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ABSTRACT

We propose a new method for low-complexity compression of mul-
tispectral images. We develop on a novel approach to coding sig-
nals with side information based on recent advances in compressed
sensing and universal scalar quantization. Our approach can be in-
terpreted as a variation of quantized compressed sensing, where the
most significant bits are discarded at the encoder and recovered at the
decoder from the side information. The image is reconstructed using
weighted total variation minimization, incorporating side informa-
tion in the weights while enforcing consistency with the recovered
quantized coefficient values. Our experiments validate our approach
and confirm the improvements in rate-distortion performance.

Index Terms— Compressed sensing, multispectral image com-
pression, universal quantization, distributed coding

1. INTRODUCTION

The ever increasing demand for imaging data transmission and stor-
age has renewed interest in efficient compression methods. However,
in several modern applications, such as satellite image transmission
and lightweight mobile computing, technological limitations impose
complexity constraints that cannot be satisfied by conventional com-
pression approaches. Thus, new approaches are necessary to handle
the low-complexity and high efficiency required.

In this paper we propose a low-complexity multispectral im-
age compression method based on the recently developed theory of
universal quantization. Multispectral images comprise of a small
number of spectral bands—typically 4 to 6—with significant corre-
lation between them. Modern compression techniques are able to ex-
ploit these correlations and improve the rate-distortion performance.
However, this often comes at the expense of encoder complexity.

Our approach is able to exploit correlations between spectral
bands and reduce the bitrate, while maintaining extremely low com-
plexity at the encoder. Instead, the complexity is shifted to the de-
coder, which in many applications is a big data center with signif-
icant processing power. We design the decoder to use information
from previously decoded spectral bands as side information to de-
code the bitstream. Decoding and recovering the image requires
solving a sparse optimization problem very similar to a conventional
quantized compressed sensing (CS) problem.

Our contribution relies on several realizations. Specifically,
while CS can be used to design light-weight encoders, it is not a
rate-efficient encoding scheme. The main reason is that the most
significant bits (MSBs) encode significantly redundant information.
Universal quantization remedies this problem by eliminating MSBs
during quantization, thus removing the redundancies. However, this
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makes the reconstruction problem non-convex possibly with combi-
natorial complexity. Instead, our approach uses side information to
recover the MSBs, thus making reconstruction convex and tractable
without compromising rate-efficiency. Our experimental results
show that using universal scalar quantization we can achieve signif-
icant improvement in the rate-distortion performance, compared to
conventional CS approaches.

The next section provides some background and establishes the
notation. We describe the details of our approach in Sec. 3. Section 4
provides experimental results validating our approach. In Sec. 5 we
discuss our results and conclude.

2. BACKGROUND

2.1. Multispectral Image Compression

While multispectral images can, in principle, be compressed using
conventional image compression techniques, in many applications
such techniques are often not suitable. In particular, onboard of
spacecrafts computational power is very scarce. Thus, spaceborne
compression algorithms require significantly lower complexity and,
in turn, significantly different designs, than conventional methods
such as JPEG and JPEG2000.

Similar to conventional methods, transform coding is often the
workhorse of many popular approaches [1,2], albeit with transforms
designed to have reduced complexity in the spatial and spectral di-
mensions. An alternative approach is predictive coding with predic-
tors mainly based on adaptive filters [3].

Distributed source coding, relying on the celebrated Slepian-
Wolf and Wyner-Ziv bounds [4, 5], is also a very popular approach
due to its encoding simplicity [6–8]. These approaches treat part
of the data as side information and code the remaining data assum-
ing this side information is available at the decoder. The side infor-
mation might be transmitted uncompressed or using low-complexity
conventional compression techniques.

The approach we propose in this paper is similar to distributed
coding in that it relies on side information during decoding. How-
ever, it uses very different methods than conventional distributing
coding approaches and enables the use of sparsity and other modern
signal models during decoding.

2.2. Compressed Sensing

Compressed sensing is a well-established, by now, theory for sig-
nal acquisition, able to measure and reconstruct signals using fewer
linear measurements than dictated by the classical Nyquist-Shannon
theory [9, 10]. Reconstruction is possible using additional knowl-
edge about the signal and exploiting appropriate models.

The canonical CS problem considers a signal x ∈ Rn having
a sparse representation θ under some basis Ψ ∈ Rn×n: x = Ψθ,
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with ‖θ‖0 = k � n. Here, the `0 norm ‖θ‖0 counts the number
of nonzero coefficients of θ. Measurements are acquired as a vector
of random projections y = Φx = ΦΨθ, y ∈ Rm, using a sens-
ing matrix Φ ∈ Rm×n, typically implemented directly in hardware.
The original sparse signal can be recovered from the measurements
using a convex optimization problem, minimizing the l1 norm of the
solution, or a greedy algorithm such as [11–14].

Using appropriate, typically randomized, sensing matrices only
m = O(k logn) � n are required for signal reconstruction to be
possible, compared to n required if the signal is not known to be
sparse. Thus, CS acquisition preforms an implicit compression of
the signal during acquisition. The most studied sensing matrices
have entries that are i.i.d. realizations of subgaussian random vari-
ables [15]. However, more structured sensing matrices, such as par-
tial Hadamard [16] or circulant [17], allow computation of the mea-
surements and reconstruction using fast transforms while still ex-
hibiting good dimensionality reduction properties. Fast transforms
are appealing in computationally constrained systems, because they
significantly reduce memory and computational requirements.

For many commonly encountered signals, such as natural im-
ages, sparsity is often not an appropriate signal model. Thus, a num-
ber of signal models have been proposed as alternatives. In particu-
lar, natural images typically exhibit compressible gradients, i.e., very
few of their gradient coefficients pack most of the energy. Thus, total
variation (TV) minimization can be used for recovery [18]:

X̂ = arg min
X

TV(X) + λ‖y − Φx‖22, (1)

where X is a two-dimensional image, x is a vectorized version of
the image X and the isotropic TV is defined as

TV(X) =
∑
i,j

√
|Xi+1,j −Xi,j |2 + |Xi,j+1 −Xi,j |2. (2)

Compressive sensing is a very effective acquisition approach.
However, the simplicity in acquisition suggests it can also be used
for efficient and low-complexity signal compression, simply by dig-
itally implementing the measurement process. Unfortunately, CS-
based compression methods suffer from poor rate-distortion perfor-
mance, despite the significant undersampling factor. Fundamentally,
the undersampling performed during CS acquisition behaves like
oversampling when sparsity is taken into account and performs sig-
nificantly worse than transform coding [19, 20]. In hindsight, this is
expected and in-line with well-established results on scalar quanti-
zation of oversampled signals (e.g., see [21]).

2.3. Universal scalar quantization

Universal scalar quantization (USQ) has been recently proposed as
an alternative scalar quantization technique that, coupled with con-
sistent reconstruction, promises efficient coding of signals [22]. In
particular, uniform scalar quantization of CS measurements is lim-
ited by a linear reduction in distortion as the number of measure-
ments increases. In contrast, consistent reconstruction from univer-
sally quantized measurements achieves an exponential reduction.

The key ingredient of universal scalar quantization is a non-
monotonic quantizer having non-contiguous quantization regions. It
can be though of as a uniform linear quantizer with the MSBs re-
moved. Figure 1 shows examples of (a) a 3-bit conventional uniform
linear quantizer with step-size ∆ and corresponding (b) 1-bit and (c)
a 2-bit universal quantizers. Disjoint intervals that share the same 2
or 1 least significant bits in the conventional uniform quantizer will
quantize to the same value using a uniform 1- or 2-bit quantizer.
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Fig. 1: (a) Conventional 3-bit uniform linear quantizer and corre-
sponding (b) 1-bit and (c) 2-bit universal quantizers, equivalent to
the uniform linear quantizer with, respectively, 2 or 1 most signifi-
cant bits removed.

Before non-monotonic quantization, the signal x to be encoded
is sampled using a sensing matrix Φ to obtain measurements y =
Φx. Those measurements are dithered and quantized to produce yq:

y = Φx, yq = by/∆ + w + 0.5c mod 2B , (3)

where w is additive dither with entries wi drawn from an i.i.d. dis-
tribution uniform over [0, 1). The quantizer parameters are the step
size ∆ and the rate B, resulting to a quantizer with 2B levels.

As evident in Fig. 1(b) and (c), the resulting quantization func-
tion is periodic. More importantly, the consistency set corresponding
to any quantized measurement is composed of disjoint intervals, one
per period, forming a non-convex set. Thus, consistent reconstruc-
tion is a computationally challenging problem with combinatorial
complexity in general. Computationally tractable reconstruction is
possible by designing the quantization intervals to form a hierarchy
of convex problems, often at the expense of rate efficiency [23].

3. COMPRESSION OF MULTISPECTRAL IMAGES

Our compression approach fundamentally exploits a simple premise:
if universal scalar quantization can be thought of as uniform quati-
zation with missing bits and we have access to reliable side informa-
tion, then the decoder can use the side information to predict and fill
in the missing bits and solve a conventional quantized CS problem.

The high-level encoder and decoder architecture is shown in
Fig. 2, the components of which we describe in the next two sec-
tions. Some experiment-specific details of our implementation are
described more thoroughly in Sec. 4.

3.1. Encoding

Similar to [6, 7], we assume that the encoder transmits one of the
bands as side information, encoding it using a standard technique.
This side information, maybe combined with additional statistics
transmitted by the encoder, is used to predict the other bands.

The remaining bands are partitioned into non-overlapping
blocks of size nx × ny . A small number of random projections
y ∈ Rm is computed for each block x ∈ Rn, n = nx × ny using a
partial Hadamard matrix Φ, obtained by randomly subsampling the
rows of the Hadamard transform. The measurements are quantized
with a universal scalar quantizer of rate B and step size ∆ as in (3).
This accounts for m

n
B bits per pixel (bpp).

The side information is used at the decoder to predict the MSBs
missing from the universally quantized data, thus making consistent
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Fig. 2: High-level encoding and decoding architecture for the pro-
posed compression approach.

reconstruction a convex problem. However, MSB prediction might
make errors. Specifically, when the predicted MSB is combined with
the universally quantized measurements, an error of order κ in the
predicted MSB causes an error equal to ±κ∆2B in the recovered
coefficient. The quality of the prediction is affected by the number
of MSBs dropped, or, equivalently, by the size of the quantization
step size ∆ and the rate B used. Larger ∆ and higher B result in
fewer errors, at the expense of rate-distortion efficiency. On the other
hand, errors may introduce distortion at the decoder if not corrected.

Fortunately, the encoder knows the side information and, there-
fore, can compute, encode, and transmit additional side information
indicating where such errors occur. Thus, the trade-off in designing
∆ and B to introduce more or fewer errors now manifests as addi-
tional rate required to encode the side information with the location
of the errors. Since larger ∆ and higher B result in fewer MSB er-
rors, they require lower rate for MSB error encoding, at the expense
of larger reconstruction error and higher universal quantization rate,
respectively. Correspondingly, smaller ∆ and B reduce the recon-
struction distortion and universal quantization rate, respectively, but
increase the rate to encode side information on MSB errors.

Since the decoder itself can be made robust to some sparse errors
in the measurements, our approach is a compromise: we explicitly
encode first order errors, i.e., for which κ = 1, by sorting their lo-
cations in increasing order and then differentially coding them using
an Exp-Golomb universal code [24], together with their sign. For
higher order errors, i.e., for which κ > 1, only their location is en-
coded, but not their multiplicity or their sign.

3.2. Decoding

The decoder has available the universally quantized CS measure-
ments yq and a real-valued prediction of them ypred obtained from
the side information. Typically this prediction is obtained by first
predicting the signal xpred and then measuring it using the measure-
ment matrix, the dither and scaling: ypred = Φxpred/∆ + w.

Given universally quantized measurements, the prediction is
used to identify the quantization point on a uniform linear quantizer
that is closest among the multiple possible candidates. An example
is shown in Fig. 3, where the universally quantized value of 1 is
resolved to −3 given a prediction slightly less than −1∆. Formally,
the quantization point is resolved using minimum distance decoding:

ŷ = ∆
(
yp + yq + t̂

)
, yp = 2B ·

⌊
ypred

∆2B
+

0.5

2B

⌋
(4)

where each component t̂i is an offset that minimizes the distance to
the prediction

t̂i = arg min
t∈{−∆2B ,0,∆2B}

|ypred,i − (yp,i + t+ yq,i) ∆| (5)
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Fig. 3: Given a universal quantization point, the prediction is used to
select the closest corresponding point on a uniform linear quantizer
out of the multiple candidates.

Depending on the quality of the prediction and on the chosen
value of B and ∆, prediction errors might be more or less frequent.
Thus, the recovered quantized measurements can be modeled as

ŷ = Φx + e + ν (6)

where ν is the uniform quantization error and e is a vector with el-
ements drawn from a finite alphabet of integer multiples of ∆2B

capturing the decoding errors.
An error of order κ is captured by entries of e with value

±κ∆2B . Given a good prediction and suitable values of ∆, then e
tends to be sparse. Furthermore, as mentioned in Sec. 3.1, the en-
coder might include information on e which can be used to correct
some or all of the errors and reset the corresponding coefficients of
e to 0. We use S to denote the set containing the locations of known
errors that have not been corrected, typically of order 2 or higher.

To recover the image, the decoder uses the recovered measure-
ments, aided by the image prediction. Specifically, recovery solves
a weighted TV minimization with consistent reconstruction:

x̂ = arg min
x

WTV(x) + λf (Φx)

s.t. |yi − (Φx)i | ≤
∆

2
if i /∈ S, (7)

where WTV(·) is the isotropic weighted total variation

WTV(x) =∑
i,j

√
W

(x)
i,j (Xi,j −Xi−1,j)

2 +W
(y)
i,j (Xi,j −Xi,j−1)2, (8)

f(·) penalizes decoding errors using an `1-type penalty,

f (Φx) =
∑
i∈S

max

(
|yi − (Φx)i | −

∆

2
, 0

)
, (9)

and Wi,j are weights that determine how gradients in each pixel of
the image should be penalized.

In addition to filling in the MSBs in the encoded data, the pre-
diction obtained from the side information is also used to derive the
weightsWi,j . Low weights are used when the gradient magnitude of
the prediction is higher than a predefined threshold and high weights
when the gradient is lower, a setting similar to the weighted `1 min-
imization in [25]. The resulting model penalizes edges that do not
exist in the prediction more than the ones that do exist. Since pre-
diction is derived from the other spectral band, the model reinforces
correlations between spectral bands, especially among the edges.

The function f(·) promotes data consistency for the part of the
data in S, i.e., where we suspect there is an MSB decoding er-
ror. While a quadratic penalty is a more common data consistency
penalty, the sparsity of the errors in our case suggests that an `1-
based penalty is more appropriate [26]. Since the measurements

4455



Table 1: MSB decoding errors and the corresponding transmission overhead.

B = 3 B = 4 B = 5
band 2 band 3 band 4 bpp band 2 band 3 band 4 bpp band 2 band 3 band 4 bpp

∆ = 80 6.40 % 25.63 % 26.61 % 0.527 0.18 % 3.56 % 4.76 % 0.097 0 % 0.04 % 0.19 % 0.11
∆ = 100 2.60 % 16.45 % 17.66 % 0.346 0.03 % 1.21 % 1.97 % 0.044 0 % 0.01 % 0.05 % 0.009
∆ = 120 1.08 % 10.16 % 11.50 % 0.228 0.01 % 0.41 % 0.88 % 0.023 0 % 0 % 0.01 % 0.009

Table 2: Decoding PSNR at 2 bpp

band 2 band 3 band 4
(a) Prediction 33.68 dB 28.87 dB 28.35 dB
(b) Classic CS 33.24 dB 31.18 dB 33.58 dB
(c) Weighted CS 34.40 dB 31.63 dB 33.95 dB
(d) Proposed 37.79 dB 32.76 dB 34.24 dB

Fig. 4: Test multispectral image acquired using the AVNIR-2 instru-
ment of the ALOS satellite [27]. This image of a coastal city exhibits
complexity and details that challenge compression algorithms.

are quantized, we include a deadzone of width ∆, promoting con-
sistency to the quantization intervals. Consistency on the rest of the
data is enforced using the hard constraint |yi−(Φx)i | ≤ ∆/2 in (7).

4. EXPERIMENTAL RESULTS

We tested the scheme on the 512 × 512 × 4 multispectral image
shown in Fig. 4. The first band is used as side information to predict
the content of the other bands and it is compressed losslessly in our
experiments. We separate each image in blocks of 32× 32 and code
each block separately.

To predict band b for each block we use classical linear predic-
tion from the same block in band 1:

x̂b =
σ1b

σ2
1

(xr − µ1) + µb, (10)

where µb is the block mean for band b, σ2
b is the variance, and σ1b

the covariance of b with block 1. The parameters are computed at
the encoder and transmitted as side information. Assuming 16-bit
values in the worst case, the overhead is 0.047 bits per pixel (bpp).

Using the prediction we decode the universally quantized mea-
surements as described in Sec. 3.2. First order errors and their sign
are detected at the encoder, transmitted and corrected at the decoder.
For second and higher order errors, only their location is transmitted
to form the set S during decoding. The total overhead to transmit
the errors is variable and depends on the choice of ∆ and B.

Table 1 reports the percentage of measurements (m = 512) af-
fected by first or higher order errors as a function of the quantization
step size ∆ and rate B, as well as the cost in bpp for coding these
errors as described above. As expected, larger ∆ and B result to

lower error rate and corresponding coding overhead. Furthermore,
bands further away from the reference band 1, i.e., bands 3 and 4,
are more difficult to predict, and, therefore, the errors increase.

Since the reconstruction algorithm can tolerate some decoding
errors, perfect decoding is not our goal. In our experiments we
found that ∆ = [100, 140, 120] and B = [2, 3, 3], with m =
[640, 448, 390] measurements, was a good parameter choice to en-
code bands 2 to 4, respectively, performing consistently in a vari-
ety of similar images. Since errors increase for bands further away
from the reference, we expect the corresponding optimal parameter
choices to have higher ∆ and B to reduce the errors.

Table 2 compares the PSNR obtained by (a) simple linear predic-
tion, a classic CS encoder using a uniform scalar quantizer at a com-
pression rate of 2 bpp and reconstruction using (b) TV minimization
or (c) WTV minimization using weights obtained from the reference
band, and (d) the proposed method at the same compression rate.
The rate reported for our proposed scheme includes the overhead
due to prediction and error coding. For comparison, classic CS cod-
ing and reconstruction at 2 bpp, regularized using TV minimization,
sometimes performs worse even than simple linear prediction, which
requires less than 0.047 bpp. Reconstruction of the same data using
WTV minimization, i.e., exploiting side information at the decoder,
provides a small gain of 0.5–1dB, depending on the band.

As evident in the table, the proposed approach significantly im-
proves performance, especially if the prediction is of higher quality.
Furthermore, most of the gain is due to the use of universal quantiza-
tion instead of WTV. It should also be noted that the method used in
the experiment is not particularly optimized. A number of improve-
ments could further boost performance such as better choice of the
parameters m, ∆ and B that could be optimized per block, instead
of per band, or better prediction schemes, to name a few.

5. DISCUSSION AND CONCLUSIONS

The proposed compression scheme is the first application of univer-
sal quantization with side information, a new approach to distributed
compression. In contrast to conventional distributed coding, our ap-
proach enables decoding using the sophisticated signal models re-
cently emerged in the context of CS. Thus, it significantly outper-
forms conventional quantized CS approaches that use scalar quanti-
zation. The method provides very light-weight encoding, with more
complex but computationally tractable decoding.

Our results validate our approach. Our method is not competi-
tive in rate-distortion performance with highly refined state-of-the-
art multispectral compression methods, which require much more
complex encoders. However, we do believe that, with sufficient re-
finement, the gap can be bridged. Our work only scratches the sur-
face of this rich topic. A key issue is the design of the encoder pa-
rameters. There is currently no guidance on how these should be
selected, other than intuitive general principles. Furthermore, the
importance of prediction cannot be understated. Transmitting and
using optimally the right kind of side information can bring notable
improvements in the performance of the current scheme.
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