be used to obtain parameters for a wide class of estimators. As
an application, we considered denoising of speech corrupted by an
additive GM distributed synthetic noise. The simulations showed
that denoising using point-wise linear weighting function obtained
through GMD-SURE gave better denoising compared with ordinary
SURE (single Gaussian) in terms of SNR and ASSNR. From the su-
perior performance of GMD-SURE over standard SURE, we infer
that the MSE estimate is more accurate in case of the former.
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