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ABSTRACT

When multiple light paths combine at a given location on an image sen-
sor, an image mixture is created. Demixing or recovering the original
constituent components in such cases is a highly ill–posed problem. A
number of elegant solutions have thus been developed in the literature,
relying on measurement diversity such as polarization, shift, motion, or
scene features. In this paper, we approach the image-mixing problem
as a time–resolved phenomenon—if every photon arriving at the sen-
sor could be time–stamped, the demixing problem would then amount
to separating transient events in time. Based on this idea, we first show
that, while acquiring measurements is prohibitive and challenging in the
time domain, this task is surprisingly straightforward in the frequency
domain. We then establish a link between frequency-domain measure-
ments and consumer time–of–flight (ToF) imaging. Finally, we pro-
pose a demixing algorithm, relying only on magnitude information of
the ToF sensor. We show that our problem is closely tied to the topic
of phase retrieval and that for K-image mixture, (K2 − K)/2 + 1
magnitude-only ToF measurements suffice to demix images exactly in
noiseless settings. Our developments are corroborated with experiments
on synthetic and ToF data acquired using the Microsoft Kinect sensor.

Index Terms— Image demixing, phase retrieval, spectral estima-
tion, time-of-flight cameras, time-resolved imaging.

1. INTRODUCTION

Imaging modalities work on the premise that there is one–to–one map-
ping between the scene and the pixels. If this were not the case, it would
be almost impossible to make sense of the photographs that we capture
on a daily basis. Meanwhile, the illustration in Fig. 1 is a characteristic
counter–example. This is the main theme of this work:

Can we recover images when multiple optical paths mix at
the sensor or when there exists a many–to–one mapping
between the scene and the pixel?

Such settings have been addressed in a number of papers during the
last decade [1–5]. Since multiple light paths superimpose at the sensor,
we are interested in demixing the constituent components so that the
image of interest can be recovered from the image mixture. Almost all
of the papers that deal with this issue of demixing sources study this
problem in context of Blind Source Separation (or BSS). The key idea
is to exploit image priors to regularize the inverse problem at hand.

In this paper, we take a first approach to repurpose Time–of–Flight
(ToF) cameras to demix light paths in everyday scenes. Unlike BSS
methods that assume image priors, our work explores the idea of ex-
ploiting depth diversity in the scene.

Let us assume for a moment that we can label each photon with a
time stamp indicating the time at which it reached the sensor. In such
a setting, it would not be too outrageous to conclude that the prob-
lem of “demixing” the image boils down to the problem of demixing

Fig. 1: Photograph taken at a train station in Bern, Switzerland that illustrates
the mixing of light paths and hence image superposition.

events in time. We explain this with the help of a schematic in Fig. 2.
In Fig. 2 (a), we mimic the image-formation process of a conventional
camera where two optical paths combine at the sensor. In Fig. 2 (b),
we discuss the same setting assuming that we have time–resolved mea-
surements. With reference to Fig. 2, we note that, in theory, the two
images—Γ1 (x, y) and Γ2 (x, y)—mix at distinct time instants t = t1
and t = t2 together with mixing coefficients α1 (x, y) and α2 (x, y),
respectively, thus producing the time–resolved or transient image

m (x, y, t) = (α1Γ1) (x, y) δ (t− t1) + (α2Γ2) (x, y) δ (t− t2) .
(1)

In (1), the symbol δ denotes the Dirac impulse. For the sake of sim-
plicity, we define (αΓ) (x, y) def

= α (x, y) Γ (x, y) . The time–resolved
image (TRI) m (x0, y0, t) is shown in Fig. 2 (b). Given the exposure
time τ ≫ t2, a conventional camera acquires the image

∫ τ

0

m (x, y, t) dt = (α1Γ1) (x, y) + (α2Γ2) (x, y)︸ ︷︷ ︸
m(x,y)

,

Conventional Camera

(2)

where the dependency on t in m (x, y) is dropped for the rest of this
paper. This should be understood as m (x, y) =

∫ τ

0
m (x, y, t) dt.

When extended to the case of K semi–reflective surfaces,

m (x, y, t) =
∑K−1

k=0
(αkΓk) (x, y) δ (t− tk), (3)

and, consequently, by marginalizing time variable, a camera records

m (x, y)
(2)
=
∑

k∈{k|τ⩾tk}
(αkΓk) (x, y). (4)

Now, even in the most elementary case K = 2, the problem of recov-
ering Γ1,2 is severely ill-posed.
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2. TOF IMAGE FORMATIONMODEL

ToF sensors are active homodyne devices equipped with lock–in de-
tection functionality [6]. A ToF camera probes the scene with a si-
nusoidal function of the form p (t) = 1 + p0 cos (ω0t). At a given
pixel (x0, y0) and at a distance z0 from the sensor, the probing func-
tion interacts with the scene and results in the reflected signal r (t) =
Γ0p (t− t0) , t0 = 2z0/c, where c denotes the speed of light. The
sensor then cross-correlates r (t) and p (t) to obtain [7, 8]

Cω0 (t) = Γ0

(
1 +

p20
2

cos (ω0 (t+ t0))

)
. (5)

Knowing {Γ0, t0} amounts to knowing the whole 3D scene. This is
accomplished via the “four–bucket principle” [6–8]. More precisely,
given ck = Cω0 (πk/2ω0) , k ∈ Z, we define a complex number,
Zω0 = (c0 − c2) + ȷ (c3 − c1). One can then define the estimates

Γ̃0 = |Zω0 | /p
2
0 , t̃0 = ∠Z0/ω0 m̂ (ω0) = Γ̃0e

−ȷω0 t̃0

ToF Four Bucket Principle

(6)

where, having estimated {Γ̃0, t̃0}, we constitute the complex number
m̂ (ω) = Γ̃0e

−ȷω0 t̃0 [7, 8]. With t0 = 2z0/c, it follows from the
above that, for each pixel, the information corresponds to [8, 9]:

m̂ (ω) =
∑K−1

k=0
Γke

−ȷωtk︸ ︷︷ ︸
Fourier Time–Resolved Image (FTRI)

Fourier←→ m (t) =
∑K−1

k=0
Γkδ (t− tk)︸ ︷︷ ︸

Time–Resolved Image

.

(7)
Now, in contrast to prior work linked with AMCW–ToF [7,9–11] and
references therein, our assumption in this paper is that only the ampli-
tude information of the measurements can be accessed.

2.1. Phase Retrieval for ToF Imaging

The above definitions imply that phase information encodes the pa-
rameters tk. Now, the quantities that are of interest to us consist in the
time-resolved-image intensities. In the case K = 1, we have

|m̂(ω0)|2 = |Γ0|2, (measurement) (8)

which is the intensity corresponding to the time–resolved image
m (t) = Γ0δ (t− t0). Such measurements are computed using
the auto–correlation function,

Aω0 (t) =
(
Cω0 ∗ Cω0

)
(t) =

Γ2
0

8

(
8 + p40 cos (ω0t)

)
. (9)

Letting ak = Aω0 (πk/2ω0), one can now estimate |Γ̃0|2 using two
measurements |m̂(ω0)|2 = |Γ̃0|2 = 4 (a0 − a2) /p

4
0. This procedure

bypasses phase computations producing a single real-valued measure-
ment per ToF exposure unlike the usual two-value case (6).

When K light paths meet at the sensor (cf. Fig. 2), following (9),
for a given modulation frequency ω, the ToF lock–in sensor records,

|m̂ (ω) |2 =
∣∣∣∑K−1

k=0
Γke

−ȷωtk
∣∣∣2 (from (6) and (7)) (10)

=

K−1∑
k=0

|Γk|2 + 2

K−1∑
k=0

K−1∑
l=k+1

|Γk| |Γl| cos (ωtkl + ∠Γkl),

where tkl = tk − tl and ∠Γkl = ∠Γk − ∠Γl. Knowing m̂ (ω)
is fundamentally different from knowing |m̂ (ω) |2 because the former
encodes both phase and amplitude. As shown in [7, 8], given m̂ (ω),

Exposure Time

t
t1 = z1/c t2 = z2/c
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Fig. 2: Conventional and time–resolved imaging. (a) Image-mixing process: The
scene comprises of a semi–reflecting mirror at z = z1 followed by the profile to
be photographed at z = z2. At given pixel (x0, y0) inside the camera—itself lo-
cated at (x0, y0, 0)—two additive light paths with intensities (α1Γ1) (x0, y0)
and (α2Γ3) (x0, y0) are observed, α1, α2 being mixing coefficients associated
with the reflecting surface. (b) Time–resolved/transient image m (x0, y0, t): If
we could determine the time at which photons impact the camera/sensor, the in-
tensity (α1Γ1) (x0, y0) would correspond to photons that take time t = z1/c
where c is the speed of light. Similarly, (α2Γ2) (x0, y0) would be attributed to
the time instant t = z2/c. Hence, demixing involves identification of photons
linked with instants z1/c and z2/c. Such transient information is not available
with conventional cameras because of the too long exposure time τ ≫ t2.

one can discern {Γk, tk}K−1
k=0 unlike in the phase-less case. Our goal is

to demix images for which we only require to estimate {Γk}K−1
k=0 . We

will show that one can indeed recover constituent images {Γk}K−1
k=0

with phase–less |m̂ (nω0) |2.

3. RECONSTRUCTION VIA PHASE RETRIEVAL

Let us re-arrange (10) based on Euler’s identity to obtain a variant of
the Line Spectrum Estimation or the LSE problem [12]:

yn = |m̂ (nω0) |2
(10)
=
∑k=+K0

k=−K0

γke
ȷnω0νk , K0 =

(
K2 −K

)
/2

(11)
where γk ∝ Γkl and νk ∝ tkl. When K = 2, γ1 = γ∗

−1 = Γ0Γ1

and ν1 = −ν−1 = t01. In practice, {Γk}K−1
k=0 are real-valued, but,

even if this is not the case, we always have conjugate symmetry, i.e.,
γk = γ∗

−k and νk = −ν−k. We recover {γk}K−1
k=0 in two steps:

y1 We first estimate νk given yn = |m̂ (nω0) |2, n = 0, . . . , N − 1.

Using the idea of Prony [12], we define the polynomial,

H (z) =
∏

|m|⩽K0

(
1− e−ȷω0vkz−1) =∑2K0+1

m=0
hmz−m

(12)

4484



which is yet to be computed. However, note that, (h ∗ y)n = 0,

(h ∗ y)n =

2K0+1∑
m=0

hmyn−m
(11)
=

2K0+1∑
m=0

hm

k=+K0∑
k=−K0

γke
ȷ(n−m)ω0νk

=

k=+K0∑
k=−K0

γk

(
2K0+1∑
m=0

hme−ȷmω0νk

)
︸ ︷︷ ︸

⇔H(e−ȷω0νk)=0

eȷnω0νk = 0. (13)

Hence, the key idea is to find a filter sequence h which, when filtered
with yn, produces zeros. This problem is at the heart of spectrum es-
timation [12]. In this work, we use the composite mapping property
algorithm (CMPA) devised by Cadzow [13].y2 With νk known, estimating γk in (11) is a linear problem.

We solve the linear least–squares problem to estimate γ̃k,

γ̃k = minγk

∑N−1

n=0

∣∣∣yn −∑k=+K0

k=−K0

γke
ȷnω0ν̃k

∣∣∣2. (14)

Now, since yn = y−n, we need N ≥ K0 + 1 measurements to solve
for h (cf. (13)) [14]. We show a step–by–step decomposition of yn
in terms of {γk, νk}|k|⩽K0

(11) in Fig. 3. Next, we discuss how to
estimate {Γk} from {γk} in (14).

3.1. Estimating {Γk}{Γk}{Γk} from {γk}{γk}{γk} whenK = 2K = 2K = 2

The case has two interesting interpretations. The first one is simply the
setting being described in Fig. 2. An alternate interpretation arises from
approximation of scattering where one setsK = 2, assuming negligible
contribution of higher-order terms K ≥ 3, i.e.,

|m̂ (ω)|2 (10)
=
∣∣Γ0e

−ȷωt0 + Γ1e
−ȷωt1

∣∣2 + εω(Γk, tk)k⩾3,

where εω(Γk, tk)k⩾3 =
∣∣∣∑K−1

k=0 Γke
−ȷωtk

∣∣∣2 ≈ 0. In either case,

|m̂(ω)|2 = |Γ0|2 + |Γ1|2︸ ︷︷ ︸
a0

+2|Γ0||Γ1|︸ ︷︷ ︸
a12

cos(ωt01 + ∠Γ01). (15)

The first step towards retrieving |Γ0,1| involves the estimation of a0, a12

based on the available samples yn (11). Given the equivalence between
(15) and (11), the set of parameters a0, a12, t01, and∠Γ01 are retrieved
using K0 = 1.

The parameters a0 and a12 allow to estimate the values of the trans-
mitted and reflected magnitudes |Γ0|, |Γ1| based on algebraic relations.
Specifically, the non-negativity of a0, a12 implies that ||Γ0| ± |Γ1|| =√
a0 ± a12. Thus, based on ã0, ã12,{

|Γ̃0|, |Γ̃1|
}
=

1

2

(√
ã0 + ã12 ±

√
ã0 − ã12

)
. (16)

The definition of a0 and a12 implies the non-negativity of the above
square-root argument, except if estimation errors occur. In such cases,
our algorithm replaces ã12 by ã0, thus yielding the double solution√

ã0/2 for both magnitude values.
Following the above estimation operations, the retrieved values

must be correctly assigned to the corresponding magnitudes. The
phase-less setting precludes direct identification because the absolute
distance parameters cannot be retrieved as such. Now, according to the
inverse-square law, one can still assume that the magnitudes of |Γ1|—
given the relative proximity of this map—are in average larger than
those of |Γ0|. However, this assumption does not hold for every pixel

(a)

(b)

(c)

Real Part
Imaginary Part

Phase-free/Squared 
Measurements Samples

|k| = 1 |k| = 2

|k| = 3

|k| = 0 (DC)

± |m (�)|

|m (�)|2 |m (n�0)|2

Fig. 3: Phase Retrieval in Setting K = 3. This measurement corresponds to
pixel (20, 20) of the synthetic experiment in Section 4. (a) Complex–valued
m̂ (ω) with the real and imaginary parts together with the envelope ± |m̂ (ω)|.
(b) Phase–less |m̂ (ω)|2 with yn = |m̂ (nω0)|2, ω0 = 5. (c) Decomposition
of yn into terms of {γk, νk}|k|⩽K0

as in (11).

in general. This implies that the assignments may suffer from some am-
biguities that cannot be solved pointwise. We thus propose to address
this issue by leveraging inter-pixel scene dependencies. In particular,
we exploit the fact that maps stemming from real-world scenes display
a certain degree of spatial regularity. Qualitatively, the disambiguation
approach that we follow consists in (a) first detecting value-crossing
locations ki where both map magnitudes are (nearly) equal, and (b)
then determining suitable assignments by decomposing the field of
view into associated adjacent areas satisfying either |Γ1[k]| ≥ |Γ0[k]|
or |Γ1[k]| < |Γ0[k]|.

3.2. Higher-Order Settings

The magnitudes |Γi| can also be retrieved when K ≥ 3. As in (16), a
set of real numbers a0 and aij can be identified in association with the
constant and oscillatory terms. Disambiguation even becomes more
straightforward in such settings because the presence of intermediate
sheets allows to assign all magnitude values of interest pointwise based
on the relative-distance tkl. The latter quantities are also obtained (as
byproducts) from the LSE method.

Let us consider the 3-bounce setting where the constant term is
a0 = |Γ0|2 + |Γ1|2 + |Γ2|2, the oscillatory terms being a12 =
2|Γ0||Γ1|, a23 = 2|Γ1||Γ2|, and a13 = 2|Γ0||Γ2|. Based on the
estimates of the a0 and aij provided by the LSE method, the set of val-
ues vi corresponding to the unknown magnitudes |Γ0,1,2| is retrieved
as {ã12ã13µ, ã12ã23µ, ã13ã23µ}, where

µ = ã
1/2
0 [(ã12ã13)

2 + (ã23ã13)
2 + (ã23ã12)

2]−1/2.

In this setting, 7th–order estimation is performed with the LSE method,
the order number (2K0 + 1) being here related to the constant and to
the 6 complex exponentials associated with the K = 3 cosine terms
(11). An estimation example is illustrated in Figure 3.

4. EXPERIMENTAL RESULTS

Synthetic Data: In this first experiment, we consider scene with
K = 3 with constituent images shown in Fig. 4(a). Each of the images
{Γk}K−1

k=0 are of size 160× 160 and {tk}K−1
k=0 = [0.31 0.55 0.93]π.

We use N = 4 = (K2 − K)/2 + 1, multi-frequency, magnitude
measurements |m̂(nf0)|, n = 0, . . . , 3, f0 = 1 MHz. The corre-
sponding results are shown in Fig. 4 (a). In this synthetic scenario, the
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Fig. 4: (a) Experimental results for simulated data with K = 3. The images on the top are spatial maps of the available magnitude multi-frequency measurements
|m̂(2nω0 + 1)|2, n = 1, . . . , 8. For K = 3 we show the ground truth which consists of distinct layers constituting the scene as well as the reconstruction from
the phase-less data with N = 1 + (K2 − K)/2 = 4 measurements. We list the PNSR value indicating reconstruction upto machine precision. (b) Performance
analysis of the Cadzow’s CMPA algorithm [13] for K = 2 for the noisy case. We show the effect of over–sampling, that is N = κ(K + 1) samples, on mean
squared error (MSE) as a function of signal–to–noise ratio (SNR). As can be seen, when κ = 2 or we have 2N samples of yn, the CMPA algorithm has a stabilizing
effect on MSE. For the case of 16x oversampling, the MSE decreases linearly with increase in SNR. This effect happens as early as SNR = 3 (dB) for the CMPA
algorithm. We also compare the LSE method with the CMPA method for different over–sampling factors. (c) Scene setup for experiment for K = 2 with Microsoft
Kinect. (d) Schematic representation of the constituent images. (e) We reconstruct the assuming that we measure m̂(nf0), n = 50, . . . , 100 with f0 = 1 MHz.
(f ) Reconstruction via phase retrieval using |m̂(nf0)|2, n = 50, . . . , 100 with f0 = 1 MHz.

reconstructions that are obtained are virtually identical to the oracle,
i.e., the SNR reaches machine precision. This first set of results thus
already validates our approach in the synthetic, noiseless case.

The effect of noise is studied in Fig. 4(b) where we plot the observed
mean squared error as a function of signal-to-noise-ratio (SNR) with
consideration to the over-sampling factor using Cadzow’s method [13].
With SNR =20 and K = 2, 4 times over-sampling achieves reasonable
bound on the MSE.

ToF Sensor Based Data: We use the Microsoft Kinect One ToF cam-
era. This camera is equipped with a modified firmware facilitating cus-
tomized frequencies at f0 = 1 MHz steps in range 50 to 100 MHz.
The setup is described in 4 (c) and a schematic of the ground truth is
shown in 4 (d). The back scene consists of a mannequin head at approx-
imately 1.5m from the sensor. In addition, a semi-transparent sheet at
a distance of 15 cm covers the sensor’s field-of-view. This transparency
sheet reflects a fraction of the emitted infrared light directly back to the
sensor, thus K = 2. The available measurements consist of 145× 119
multi-frequency profiles captured at N = 51 distinct frequencies.

Our algorithm is used for the phase-less setting where we measure
yn = |m̂(nω0)|2 (11). We also retain complex-valued measurements
m̂(nω0) computed in (6). The ground truth is hard to obtain for our
experiment. Consequently, we use the method described in [7, 8] to
estimate {Γ̃GT

0 , Γ̃GT
1 } using (6) and (7) which serves as a proxy of our

oracle estimate (cf. Fig. 4 (e)). Cadzow’s method is employed as a stan-
dalone tool for this purpose. We then estimate {|Γ̃0|, |Γ̃1|} from the

knowledge of yn = |m̂(nω0)|2 (11), using our proposed approach,
for example, (16). As in the first experiment, the goal of these experi-
ments is to reconstruct and identify the distinct magnitude maps |Γk|
associated with k = 0 and k = 1. We show the estimates obtained
by our approach in Fig. 4 (f ). Our results show the effectivity of our
model as well as the applicability of our algorithm. We use the SSIM
index [15] as our performance metric to compare image reconstruction
with and without phase measurements in Fig. 4 (e) and Fig. 4 (f ),
respectively. The SSIM measures for the first and the second sheets cor-
respond to 0.750 and 0.408. Even though there is model mismatch in
the data due to non-idealities of the system as well as noise, Cadzow’s
method [13] works reasonably well and warrants future work.

5. CONCLUSIONS

We have demonstrated the feasibility of image demixing from time-
resolved intensity measurements. Our algorithm involved line-spectrum
estimation combined with a disambiguation approach. In further work,
the design of reconstruction approaches where spatial and temporal re-
dundancy are jointly exploited could be beneficial. Since our estimates
of Γk depend on the estimation of γk, which in turn depends on νk
(11), a rigorous analysis of the estimation method could provide new
insights into studying the scattering phenomenon. Finally, we close
this work by noting that, while phase–retrieval problems have been
extensively studied in the literature, intensity retrieval seems to be a
relatively unexplored.
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