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ABSTRACT

Increasing the sampling rate of Analog-to-Digital Convert-
ers (ADC) is a main challenge in many fields and especially
in telecommunications. Time-Interleaved ADCs (TI-ADC)
were introduced as a technical solution to reach high sam-
pling rates by time interleaving and multiplexing several low-
rate ADCs at the price of a perfect synchronization between
them. Indeed, as the signal reconstruction formulas are de-
rived under the assumption of uniform sampling, a desynchro-
nization between the elementary ADCs must be compensated
upstream with an online calibration and expensive hardware
corrections of the sampling device. Based on the observation
that desynchronized TI-ADCs can be effectively modeled us-
ing a Periodic Non-uniform Sampling (PNS) scheme, we de-
velop a general method to blindly estimate the time delays
involved in PNS. The proposed strategy exploits the signal
stationarity properties and thus is simple and quite general-
izable to other applications. Moreover, contrarily to state-of-
the-art methods, it applies to bandpass signals which is the
more judicious application framework of the PNS scheme.

Index Terms— Nonuniform sampling, Estimation, Sta-
tionary random process, Analog-to-Digital Converters

1. INTRODUCTION

The evolution of communication systems implies the trans-
mission of signals with increasing frequencies, requiring sub-
sequent adaptations of the sampling devices. In this context,
the design of ADCs performing at very high frequency is a
huge economical and technological challenge. Thus, an alter-
native solution has been developed by time-interleaving and
multiplexing several low-frequency and thus low-cost ADCs
to form a TI-ADC [1, 2]. The sampling operation is shared
between elementary ADCs to reach a high global sampling
frequency. However, since a TI-ADC is expected to perform
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a global uniform sampling operation, the elementary ADCs
must have similar intrinsic properties and, especially, they
must be perfectly synchronized [3,4]. Online solutions have
been previously considered [5-7] for the estimation and cor-
rection since the desynchronization can appear and vary dur-
ing functioning. Nevertheless, these methods consider base-
band signals in their theoretical developments which is not
realistic for telecommunications. They require hardware cal-
ibrations and corrections to impose uniform sampling, un-
fortunately requiring a system disconnection and increasing
complexity and power consumption. An alternative and more
flexible sampling model can be considered for TI-ADCs in
order to avoid hardware operations: the PNS scheme [8-12].
This model allows to take into account the desynchronization,
once estimated, through generalized reconstruction formulas.
Based on this observation, this paper develops a blind strat-
egy for the desynchronization estimation and more generally
for the blind estimation of time delays in a PNS scheme. This
strategy operates directly on the transmitted bandpass signal,
with no need for a training sequence. For telecommunica-
tion purpose and for more generality, we consider a bandpass
random stationary signal model and we exploit this station-
arity property. The estimation is performed from the recon-
structed bandpass signal. Afterwards, the estimated delay is
used to adapt the PNS reconstruction formulas. The paper is
organized as follows. Section 2 formulates the problem and
presents the signal and sampling models. Section 3 details the
proposed method. The performance analysis is conducted in
section 4. Section 5 contains concluding remarks and future
work discussion.

2. PROBLEM FORMULATION

The method proposed in this paper is very general and could
be envisioned in a theoretical way only, in relation with non
uniform sampling. However, TI-ADCs provide a natural and
illustrative application framework for this method because it
is nontrivial and requires general methods applicable to ran-
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dom bandpass signals.

2.1. Application: Desynchronization in TI-ADCs

TI-ADCs are composed of L elementary time-interleaved and
multiplexed ADCs, each operating at a frequency f,. If the
delay between two consecutive ADCs is constant and equal
to ﬁ the TI-ADC performs a global uniform sampling op-
eration at frequency Lf;. However, in practice, disparities
and design imperfections lead to the so-called mismatch er-
rors: gain, offset and time-skew errors. These errors lead
to non-linear distortions upon the reconstructed signal and
many studies are devoted to their characterization and correc-
tion [4-6]. Moreover, under adverse (mainly thermic) oper-
ating conditions, this delay may vary during system function-
ing and perfect synchronization can be hardly guaranteed and
maintained. Fig. 1 shows the modified architecture that we
will consider in the following, taking into account the desyn-
chronization (or time-skew error) which is considered as the
most damaging error [3]. The classical multiplexing stage
after the ADCs must be replaced by a reconstruction stage
(REC) that uses the desynchronization between elementary
ADCs denoted as §;,7 = 0, ..., L. — 1 as an input. This paper
proposes a method for the blind estimation of the desynchro-
nization during system functioning. This estimation is then
put back into the sampling model for an accurate reconstruc-
tion without hardware delay correction.
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Fig. 1: General architecture of a TI-ADC

2.2. Signal model

We model the analog signal as a real wide-sense stationary
random process X = {X(¢), t € R} with zero mean, finite
variance and power spectral density sx (f) defined by:

sx(f) = / h e 2T Ry (1) dr (1

— 00

where Rx(7) = E[X(¢)X*(t — 7)] is the auto-correlation
function of X (E[-] stands for the mathematical expectation
and the superscript * for the complex conjugate). This model
fits the targeted applications in the field of telecommunica-
tions where the multiple carriers can be approximated by a
random process model. Moreover, this telecommunications-
modeling signal is assumed to be bandpass: its power spec-

trum sy (f) is included in the so-called £*® Nyquist band de-
fined in normalized frequency by:

By (k) = <—(k + %), (k- ;)) u(k - %k + ;) )

In [13], the authors emphasized the challenge of using high
frequencies (high k values) in the transmission because of the
resulting sensitivity towards synchronization.

2.3. PNS2 sampling scheme

The PNSL (Periodic Non-uniform Sampling (PNS) of order
L) is a sampling scheme composed of L uniform sampling
sequences X5, = {X(nTs + 0;),n € Z}, i = 0,...,L — 1
that are non-uniformly time-interleaved. T = L denotes the
common sampling period and §; denotes the delzfy of each se-
quence. We set that §; # % (except 6o = 0 by convention)
and 0; — §;_1 # %, modeling the desynchronization. The
sampling times are thus non uniformly distributed in a given
sampling period. In the following we will consider a normal-
ized sampling frequency for simplification, giving 75 = 1.
PNSL has been investigated for its anti-aliasing properties
[8,10, 11] and its lower sampling frequency requirement in
the case of bandpass signals [9, 12].

For simplicity and without loss of generality, this paper
focuses on the PNS2 scheme [8]. Results can be extended to
the case of L ADCs leading to more complex expressions for
the reconstruction formulas [14]. Concerning the delay esti-
mation step, a TI-ADC with L ADCs denoted ADCq_... 11
can be calibrated by choosing ADCj as a reference and by
estimating successively the delay between each ADCy . 11
and ADCj according to a simple PNS2 scheme.

In the case of PNS2, the samples are distributed according
to two uniform sequences defined as Xy = {X(n),n € Z}
and X5 = {X(n+6),n € Z} with § € |0, 1[. The resulting
mean sampling rate equals 2 and thus fits the signal effective
bandwidth, for a real bandpass signal whose band is com-
posed of two symmetric intervals of unit length (2). Under
the condition that 2kd ¢ Z, the exact reconstruction from an
infinite number of samples is derived using the formula [15]:

X(t) = Ap(t) sin 27k (0 — t)] + A;() sin [27rk;t]’

sin [27kd]
Ax(t) = X

5 3)
sin[n(t—n— /\)]X(n ).
nez ’7T(t -n- >‘)
with A € {0,0}. Note that, in previous works, the authors
have proposed errorless reconstruction formulas (in term of
mean-squared error) [16, 17], whose convergence rate can be
increased by introducing appropriate filters [15] and which
can perform joint reconstruction and interference cancelation
or direct analytic signal construction [18]. These additional
functionalities are of great interest in telecommunications.
The reconstruction formulas associated to PNS2 assume
that the time delay ¢ is a priori known. For TI-ADC modeling
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purpose, the time delay must be considered as unknown and
possibly time-varying. However, the variations of §, mainly
resulting from thermal constraint evolution, can be assumed
very slow with respect to its estimation computational time.
Consequently, the proposed method considers a fixed value of
¢ during the observation time. Next section presents a strategy
for the estimation of § from the observation of the sequences
X and X5 using stationarity properties.

3. PROPOSED METHOD

Now, we consider that the true delay § is unknown. In this
case, the reconstruction is performed using a wrong value of
the delay denoted as 4, whereas the sampling times are actu-
ally {n + 6,n € Z}. Let X©®) = {X©)(¢), t € R} denote
the reconstructed signal using 4 instead of ¢ in (3):

 Ao(t)sin[2mk(8 — t)] + As(t + & — ) sin [27kt]
B sin[27 ko]

x () (t)
4

The strategy we propose for the estimation of § is based on
the observation that the reconstructed signal X (%) is not sta-
tionary in the general case of desynchronization (i.e. ) £ 9).
This property is demonstrated in the Appendix.

Our method exploits this non stationarity property to es-
timate 6. The reconstructed signal mean power is estimated
at different times. Comparison of the estimates allows to de-
tect whether the reconstructed signal is wide-sense stationary
(time-independent mean power) or not.

First, the formula (4) is used to reconstruct the signal at
uniform discrete times expressed as t,, = n + 37 , M =

1,...,M andn € Z. Let Pﬁf ) denote the expected power of
the reconstructed signal at times ¢,,, as:

P =E UX@ (tm)ﬂ )

Let Pt denote the reference power defined from the two
available sampling sequences X or X :

P =E {|X(n)|2} —E [|X(n+5)|2} ©)
If § = 6, the stationarity property implies that:
Pv(ri) = P@ (= Prer) V(my,m2) € [1, M] (7)

On the contrary, if & # 4, the equality (7) does not hold
anymore. The principle of our method is to identify the value
5 of & that respect (7). Next section studies the performance
analysis of this estimation method.

4. PERFORMANCE ANALYSIS

Simulations are performed for a random stationary bandpass
process in Nyquist band B (7) (k = 7 in (2)). In the con-
text of PNS2 sampling, a classical scheme has been identified

in telecommunications as quadrature sampling. This special
sampling scheme has the property to give direct access to the
in-phase and quadrature components by sampling using PNS2
with the use of § = 4%% where f. denotes the signal central
frequency [13]. Here, f. = k = 7 according to (2).

The desynchronization is modeled as an additive uniform
random variable A and we have § = ﬁ +A, A~U(-¢,¢)
where ¢ is chosen according to the signal band properties. In-
deed, following PNS2 definition, § must respect the condition
2kd ¢ Z in order to perform the reconstruction. Applying

that condition here, we have : § €]0, 5[ resulting in e = -

ik

Assuming a delay J, the signal is reconstructed at times
t,, using a window of N samples for each sampling sequence
and a truncated version of (4):

N
2

Aot) =Ly X (n)

w(t—mn)

==F : ®)
As(t+6—8) =y 2 sulrlondly(p, 4 g)

7 (t—n—20)

Mean powers are estimated for N reconstruction times using
classical expectation estimators:

3 2

~ 5 1
pfyf)zﬁ m=1 M
n

5 PEEY)

X <n+

m
M+1

w2

We consider M = 14 and N = 500 in the following. Fig. 2
displays the estimated power curves, for a randomly chosen
4 =0.011 and 6 € [0.001, 0.05].
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Fig. 2: Estimated power curves for M = 14.

According to Fig. 2, the curves all cross around the same
point with coordinate §. It validates the stationarity behavior:
when the curves cross, all the estimated powers are equal and
then the signal power is time-independent. The problem is
that the equality in (7) does not strictly hold. Then, to find the
point where the curves are the closer from each other, we es-
timate the variance of IA’T(,? ) for each value of 4. This variance
is displayed on Fig. 3 as a function of 4. The minimum gives
the best estimation & of § defined as:

6= ~ min . [Var (ﬁrf,)mzl..M)} ©)]

1 1
56[@76,@
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We performed the estimation with an increasing number
N of samples and we tested the results by computing the
Signal-to-Error Ratio (SER) of the reconstructed signal us-
ing the estimation 5. Initially, without estimation, we have a
SER of 2.4dB as the reconstruction is seriously damaged by
the desynchronization. Fig. 4 plots the mean SER in dB as a
function of N for Nj,. = 1000 iterations and it shows that the
estimation step helps compensating desynchronization, con-
sidering that, above 40dB, the reconstruction is satisfactory.
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Fig. 3: Variance of the estimated power curves for M = 14.
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Fig. 4: Mean reconstruction SER in dB as a function of the
number of samples, estimated for Ny, = 1000.

5. CONCLUSION AND FUTURE WORKS

This paper proposes a blind method to estimate and compen-
sate desynchronization in a PNS2 sampling scheme. Exploit-
ing stationarity properties of the reconstructed signal, it helps
to build a flexible model for TI-ADCs in the case of bandpass
signals. This method requires few a priori information. It
performs on the signal samples and does not require learning
sequences for system calibration. Moreover, for application
to telecommunication purpose, the method applies on a re-
alistic random wide-sense stationary bandpass signal model
contrarily to the state-of-the-art methods that often deal with
simple baseband signals such as sine waves. The simulations
show that the estimation/compensation helps to retrieve sat-
isfying reconstruction performance. Note that the desynchro-
nization is assumed constant during the estimation. Conse-
quently, the method must be performed periodically when the
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desynchronization varies. The next step should be to develop
an adaptive algorithm for online estimation of desynchroniza-
tion variations. This will be part of a future work.

Appendix: Proof of the stationarity property

As the signal of interest is real and with spectrum relying
into two separate bands (2), it can be decomposed as X =
X4 +X_, where X (respectively X _) stands for the signal
component whose spectrum relies in the positive frequencies
(respectively negative frequencies). Following the develop-
ments of [19], the principle of our derivations is to consider
the isometry involving X, and X_ as:

X, (t) &5 e2inft |f>0 and X_(¢) &X, e2imft | <0

From the equation above applied to X and X_, the follow-
ing system can be obtained then leading to (3).

Ao(t)

As(t)
Considering (5) and 31m11ar derlvatlons as those leading to
(10), the isometry relates x© ( ) (respectively X @ )( t)) to:

— X+ (t)e—%ﬂkt + X_ (t)eQirrkt

= X, (H)e~2mh(t=0) 1 X _ (t)e2imk(t=0) (10)

(&)

2imt(f—k) S[2TR@E—0] | oir p(446-5) —2imk(t—5) sin[2mki]

sm[27rk6] e € sm[27rk6]
for f < O (respectively f > 0). Then, we obtain that the
isometry relates X (t) — X(¥)(¢) to

; in[27mkt
(2im st ST

1— e2i7rf(675)} 2imk(3—t)sign(f) (11)
sin[27kd)]

where sign(f) = 1if f > 0 and sign(f) = —1if f <O0.

Now, let us consider the mean square reconstruction error
defined by sg(t) = E[|X(t) — X©(¢)|?]. From (11), sg(t)
can be expressed as a function of §—0:

oo | sin[2wkt i F(5—3 2
B0 = J S [ e ax(nar

= 8(%) Jy~ sin? {Wf(é—g)} sx(f)df

The reconstruction is not errorless except when 6 =04. Simi-
larly we can develop the expression of the power of X (%) (¢):

2
E UX(‘S)(t)‘ } = mfo sin?[1kd) cos?[wk(2t — 6)]

+sin[2rkt] sin[27k(t — 0)] sin?[x f (6 — &) + wkd))sx (f)df
12
showing that the power of X (SN) (t) depends on ¢ so the re(suli
is not stationary, except when § = 4. In this case, the expres-
sion in (12) simplifies using trigonometry formulas, to give
E [\Xw) (t)ﬂ —E [\X(t)ﬂ = [*°_sx(f)df (which does
not depend on t) as expected by definition of (1).
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