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ABSTRACT
This paper concerns sparse Bayesian learning (SBL) problem
for group sparse signals. Group sparsity means that the sig-
nal components can be divided into groups, and the entries
in one group are simultaneously zero or nonzero. In SBL,
each group is controlled by a hyper-parameter. The marginal
likelihood maximization (MLM) problem is to maximize the
marginal likelihood of a given hyper-parameter by fixing al-
l others. The main contribution of this paper is to solve the
MLM problem by finding roots of a polynomial. Hence the
global minimum of the marginal likelihood can be found ef-
ficiently. Furthermore, most large matrix inverses involved
in MLM are replaced with the singular value decomposition-
s of much smaller matrices, which substantially reduces the
computational complexity. The proposed method is signif-
icantly different from the popular expectation maximization
techniques in the literature where multiple iterations are re-
quired for MLM and the convergence to global optimum of
marginal likelihood is not guaranteed.

Index Terms— Group sparse recovery, marginal likeli-
hood maximization, sparse Bayesian learning.

1. INTRODUCTION

While intensive research has been done in the topics of com-
pressed sensing and sparse recovery during the past decade
[1], nowadays much research focuses on sparse signals with
particular structures. A popular one is the so called group
sparse signals which arise in many signal processing and ma-
chine learning applications. In this model, the signal com-
ponents can be divided into multiple groups, and the entries
in each group are either all zero or all nonzero. It has been
shown that by exploiting the group structure properly, the sig-
nal recovery performance can be largely improved. Various
algorithms have been designed to recover group sparse sig-
nals, including convex optimization approaches in [2, 3, 4]
and greedy method in [5], to name a few.

This paper concerns the problem of recovering group s-
parse signals using sparse Bayesian learning (SBL). SBL was
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originally proposed in the machine learning society [6] and
then adopted in the signal processing society [7]. It models
the signal components as independent Gaussian random vari-
ables with mean zero and unknown variance. By inferring the
unknown variance from the data, SBL produces sparse esti-
mates of the signal. One advantage of SBL is that compared
with other methods, it is more robust to the ill-conditionness
of the sensing matrix.

One efficient way to solve the SBL problem is via fast
marginal likelihood maximization (FMLM) [8]. Let hyper-
parameter αi be the inverse of the variance of the i-th signal
component. The idea of FMLM is to maximize the marginal
likelihood of αi by fixing all other αj’s, j ̸= i. It turns out that
the global optimal αi admits a closed-form solution, which
allows low complexity implementations.

However, the extension of FMLM to group sparse signals
does not exist in literature as the corresponding marginal like-
lihood function becomes much more complicated. Instead,
expectation maximization (EM) techniques have been used
[9, 10, 11]. Consider again the case that αi is updated while
all other αj’s, j ̸= i, are fixed. EM methods result in only a
refinement of αi rather than the globally optimal value. Sim-
ilar approaches can be also found in [6, 12]. In all these ap-
proaches, (i) multiple iterations are required for convergence;
and (ii) there is no guarantee that the converged value is the
globally optimal one.

The main contribution of this work is to extend the o-
riginal FMLM to recover group sparse signals. Similar to
the original FMLM, the central problem is to maximize the
marginal likelihood of αi. While the marginal likelihood in-
volves matrices parameterized by αi, we show that its max-
imization can be reduced to finding roots of a polynomial,
which can be solved efficiently by existing tools. Thus the
global optimum of the marginal likelihood can be found. At
the same time, most large matrix inverses in MLM are re-
placed with singular value decompositions of much smaller
matrices. The overall complexity is substantially reduced.

The rest of this paper is organized as follows. Section 2
specifies the signal model and SBL inference problem. Sec-
tion 3 presents the main results to solve MLM problem. Sim-
ulation results are provided in Section 4. Section 5 includes
final remarks and summary.
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2. BAYESIAN MODEL AND INFERENCE

Consider the general model of sparse recovery

y = Φx+ n, (1)

where y ∈ RM×1 is the observed vector, Φ ∈ RM×N is
the measurement matrix, x ∈ RN×1 is a sparse vector, n ∈
RM×1 is the white Gaussian noise with variance σ2 and it is
typically assumed that M < N . Furthermore, assume that
x = [xT

1 , · · · ,xT
Ng

]T is a group sparse vector. That is, the
signal components can be grouped into Ng groups given by
xi ∈ RKi , i = 1, · · · , Ng, where Ki is the size of i-th group;
and the entries in each group xi are either zero or nonzero
simultaneously.

The Bayesian model in [9, 10] is used. Suppose that the
entries in the i-th group are jointly Gaussian distributed with
the prior probability density function (PDF)

p(xi|αi,Bi) = N
(
0,

1

αi
Bi

)
, (2)

where αi ∈ R+
∪
{∞} is an unknown hyper-parameter, and

Bi ∈ RKi×Ki is an appropriate covariance matrix and giv-
en a priori. It is clear that xi = 0 with probability one if
αi = ∞ and otherwise if αi ∈ R+. Let α = [α1, · · · , αNg ]

T .
Then the prior PDF of the overall signal vector x is given
by p(x|α) = N (0,Σ0), where the covariance matrix Σ0 is
block diagonal and its i-th block is given by 1

αi
Bi. In some

applications, it is also assumed that the noise variance is un-
known. For this case, another parameter β = σ−2 is intro-
duced.

The ultimate task is to infer x from y. Note that given
hyper-parameters α and β, this inference problem is straight-
forward. By Bayes’ rule, the posterior PDF of x is given by
p(x|y,α,B, β) = N (µ,Σ), where the posterior mean and
covariance matrix are given by

µ = βΣΦTy, (3)

Σ =
(
Σ−1

0 + βΦTΦ
)−1

, (4)

respectively. One can then set x̂ = µ.
Hence the key of inference is to estimate the hyperparam-

eters α and β. The focus of this paper is the inference of α
as the inference of β has been solved in [6]. Consider the
logarithmic likelihood of α given by

L(α) = log p(y|α, β)

= −1

2

[
N log(2π) + log |C|+ yTC−1y

]
, (5)

where
C =

1

β
I +ΦΣ0Φ

T , (6)

is the covariance matrix of y. A maximization of the log-
likelihood is used to infer α, which is referred to as type-II
maximum likelihood method [13].

3. A FAST AND EXACT MARGINAL LIKELIHOOD
MAXIMIZATION METHOD

It is difficult to solve the log-likelihood maximization prob-
lem (5) due to its non-convexity. In this section, we extend the
original marginal likelihood maximization (MLM) method in
[6, 8] for group sparse signals and refer to the method as group
MLM (GMLM). The basic idea is to perform the maximiza-
tion with respect to αi by fixing all other αj’s, j ̸= i (hence
the term marginal likelihood). For simplificity, in this paper
we assume that Bi = IK where IK is a K ×K identity ma-
trix and hence Σ0 = diag(α) ⊗ IK . The presented results
can be easily extended to the general case described in Sec-
tion 2. The details would be presented in the journal version
which will appear later.

The marginal likelihood is computed as follows. Let
Φi be the submatrix of Φ that consists of the columns
corresponding the i-th group, i.e., the columns indexed by
{(i− 1)K + 1, · · · , iK}. Decompose the matrix C as

C = C−i +
1

αi
ΦiΦ

T
i . (7)

where the first term C−i =
1
β I+

∑
j ̸=i

1
αj

ΦjΦ
T
j contains all

the terms that are independent of αi and the second term in-
cludes all the terms related to it. By using Woodbury matrix
identity [14], the objective function (5) can be also decom-
posed into two parts

L(α) = L(α−i) +
1

2
ℓ(αi), (8)

where L(α−i) is independent of αi, and

ℓ(αi) := log |αiI| − log |αiI +ΦT
i C

−1
−i Φi|

+ yTC−1
−i Φi(αiI +ΦT

i C
−1
−i Φi)

−1ΦT
i C

−1
−i y.

(9)

For notational convenience, define

S̄i := ΦT
i C

−1
−i Φi, q̄i := ΦT

i C
−1
−i y, (10)

where S̄i ∈ RK×K and q̄i ∈ RK×1. The objective function
ℓ(αi) becomes

ℓ(αi) = log |αiI|−log |αiI+S̄i|+q̄T
i (αiI+S̄i)

−1q̄i. (11)

To maximize the marginal likelihood, one simply needs to
maximize ℓ(αi) in (11) with respect to αi.

A sequential algorithm [6, 8] can be built upon the
marginal likelihood ℓ(αi). We outline it in Algorithm 1
by omitting many details. There are two computational chal-
lenges associated with step 1. Firstly, the definitions in (10)
involves the matrix inverse C−i (of dimension M ) which
needs to be computed Ng times as i varies from 1 to Ng.
Secondly, the optimization of ℓ(αi) is difficult as the ob-
jective function involves matrices parameterized by αi. We
shall develop an exact GMLM method to address these two
challenges.
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Algorithm 1 GMLM Sequential Algorithm
In the t-th iteration, do

1. Scan i and find the i∗ to maximize ℓ (α∗
i ) − ℓ

(
αt−1
i

)
where α∗

i is the global maximizer of ℓ (αi).

2. Update hyper-parameter vector α: αt
i∗ = α∗

i∗ and αt
j =

αt−1
j for all j ̸= i∗.

3. Update other parameters to allow next iteration.

3.1. The Exact MLM

The aforementioned two challenges are addressed by reduc-
ing the number of large matrix inverses and turning the opti-
mization problem to a root finding problem.

The next lemma reduces the number of large matrix in-
verses.

Lemma 3.1. Define

Si := ΦT
i C

−1Φi, qi := ΦT
i C

−1y. (12)

Write the singular decomposition form of Si as Si =
Vidiag(si,k)V T

i , where Vi is the singular vector matrix
and si,k’s are the singular values. Then S̄i and q̄i in (10) are
given by

S̄i = Vidiag
( αisi,k
αi − si,k

)
V T
i ,

q̄i = Vidiag
( αi

αi − si,k

)
V T
i qi.

(13)

At the beginning of each iteration, αt−1 is given and one
can compute C and its inverse according to the definition in
(6). Then Si’s, qi’s, S̄i’s, and q̄i’s can be computed with-
out further large matrix inverse. This reduces Ng many large
matrix inverse (of dimension M ) into one large matrix in-
verse and Ng many small matrix operations (of dimension
K). Hence the computational complexity is reduced from
O(NgM

3) to O(M3 +NgK
3) = O(M3 +NK2). In many

application, K is a small constant and Ng, M , and N are in
the same order. In this case, computational complexity is re-
duced from O(M4) to O(M3).

Now we show how to maximize the marginal likelihood
ℓ(αi). Note that the singular value decomposition of S̄i can
be easily obtained from (13). Denote the singular values of
S̄i by s̄i,k’s, k = 1, 2, · · · ,K. The marginal likelihood ℓ(αi)
can be written as

ℓ(αi) =
K∑

k=1

(
log(αi)− log(αi + s̄i,k) +

c2i,k
αi + s̄i,k

)
, (14)

where ci,k is the k-th entry of ci = Viq̄i. Its derivative with

respect to αi is given by

ℓ′(αi) =

∑K
k=1

(
(s̄i,k − c2i,k)αi + s̄2i,k

)∏
t ̸=k(αi + s̄i,t)

2

αi

∏K
k=1(αi + s̄i,k)2

.

(15)
The local maximizers or minimizers of ℓ(αi) correspond to
where the derivative equals to zero. Note that the denominator
is always positive. One only needs to find the roots of the
numerator. As the numerator is a polynomial of degree 2K −
1, there are 2K − 1 roots (possible complex). Since αi was
introduced in the statistical model to describe the variance of
xi, one can define the feasible set of αi as

Ai =
{
αi ∈ R+ : ℓ′(αi) = 0

}∪
{+∞}.

Here, the point +∞ has to be included as it is feasible and
it may correspond to the global optimum of ℓ (αi) (see [6]
for a specific example). Then the global optimal αi can be
identified by

α∗
i = arg max

αi∈Ai

ℓ (αi) ,

where ℓ (+∞) = 0 according to the definition of ℓ (αi) in
(11). Note that the root finding problem can be solved by us-
ing companion matrix of size K×K. The overall complexity
of the root finding step is O(NgK

3) (for all i = 1, 2, · · · , Ng)
which is the same as that for computing S̄i’s and does not
change the previous complexity analysis in terms of order of
magnitude.

3.2. Other Compuational Simplifications

Further computational simplification is possible. At each it-
eration, the matrix C−1 is needed. Note that the matrix C
defined in (6) can be viewed as a function of α. Since the
α’s in two consecutive iterations only differ in one entry, one
may use Woodbury matrix identity to simplify the updates of
C−1.

When the noise variance σ2 = β−1 is fixed (e.g. given a
priori), one can directly update C−1 by observing that Ct =
Ct−1 +

(
αt
i∗ − αt−1

i∗

)
Φi∗Φ

T
i∗ , where i∗ is the index of the

updated α in the t-th iteration.
Now consider the case that σ2 = β−1 is not given and

needs to be updated. By setting ∂L(α)
∂σ2 = 0, one obtains

β(new) =
M −

∑Ng

n=1

(
K − αntr(Σn)

)
∥y −Φµ∥22

,

where Σn is the n-th block of the matrix Σ. This means at
each iteration, one needs to update µ, Σ, C, Si’s and qi’s.
Again by using the fact that only one element in α has been
changed, one can simplify the computations. However, much
more details are involved and will be provided only in the
journal version of this paper.
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3.3. Detailed Relation to Prior Work

Our work is largely motivated by the original FMLM [12, 8],
which concerns only standard sparse signals, i.e., sparse sig-
nals without group structures. Over there the matrices in-
volved in (11) become scalars which makes the MLM prob-
lem much easier. At the same time, very similar techniques
are used in our work and [8] to reduce the number of large ma-
trix inverses. The difference is that the connections between
singular value decompositions are essential for group sparse
signals (Lemma 3.1) while there is no need to resort to such
decompositions for standard sparse signals [8].

In [9, 10, 11], different techniques including BSBL-
EM, BSBL-BO and BSBL-ℓ1 are developed to refine the
estimation of the hyper-parameter αi for group sparse sig-
nals. All these techniques originate from EM mechanis-
m. The basic form used for αi refinement is the same:
αt
i = g(αt−1

i ,y,Φ,αt−1
−i ), where the g function involves

large matrix inverses and αi appears at both sides of the
equation. Hence multiple iterations are needed for conver-
gence and there is no guarantee the global optimality of the
converged value. As a comparison, the global optimal αi is
obtained by finding roots of a polynomial in our work.

4. NUMERICAL RESULTS

Consider a group sparse signal recovery problem (1). In al-
l the simulations presented here, the measurement matrix is
generated from the standard Gaussian random matrix ensem-
ble.

In [11] the authors compared the performance of the three
SBL algorithms with other non-SBL algorithms, showing that
the SBL based algorithms outperform non-SBL algorithms
and BSBL-BO has the fastest convergence speed compared
to BSBL-EM, BSBL-l1. In this work we focus on the perfor-
mance comparison within the SBL family and hence choose
the best algorithm BSBL-BO for comparison.
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Fig. 1. Convergence rate.

Figure 1 illustrates the convergence rate of MLM. We ran-
domly pick a specific α, and update αi while fixing all other
αj’s, j ̸= i. As discussed before, BSBL-BO is based on

EM technique and multiple iterations are required for solving
MLM. According to the simulations, it needs roughly 25 iter-
ations to get close to the globally optimal value. As a com-
parison, the method in this work gives the globally optimal
αi in one-shot. In this example, M = 400, N = 800,K =
4, Ng = 200,SNR = 20dB and 50 groups of all the 200
groups are nonzero.

It is noteworthy that the above comparison does not re-
flect the complexity difference of the overall algorithms. In
EM based methods, MLM cannot be solved in one-shot and
therefore the algorithm does not try to find the global optimal
value when updating a given hyper-parameter. Instead, only
one EM iteration is used to update one hyper-parameter be-
fore the algorithm moves to the next hyper-parameter. The
resulting algorithm flowchart is quite different from the one
in Algorithm 1. Due to this difference, the direct complexi-
ty comparasion of the sequential GMLM in Algorithm 1 and
BSBL-BO is not rigorous. Nevertheless for engineering pur-
pose, it is always beneficial to numerically study the improve-
ment from benchmark methods.
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Fig. 2. Performance comparison

Figure 2(a) compares the running-time of GMLM and
BSBL-BO. The running time shown in the results are ob-
tained from avaraging 100 realizations. In the simulations,
N = 2M , the group size K = 4, and the sparsity level (the
fraction of nonzero groups) is 0.25. From the figure we can
see that the running time of GMLM is generally less than
half of that of BSBL-BO, and it is further improved as the
dimension of the problem increases. At the same time, both
algorithms achieve almost identical reconstruction distortion
in terms of normalized mean squared error.

5. CONCLUSION

This paper studies the SBL mechanism for group sparse sig-
nals. The main contribution is to find the exact solution of
the MLM problem. This is achieved by translating the MLM
problem to a root-finding problem. At the same time, mech-
anisms are developed for replacing most matrix inverses in
MLM with the singular value decompositions of much small-
er matrices. Our method extends the original FMLM designed
only for standard sparse signals.
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