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ABSTRACT

For accurate signal reconstruction, proximal gradient meth-
ods generally require proper selection of regularization pa-
rameter. In this paper, we develop two data-driven optimiza-
tion schemes, based on minimization of unbiased predictive
risk estimate (UPRE). First, we propose a recursive UPRE to
estimate the prediction error during the proximal iterations,
which can be used to optimize the regularization parameter.
Second, for fast optimization, we parametrize each proximal
iterate as a linear combination of few elementary functions
(LET), and solve the linear weights by minimizing recursive
UPRE. We further exemplify the proposed approaches with
the basic iterative shrinkage/thresholding (IST) algorithms for
`1-minimization. Numerical experiments show that iterating
this process leads to higher reconstruction accuracy with re-
markably faster computational speed than standard IST.

Index Terms— Proximal gradient methods, unbiased
predictive risk estimate (UPRE), linear expansion of thresh-
olds (LET), iterative shrinkage/thresholding (IST)

1. INTRODUCTION

In many applications in signal processing, e.g. signal re-
covery [1] and compressed sensing [2], there is a need for
solving the following linear inverse problem [3]:

y = Ax + ε, µ = Ax (1)

where y ∈ RM is the observed data, A ∈ RM×N is a determin-
istic matrix, ε ∈ RM is a vector of i.i.d. centered Gaussian
random variable with variance σ2 > 0. The goal is to recon-
struct the original data x ∈ RN from measurements y.

As a standard technique, regularization-based approaches
typically formulate the problem as:

(P1) : min
x

1
2
‖Ax−y‖22 +λ ·g(x)

where g(x) is a regularization term, λ is a regularization pa-
rameter.

Proximal gradient methods have been an appealling
choice for solving (P1) [4]. In general, the solution to (P1),
denoted by x̂λ, is very sensitive to the value of λ. Hence,

proximal algorithms often require appropriate selection of
regularization parameter λ, to achieve a good trade-off be-
tween data fidelity and regularity enforcement. There have
been a number of criteria for this selection of λ, e.g. general-
ized cross validation [5], L-curve method [6] and discrepancy
principle [7], of which the most commonly used choice is
mean squared error (MSE): MSE = E{‖̂xλ − x‖22}/N. Due to
the inaccessible x in MSE, the Stein’s unbiased risk estimate
(SURE) was proposed in [8] as a statistical estimate of MSE

However, SURE is valid only if ATA is invertible [3].
[3, 9] developed regularized or projected SURE for iterative
shrinkage/thresholding (IST) to overcome this limitation. In
this paper, for stable and easy manipulation, we consider the
expected prediction error (EPE) instead [10]:

EPE =
1
M
E
{∥∥∥̂µλ−µ∥∥∥2

2

}
(2)

where µ̂λ = Ax̂λ.
Since true µ is unknown in practice, unbiased predictive

risk estimate (UPRE) is a statistical substitute for the predic-
tion error [11, 12]:

UPRE(̂µλ) =
1
M

∥∥∥Ax̂λ−y
∥∥∥2

2 +
2σ2

M
Tr

(
AJy (̂xλ)

)
−σ2 (3)

which depends on y only. Here, Jy (̂xλ) ∈ RN×M is a Jacobian
matrix defined as: [

Jy (̂xλ)
]
m,n

=
∂(̂xλ)m

∂yn

In this work, motivated by the works of [3,9], we propose
two optimization methods for accurate reconstruction, based
on minimization of UPRE (3). Extending IST, we develop
a recursive UPRE for the general proximal algorithms, and
the optimal λ can be recognized by exhaustive search for the
minimum UPRE. Moreover, for fast optimization, we adopt a
very similar strategy to [13–15]: approximate the sparse es-
timation process by a linear combination of few elementary
functions (LET bases) with different but fixed λ, and solve
the linear weights (LET coefficients) by minimizing recur-
sive UPRE. Experimentally, proximal iteration of the recur-
sive UPRE-LET process remarkably improves the reconstruc-
tion performance in terms of both estimation error and com-
putational time, compared to standard IST.
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2. RISK ESTIMATE FOR PROXIMAL
ALGORITHMS

2.1. Basic scheme of proximal algorithms

Not limited to (P1), we consider the following generic op-
timization problem [4]:

(P2): min
x

f (x) +λ ·g(x)

where f (x) is twice differentiable, g(x) is at least sub-
differentiable. Proximal gradient methods solve (P2), by
the following iterate [4]:

x(i+1) = proxtλg

(
x(i)− t∇ f (x(i))︸           ︷︷           ︸

u(i)

)
(4)

where t is a step size, the proximal operator proxg(·) denotes
the proximal point of (·) w.r.t. the function g [1, 4]. Corre-
spondingly, µ(i) is updated by µ(i) = Ax(i). By (3), the UPRE
of µ(i) can be expressed in terms of x(i):

UPRE(µ(i)) =
1
M

∥∥∥Ax(i)−y
∥∥∥2

2 +
2σ2

M
Tr

(
AJy(x(i))

)
−σ2 (5)

2.2. Recursion of Jacobian matrix

The UPRE computation requires to evaluate Jy(x(i)). From
(4), we have the Jacobian matrix of x(i+1) is:

[
Jy(x(i+1))

]
m,n

=
∂[proxtλg(u(i))]m

∂yn
=

N∑
s=1

∂[proxtλg(u(i))]m

∂u(i)
s︸                ︷︷                ︸

P(i)
m,s

·
∂u(i)

s
∂yn

=
[
P(i)Jy(u(i))

]
m,n

Finally, we obtain that the recursion of Jacobian matrix for
the update (4) is:

Jy(x(i+1)) = P(i)
(
Jy(x(i))− tH(i)

)
(6)

where the matrix H(i) ∈ RN×M is given as H(i) =
∂2 f (x(i))
∂x(i)∂y .

2.3. Summary of the proposed algorithm

Now, we summarize the proposed risk estimation for
proximal algorithms as Algorithm 1, which enables us to
solve (P2) with a prescribed value of λ, and simultaneously
evaluate the UPRE during the proximal iterations.

3. A PROXIMAL UPRE-LET APPROACH

3.1. Related works

The proposed UPRE evaluation (i.e. Algorithm 1) can be
used to optimize λ of (P2). [3, 9] discussed a number of opti-
mization procedures, among which the most typical methods
include:

Algorithm 1: UPRE evaluation for proximal algorithms

Input: y, A, σ2, λ, t, initial x(0)

Output: reconstructed x̂λ, µ̂λ, and UPRE(̂µλ)
for i = 1,2, ... do

1 update x(i) by (4);
2 update Jy(x(i)) by (6);
3 compute UPRE of µ(i) by (5);

end

• Global method [9]: an exhaustive search, which repeat-
edly implements Algorithm 1 with various tentative
values of λ, and choose one with minimum risk esti-
mate.

• Greedy method [3]: during each iteration, to perform
exhaustive search for updating λ and x alternatively, by
minimizing the evolved risk estimator.

3.2. Recursive UPRE-LET for proximal algorithms

Both global and greedy methods require the exhaustive
search for the optimization, which is rather time consuming.
Now, based on Algorithm 1, we propose a novel optimization
procedure, to substantially improve the computational speed.

We adopt a very similar strategy to [13–15], which de-
composes each proximal iterate (4) into a linear combina-
tion of elementary functions—Linear Expansion of Thresh-
olds (LET):

x(i+1) =

K∑
k=1

ak ·proxtλkg

(
x(i) − t∇ f (x(i))

)︸                         ︷︷                         ︸
x(i+1)

k

; µ(i+1) =
∑

k

ak Ax(i+1)
k︸  ︷︷  ︸

µ(i+1)
k

(7)

i.e., the update x(i+1) is a linear combination (by LET coeffi-
cients ak) of a number of LET bases x(i+1)

k , which are updated
with different but fixed λk, individually.

By the LET strategy (7), the optimization problem be-
comes finding optimal LET coefficients ak instead of the non-
linear parameter λ. Substituting (7) into (5), we have:

UPRE(µ(i)) =
1
M

∥∥∥∥ K∑
k=1

akAx(i)
k −y

∥∥∥∥2

2
+

2σ2

M

K∑
k=1

akTr
(
AJy(x(i)

k )
)
−σ2

(8)
where the Jacobian matrix Jy(x(i)

k ) is evolved as:

Jy(x(i+1)
k ) = P(i)

k

(
Jy(x(i))− tH(i)

)
, for k = 1,2, ...,K (9)

by (6). Here, the matrix P depends on different regularization
parameter λk.

The UPRE (8) is a quadratic functional of ak: minimizing
UPRE w.r.t. ak boils down to solving the following linear
system of equations:

K∑
k′=1

1
M
µ(i)T

k′ µ
(i)
k︸      ︷︷      ︸

Mk,k′

ak′ =
1
M

(
yTµ(i)

k −σ
2Tr

(
Jy(µ(i)

k )
))

︸                             ︷︷                             ︸
ck

(10)
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for k = 1,2, ...,K. These equations can be summarized in ma-
trix form as Ma = c, where M = [Mk,k′ ]k,k′=1,2,...,K and c =

[c1,c2, ...,cK]T.
The underlying principle of the UPRE-LET approach is

that different values of λk capture various features of the data
x: smaller λ reveals more details of signal, whereas larger λ
yields smoother data but with more noise suppression. The
UPRE-LET method consists in finding the best combination
of the candidates µ(i)

k in terms of UPRE, which is automat-
ically done by solving (10). The optimal linear coefficients
ak control the best balance between data fidelity and regular-
ization enforcement. In practice, the number of LET bases
K is very small (typically, less than 10), which dramatically
reduces the problem dimension. Therefore, we expect the
UPRE-LET update (7) to achieve smaller prediction error
with faster computational speed, though it is not an exact
solution to (P2) with any value of λ. The proposed method is
summarized in Algorithm 2.

Algorithm 2: UPRE-LET within proximal algorithms

Input: y, A, σ2, t, initial x(0), λk for k = 1,2, ...,K
Output: reconstructed x̂λ, µ̂λ, and UPRE(̂µλ)
for i = 1,2, ... do

1 update x(i)
k and µ(i)

k by (7) for k = 1,2, ...,K;
2 update of Jy(x(i)

k ) by (9) for k = 1,2, ...,K;
3 build and solve (10) for ak;
4 update x(i) and µ(i) by (7);
5 compute UPRE of µ(i) by (8);

end

4. IST — A TYPICAL EXEMPLIFICATION

4.1. Basic scheme of IST

In this section, we exemplify Algorithms 1 and 2 with
a typical class of proximal algorithms—iterative shrink-
age/thresholding (IST), which is, typically, used to solve
the following `1-minimization problem:

(P3) : min
x

1
2
‖Ax−y‖22 +λ · ‖x‖1︸                    ︷︷                    ︸

L(x)

for sparse reconstruction of x. IST algorithm updates x(i) as
[14]:

x(i+1) = Ttλ
(
x(i)− t(ATAx(i)−ATy)︸                       ︷︷                       ︸

u(i)

)
(11)

whereTT (·) is a point-wise soft-thresholding function: TT (·) =

sign(·)(| · | −T )+ [14]. Here, the parameter λ is regarded as a
threshold, to decide which components of u(i) are to be set to
zero, i.e., the level of sparsity.

4.2. Recursive risk estimate for IST

Again, the recursions of Jacobian matrix and UPRE for
IST are given by (6) and (5), respectively, where H(i) =

ATAJy(x(i)) −AT, P(i) becomes diagonal with (n,n)-th ele-
ment:

P(i)
n,n =

 1, if |u(i)
n | > tλ

0, if |u(i)
n | ≤ tλ

We now apply the UPRE-LET strategy (i.e. Algorithm 2)
to optimize the IST update (11). Here, we set K different but
fixed λk:

x(i+1) =

K∑
k=1

akTtλk

(
x(i)− t(ATAx(i)−ATy)

)︸                               ︷︷                               ︸
x(i+1)

k

(12)

which implies that the candidates x(i+1)
k have different lev-

els of sparsity. The coefficients ak obtained by solving (10)
automatically constitute the optimal sparsity with minimum
UPRE.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we are going to solve (P3) by IST, and
present the results of the proposed recursive UPRE (i.e. Algo-
rithm 1) and proximal UPRE-LET algorithm (i.e. Algorithm
2).

5.1. Experimental setting

To demonstrate the wide applicability of our proposed ap-
proaches, we consider a random numerical example: we ran-
domly generate the matrix A ∈ R300×500, and set x ∈ R500 as
a sparse vector with very few non-zeros (in this example, 10
non-zeros). Then, we add the zero-mean noise ε with noise
variance σ2 to obtain the observed data y = Ax + ε, such that
the input SNR is 10dB1. We set step size t = 10−4.

5.2. Convergence of IST with fixed λ

We apply Algorithm 1 to solve (P3) with fixed λ. Fig.1
shows the convergence of IST with λ = 1. The objective value
of L(x(i)) keeps decreasing to converge, shown in Fig.1-(1).
Fig.1-(2) shows the evolutions of UPRE and true EPE during
the iterations. We can see that the UPRE is always a reliable
substitute for EPE.

1Input signal-to-noise ratio (SNR) is defined as: 10log10

( ‖µ‖22
‖y−µ‖22

)
=

10log10

( ‖µ‖22
Mσ2

)
in dB.
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(1) objective value of L(x(i)) (2) UPRE and true EPE
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Fig. 1. The convergence of IST with fixed λ = 1.0.

5.3. Optimization of IST algorithms

In this part, we compare our proposed UPRE-LET method
to global search. For global search, we implement IST for 50
tentative values of λ, and obtain the UPRE of corresponding
µ̂λ. Fig.2-(1) shows the relation between UPRE and λ, where
the minimum point corresponds to optimal value of λ. For
UPRE-LET, we set K = 3 regularization parameters: λ1 = 1,
λ2 = 10 and λ3 = 100. Fig.2-(2) shows that by UPRE-LET,
we obtain the optimal reconstruction in ONE implementation
of IST, which achieves smaller UPRE with much faster con-
vergence speed, compared to basic IST (shown in Fig.1).

(1) UPRE as a function of λ (global) (2) UPRE-LET within IST
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min. UPRE = 0.32
λopt = 33.46

min. UPRE = 0.20

Fig. 2. Optimization of IST: global vs. UPRE-LET.

Fig. 3 shows two fractions of reconstructed signal for the
comparison between global optimal and UPRE-LET method.

(1) first fraction of signal (2) second fraction of signal
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Fig. 3. Two small fractions of the signal reconstruction.

Table 1 reports the errors and computational time of
global, greedy and the proposed UPRE-LET methods. The
errors of x and µ are defined as: ‖̂x− x‖22/N and ‖̂µ−µ‖22/M,
respectively.

We can see that the proposed approach produces more
accurate reconstruction. The remarkably improved compu-
tational efficiency is due to the following several facts: (1)

Table 1. Comparisons between various methods

methods global greedy UPRE-LET

error of x 7.29×10−4 7.31×10−4 4.23×10−4

error of µ 0.32 0.33 0.20
time (in sec.) 1835.65 165.15 5.30

global method requires 50 times of implementations of IST
with various λ; (2) greedy method needs to perform exhaus-
tive search to optimize λ for each IST update; (3) UPRE-LET
greatly accelerates the convergence speed of IST, and com-
plete the optimization in ONE execution; (4) UPRE-LET for
each IST update finally boils down to solving a 3-order (i.e.,
K = 3) linear system of equations (10), which costs negligible
time, compared to exhaustive search.

6. CONCLUSIONS

In this paper, we propose a predictive risk estimate for a
general proximal gradient methods, which is recursively eval-
uated during the proximal iterations. Moreover, we propose a
UPRE-LET strategy within proximal algorithms, and demon-
strated the superior performance by more accurate reconstruc-
tion, faster convergence speed and computational time.

Besides the basic IST, this work, in principle, can be ex-
tended to more complicated proximal algorithms, e.g. FISTA
[16] and ADMM [4]. In addition, not limited to the simple nu-
merical example shown in this paper, the proposed approach
has a great potential for many real applications, e.g. com-
pressed sensing and image deconvolution.

Theoretical derivations in this work related to the evalu-
ation of Jacobian matrix and linear parametrization strategy
can be extended, in principle, to other types of regularizers
and regularized iterative reconstruction algorithms.
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