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Abstract—In this paper, a new iteratively reweighted least
squares method is proposed for recovery of block-sparse signals
with unknown cluster patterns. In many practical applications,
sparse signals have block-sparse structures with nonzero co-
efficients occurring in clusters, while the prior information
of the cluster pattern is usually unavailable. To address this
issue, we propose an element-overlapping log-sum functional to
encourage the sparseness and the cluster pattern simultaneously.
The algorithm is developed by iteratively minimizing a convex
surrogate function that majorizes the original objective function,
which results in an iteratively reweighted process that alternates
between estimating the sparse signal and refining the weights
of the surrogate function. Convergence of the iterations to
a local minimum of the penalty function is also guaranteed.
Numerical results are provided to illustrate the effectiveness of
the proposed method.

Index Terms—Block-sparse signal recovery, iteratively
reweighted, element-overlapping log-sum functional.

I. INTRODUCTION

Sparse signal recovery and compressed sensing have drawn
significant attention in recent years [1]. The basic form of the
sparse signal recovery is given by

y = Ax (1)

where y ∈ RM×1 is a measurement vector, A ∈ RM×N

is a sampling matrix with M < N , and x ∈ RN×1 is
a sparse signal with only K nonzero coefficients. Besides
sparsity, signals usually exhibit block-sparse structures in
many applications, such as multi-band signals [2], [3], audio
signals [4], and gene expression analysis [5]. This cluster
pattern can be utilized to considerably enhance the recovery
performance.

A number of algorithms, such as block-OMP [6], group
LASSO [7], mixed `2/`1 norm-minimization [8], group basis
pursuit [9], and block-sparse Bayesian learning (BSBL) [10]
were proposed for recovery of block-sparse signals. However,
these algorithms require knowledge of block partition a
priori, which is usually unavailable in practice. StructOMP
[11] does not need to know the block partition, but it requires
the number of nonzero coefficients of the sparse signal. To
address this difficulty, a few algorithms that do not require
the knowledge of the block partition were developed recently.
In [12], a Boltzman machine-based greedy pursuit (BM-
MAP-OMP) method which employs the Boltzmann machine
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as a prior on the support was developed to recover block-
sparse signals. In [13], a cluster-structured Markov chain
Monte Carlo (CluSS-MCMC) algorithm was proposed by
employing a hierarchical Bayesian “spike-and-slab” prior
model to encourage sparsity and promote a block-sparse
structure simultaneously. A modified block sparse Bayesian
learning (referred to as EBSBL) method was proposed in [14]
to address the scenario where the block partition is unknown,
in which an expanded model is introduced by assuming that
the original sparse signal is a superposition of a number of
overlapping blocks. In [15], a pattern-coupled hierarchical
Gaussian prior model was proposed to exploit the statistical
pattern dependencies among neighboring coefficients. Nu-
merical results show that the pattern-coupled sparse Bayesian
learning (PC-SBL) method renders competitive performance
for block-sparse signal recovery.

In this paper, a new element-overlapping log-sum penalty
functional is proposed for recovery of block-sparse signals
with unknown cluster patterns. Unlike the conventional log-
sum functional where each coefficient is associated with an
individual logarithmic function, consecutive neighboring co-
efficients are grouped together to encourage structured-sparse
solutions. Meanwhile, overlapping elements are used in dif-
ferent logarithmic functions to provide a flexible framework
to model any block-sparse patterns. An iteratively reweight-
ed method is developed by resorting to the majorization-
minimization (MM) approach for block-sparse signal re-
covery. The proposed method is developed by iteratively
decreasing a surrogate function that majorizes the original
objective function. Numerical results are provided to illustrate
the effectiveness of the proposed method.

II. ELEMENT-OVERLAPPING LOG-SUM FUNCTIONAL

The following log-sum minimization has been extensively
used for sparse signal recovery [16], [17].

min
x

N∑
i=1

log(|xi|+ ε), s.t. y = Ax (2)

where xi denotes the ith element of x, and ε > 0 is a
regularization parameter to ensure that the function is well-
defined. It was shown empirically [17] and theoretically [18]
that log-sum minimization presents universal superiority over
conventional `1-type methods. Nevertheless, the above log-
sum functional has no potential to encourage structured-
sparse solutions. To promote a block-sparse solution, one
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may wish to group together those coefficients which share a
same sparsity pattern and place a sparse prior on each group,
just like the group LASSO [7] and the mixed `2/`1-norm
method [8] do. This, however, requires the knowledge of
block partition of the signal to determine which coefficients
should be put together, which is usually unavailable in
practice.

To address this difficulty, we propose to minimize an
element-overlapping log-sum functional as follows

min
x

L(x) ,
N∑
i=0

log(x2i + x2i+1 + ε), s.t. y = Ax (3)

where x0 and xN+1 are created to simplify our expression
and both are set equal to 0. Clearly, this log-sum functional
encourages a structured-sparse solution since pairs of neigh-
boring coefficients are grouped together and assigned to each
logarithmic function. On the other hand, due to the use of
overlapping elements in different logarithmic functions, the
above log-sum functional does not impose any pre-defined
structures on the signal to be recovered, thus providing a
flexible framework to model any cluster patterns.

III. PROPOSED ALGORITHM

In this section, a bounded optimization algorithm, belong-
ing to the general class of majorization-minimization (MM)
approaches, is developed to minimize the new penalty func-
tion L(x) in (3). The main idea is to iteratively decrease a
simple surrogate function, by which L(x) is upper-bounded.
An appropriate choice of such a surrogate function has a
convex quadratic form and can be given by

Q(x,γ) ,
N∑
i=0

(x2i + x2i+1 + ε

γi
+ logγi − 1

)
, s.t. y = Ax

(4)

where γ , [γ0, ..., γN ]T , and γi > 0,∀i.
It can be readily verified that

Q(x,γ)− L(x) ≥ 0 (5)

with equality if and only if γi = x2i + x2i+1 + ε,∀i.
Now we arrive at finding the local minimum of the

surrogate function (4) with regard to x and γ.
For fixed γ,

Q(x;γ) = xTΓ−1x+ const, s.t. y = Ax (6)

where

Γ = diag{Γii}, Γii =
1

(γi−1)−1 + (γi)−1
(7)

By resorting to the standard method of Lagrange multipli-
ers, the optimal solution of (6) can be given explicitly (see
[19] for more details)

x̂ = ΓAT (AΓAT )−1y (8)

For fixed x, (4) is minimized by

γ̂i = x2i + x2i+1 + ε, ∀i (9)

Consequently, by iteratively updating x with (7) (8) and
updating γ with (9), the surrogate function Q(x,γ) are
reduced or left unchanged, which results in a non-increasing
value of the penalty function L(x) as well. This procedure
can be shown as below

L(x̂(t)) = Q(x̂(t), γ̂(t))

≤ Q(x̂(t), γ̂(t−1))

≤ Q(x̂(t−1), γ̂(t−1))

= L(x̂(t−1)) (10)

where x̂(t) and γ̂(t) denote the estimation of x and γ in the
(t)th iteration, respectively. According to Global Convergence
Theorem [19], L(x) is guaranteed to converge monotonically
to a local minimum (or a saddle point). A tiny perturbation
leads to a local minimum when a saddle point is reached,
which is very rare to occur [20].

By substituting (7) and (9) in (6), we eliminate the param-
eter γ and obtain

Γii =
( 1

x2i−1 + x2i + ε
+

1

x2i + x2i+1 + ε

)−1

(11)

Thus, each iteration of the proposed method reduces to
updating x with (8) and Γ with (11) sequentially, which
operates in the same way as the iteratively reweighted least
squares (IRLS) method [21], with Γ−1

ii seen as the “weight”
of xi. Note that in IRLS method each coefficient xi is
assumed independent from each other and the weight of xi
is determined by the previous estimation of xi individually.
However, as can be seen from (11), Γ−1

ii , the “weight” of
xi, not only involves the previous estimation of xi, but also
its immediate neighboring coefficients xi−1 and xi+1. Since
the amplitude of the weight reflects how much we want to
encourage a coefficient to become a zero component [20], it
means that the neighboring coefficients xi−1 and xi+1 also
have an impact on the sparsity pattern of xi.

In this way, a coupling mechanism among neighboring
coefficients is established, and the iterative reweighted algo-
rithm has the potential to encourage block-sparse solutions.
This coupling effect enables to recover block-sparse signals
in a more reliable way. Note that due to the pattern cou-
pling, sporadic recovery errors which misidentify a nonzero
coefficient xi (located in a nonzero block) as an isolated
zero component are almost impossible to happen. It can
be explained as follows, in the (t)th iteration, even if x̂(t)i

is small, its associated weight (Γ̂−1
ii )(t) will not become

arbitrarily large due to the neighboring nonzero coefficients
x̂
(t)
i−1 and x̂(t)i+1. Hence, in the (t+1)th iteration the coefficient
x̂
(t+1)
i will not be suppressed to be zero.
In the iterative procedure, undesirable local minima are

likely to be reached when ε → 0. To address this issue,
similarly to [21], we use a slowly decreasing sequence {ε}
in the minimizing procedure, instead of a constant ε. This
strategy provides a stable coefficient estimate at the very
beginning iterations, and does not deflect the local minimum
point at the last iterations when ε is so small that can be
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ignored. Our experimental evidence shows that this strategy
is far more effective in avoiding undesirable local minima
troubles.

For clarity, we summarize the proposed method in the
noiseless situation as follows.

1) Given an initialization of Γ(0).
2) At iteration t = 1, 2, ...: obtain x̂(t) by (8), obtain Γ̂

(t)

by (11), and decrease ε by some strategy, in turn.
3) Stop if

∥∥x̂(t) − x̂(t−1)
∥∥2
2
< ε, where ε is a constant

tolerance value; otherwise go to Step 2.

IV. EXTENSION TO THE NOISY CASE

In the preceding discussions, we covered the proposed
functional and corresponding algorithm in the noiseless sce-
nario. Next we propose an expanded version of our method
in the noisy scenario.

Similarly to (1), the basic model in the noisy scenario is
given by

y = Ax+ w (12)

where w ∈ RM×1 is an unknown multivariate Gaussian
noise vector. The corresponding element-overlapping log-
sum functional is proposed as

min
x

L(x) ,
N∑
i=0

log(x2i + x2i+1 + ε) + λ‖Ax− y‖22 (13)

where ‖Ax− y‖22 that represents the fitting error is added
to make the function more robust to noise [20], [22]. λ is a
regularization parameter that controls the tradeoff between
the sparsity of the solution and the quality of fit. From (4), (5)
in Section II, we can directly obtain the surrogate function
in the noisy scenario,

Q(x,γ) ,
N∑
i=0

(x2i + x2i+1 + ε

γi
+ logγi − 1

)
+ λ(Ax− y)T (Ax− y) (14)

For fixed γ,

Q(x;γ) = xTΓ−1x+λ(Ax−y)T (Ax−y) + const (15)

where Γ still satisfies the identities in (7). By taking the
derivative of (15) and setting it to zero, we obtain the optimal
solution of (15)

x̂ = λΣ̂ATy (16)

where Σ̂ = (Γ−1 + λATA)−1.
For fixed x, the optimal γ is obtained by (9) as well.
The parameter Γ is deduced as the same as in the

noiseless scenario. Consequently, for each iteration in the
noisy situation, we update x by (16), update Γ by (11), and
decrease ε by some strategy sequentially. Convergence to a
local minimum or a saddle point is also guaranteed similarly
to the noiseless scenario.

As Γ is updated in the same way as the noiseless scenario,
the minimizing procedure with noise relates the sparsity
patterns of neighboring coefficients to each other as well.

It can be concluded that neighboring elements are related
to each other in Γ-space, and this pattern-coupling effect
feedback to x-space by (16) in the noisy scenario. Therefore,
with noise the benefits brought by pattern-coupling effect
between adjacent coefficients still exist.

For each iteration, the optimal solution x̂ in the noisy
scenario, formulated in (16), can be re-expressed as

x̂ = ΓAT (λ−1IM +AΓAT )−1y (17)

which is identical to its noiseless counterpart (8) when λ
approaches infinity. An infinite λ represents that the quality
of fit domains the recovery procedure, which is the same as
in the noiseless scenario.

Furthermore, the choice of λ has great impact on the per-
formance [20]. Nevertheless, to our knowledge, determining
a proper value for λ still remains an implementation-level
problem. In addition, it appears to be more appropriate having
a value dependent on the iterations rather than limiting λ to
an arbitrarily fixed value. Several approaches, e.g. Modified
L-Curve Method, have been proposed in [22] to choose
a proper λ dynamically. However, we propose a different
empirical strategy here. As revealed in [16], a correspon-
dence relationship exists between iteratively reweighted class
methods and sparse Bayesian learning (SBL) methods [23].
Inspired by this insight, we use the inverse of the variance
estimation of the noise vector w in SBL methods as the
estimation of λ, in each iteration, shown as below.

λ̂(t) =
M∥∥∥Ax̂(t) − y

∥∥∥2
2

+ λ̂−1
(t−1)

∑N
i=1(1− Σ̂

(t)
ii /Γ̂

(t−1)
ii )

(18)
where λ̂(t) indicates the estimation of λ in the (t)th iteration.
Empirical results show the superiority of our λ-estimation
strategy over other methods.

V. SIMULATION RESULTS

In this section, we carry out experiments to illustrate
the performance of the proposed method , also referred to
as the pattern-coupled iteratively reweighted least squares
(PC-IRLS) method, and its comparisons with other existing
methods. In the following experiments, similarly to [21], we
empirically update the factor ε. At the beginning, ε is set to
a relatively large value of 1. ε is reduced by a factor of 10
when the change of the optimal solution (8) or (16) in relative
2-norm from the previous iteration is less than

√
ε/100. This

process is continued until ε attains a minimum of 10−8.
As intra-block correlation exists in many practical ap-

plications, experiments are carried out respectively when
the intra-block correlation equals 0 and equals 0.95. We
compare the proposed method with two recently developed
methods, termed EBSBL [14] and PCSBL [15], for the block-
sparse signal recovery. The methods SBL [23] and IRLS [21]
are also included for comparison. As performances of the
methods BM-MAP-OMP [12] and CluSS-MCMC [13], both
of which do not need the knowledge of block partitions as
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well, were found less well than EBSBL or PCSBL [14], [15],
neither of them is added to the comparisons in this paper.

A. noiseless scenario

We first consider the block-sparse signal recovery in the
noiseless scenario. Similarly to [14], [15], the K nonzero
coefficients in x are partitioned into L blocks with random
block sizes and random locations. For each trial, the block
number L is drawn from [2, 2Kh − 2] uniformly, where h
denotes the average size of nonzero blocks in x. h is also
used as a parameter for EBSBL.

In the noiseless situation, the recovery performance is
evaluated in term of the success rate, which is computed as
the percentage of successful trials in the total 400 indepen-
dent trials. A trial is considered successful if the normalized
squared error ‖x− x̂‖22 / ‖x‖

2
2 is no greater than 10−6.

For SBL-based methods, the estimation of noise variance is
fixed to a tiny value of 10−10 in order to yield satisfactory
performance in the noiseless scenario.
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Fig. 1. Success Rates of respective algorithms vs. the sparsity level K in the
noiseless scenario, where N = 100,M = 50 and h = 4. The intra-block
correlation is set to be (a) 0 and (b) 0.95.

From Fig.1(a), we can see that PCIRLS and PCSBL sig-
nificantly outperform the other three algorithms when intra-
block correlation does not exist. It proves that the coupling of
neighboring elements indeed brings benefit for block-sparse
signal recovery. EBSBL perform less well in Fig.1(a) for
the intra-block correlation it exploits does not exist. When
elements within each nonzero block are highly correlated,
as shown in Fig.1(b), PCIRLS and PCSBL exhibit similar
performances with EBSBL because PCIRLS and PCSBL
work by exploiting analogous neighboring relationship.

B. noisy scenario

In this subsection we consider the noisy scenario. x is
generated in the same way as the noiseless scenario, and
the white Gaussian noise vector w is added such that the
signal-to-noise ratio (SNR), which is defined as SNR(dB),
20log10(‖Ax‖2 / ‖w‖2), is constant for each trial. The nor-
malized mean squared error (NMSE), which is calculated
by averaging normalized squared errors of 400 runs, is used
to evaluate the recovery performance. For PCIRLS, the λ-
updating strategy in (18) is adopted instead of using a fixed
λ, which tends to produce a result heavily dependent on the
choice of λ.
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Fig. 2. NMSE of respective algorithms vs. M/N in the noisy scenario,
where N = 100,K = 20, h = 4 and SNR = 20 dB. The intra-block
correlation is set to be (a) 0 and (b) 0.95.

It can be observed from Fig.2 that among all the algorithms
PCIRLS exhibits one of the best performances when the ratio
M/N is high and good performance when M/N is low, both
with and without intra-block correlation.

C. audio data scenario
Experiments on real-world audio data are carried out in

this subsection. Audio signals have block-sparse structures
in certain basis, such as descrete cosine transform (DCT)
basis. Similarly to [15], we consider a clean piano signal1.
For each of the total 400 trials, we randomly select a short-
term segment that consists of N = 200 data samples from the
audio signal. A compressing matrix Q ∈ RM×N is generated
randomly for each trial as well. The measurement matrix A
can be expressed as A = QΨ, where Ψ ∈ RN×N represents
the DCT basis. The short-term segment is then reconstructed
by respective algorithms. It can be observed from Fig.3 that
PCIRLS provides one of the best performances for recovery
of audio signals.
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Fig. 3. NMSE of respective algorithms vs. M/N for audio signal recovery
where N = 200.

VI. CONCLUSION

We proposed a pattern-coupled iteratively reweighted least
squares method, originated from an element-overlapping log-
sum functional, to recover block-sparse signals with unknown
block partitions. This method exploits the relationship be-
tween adjacent elements to encourage structured sparsity,
ignoring details of cluster patterns. Convergency of the cor-
responding optimization procedure is guaranteed. Simulation
results demonstrate that the proposed method provides state-
of-the-art performance for block-sparse signal recovery with
unknown block partition.

1Available at http://homepage.univie.ac.at/monika.doerfler/StrucAudio.html
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