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ABSTRACT 
 
Compressive sensing (CS) has recently been applied for 
device-free localization (DFL) by exploiting spatial sparsity 
to reduce the number of measurements required by DFL 
systems while maintaining the high localization accuracy. 
However, few works considered model errors in CS-based 
DFL. This paper proposes an adaptive sparsity-based DFL 
appoach to overcome the problem incurred by model errors. 
The novel feature of this method is to dynamically adjust 
the basis matrix (a.k.a. dictionary) based on a two-stage 
dictionary learning (DL) framework with non-negativity 
constraints. Compared to previous CS-based DFL methods, 
the proposed method can compensate the inaccuracy of the 
basis matrix and improve sparse reconstruction performance 
simultaneously. Experimental results verify the performance 
of the proposed approach on the location accuracy. 
 

Index Terms—Device-free localization, compressive 
sensing, dictionary learning, non-negativity constraints 
 

1. INTRODUCTION 
 

In recent years, the low-cost DFL which only utilizes the 
received signal strength (RSS) measurements of wireless 
links in wireless networks has become an attractive 
technology and shown enormous promise in applications 
ranging from intrusion detection to elder care [1]. Compared 
with the existing device-free techniques such as infrared 
detector, video monitor and UWB radar detector, RSS-
based DFL brings several advantages over other 
technologies by being able to work in obstructed 
environments, see through smoke, darkness, and walls. 
Several kinds of DFL methods have already been proposed 
to localize and track targets using the temporal variations of 
RSS. Youssef et al. [2-3] modeled the DFL problem as a 
machine learning problem and realized DFL with a 
fingerprint-matching method. Another approach to RSS-
based DFL named radio tomographic imaging (RTI) [4-6], 
estimates the changes in the RF propagation field of the 

monitored area and then forms an image of the changed 
field. This image is then used to infer the locations of 
targets within the deployed network. Zhang et al. [7-8] 
presented a signal dynamic model, and adopted the 
geometric method and the dynamic cluster-based algorithm 
to solve the DFL problem. Recently, Wang et al. [9] 
proposed to realize DFL based on multidimensional 
wireless link information, which significantly enriches 
wireless measurement information. 
   In recent years, the CS theory which receives a great deal 
of attentions has been successfully applied for wireless 
localization. To the best of our knowledge, Kanso and 
Rabbat carried out the first sparsity-based work to combine 
RF tomography and CS to solve the DFL problem [10]. In 
[11-12], the greedy algorithms were used to estimate 
targets’ positions in DFL systems, which results in a 
substantial reduction of the amount of measurements. In fact, 
all these CS-based DFL approaches belong to the model-
based DFL method, since these works must exploit the 
normalized ellipse shadowing (NES) model [5, 13] to 
construct the basis matrix for sparse models. A key problem 
in model-based DFL methods is to construct a reasonable 
shadowing model in order to accurately relate the 
shadowing experienced by a signal to attenuation at specific 
in space. Although the NES model has some physical 
justification for using an ellipse shape according to the 
ellipsoidal Fresnel zone, the decision to set the weights of 
all of the grids equally in each ellipse and invariably in all 
environments has no physical basis. In addition, it is not 
always reasonable that the weight is only reliant on the 
distance between two nodes in one wireless link. Moreover, 
the RSS is extremely sensitive to the variations of 
environments, and therefore the fixed dictionary based on 
the NES model may mismatch actual variations of RSS 
measurements, which will reduce DFL performance, 
especially in the multipath environment.  

Unlike previous works that the predefined dictionary is 
invariable in the localization process, in this paper we 
propose an adaptive CS-based DFL (ADFL) method to 
dynamically adjust both the dictionary and the sparse 
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solution so that the dictionary can better match the actual 
scenario. The proposed method first performs supervised 
offline DL to obtain the practical initial dictionary. Then, 
the online DL stage uses the results from the offline stage as 
warm restart to handle the unseen online variation for 
enhancing its adaptability. Thus, the ADFL algorithm can 
utilize CS to tackle the space-domain sparse feature for 
locating device-free targets, and exploit the DL technique to 
deal with the time-domain gradually changed feature for 
error self-calibration.  

 
2. SYSTEM MODEL  

 
Consider P unknown-location targets located in an area of 
interest, which is divided into N grids. Suppose Q wireless 
nodes consist of a wireless network, and then the total 
number of wireless links with every pair of nodes is 
M=Q×(Q-1)/2. Here, any pair of nodes is counted as a link, 
whether or not communication actually occurs between 
them. Generally, the number of targets P is considerably 
less than the number of grids N. Hence, the CS-based DFL 
model can be described in matrix form as [10-12] 

 Wx ny                                  (1) 

where y=[ y1, …, yM]T is a M×1 vector that represents the 
changes of RSS measurements, x=[x1,…, xN]T is a N×1 
vector to be estimated, where xi(1≤i≤N) represents the RSS 
attenuation at the grid i which corresponds to the fact that 
whether a target is located at the ith grid. W is a M×N 
weighing dictionary that describes the shadowing effect of 
each grid on each wireless link, which can be calculated by 
the NES model. The M×1 vector n represents noise terms. 

Although the NES model is popularly used in DFL 
researches due to its simplicity, it is only approximate to the 
real radio propagation character and cannot accurately 
express actual relationship between shadowed links and 
RSS attenuations caused by targets. To overcome this 
problem, in this paper we exploit DL technology to 
automatically calibrate the dictionary. To avoid the 
difficulty of estimating all kinds of time-varying factors, we 
denote the perturbation matrix Γ to describe the difference 
between the approximate model and the actual dictionary. 
Thus, the sparse DFL model is correspondingly modified as: 

( )   W Γ x Hxn ny                             (2) 

where H=(W+Γ) denotes the practical dictionary. Note that 
the weighting values must be nonnegative, so the dictionary 
H is also under non-negativity constraints. 
 

3. THE TWO-STAGE DL ALGORITHM 
 
Since the perturbation matrix Γ is time-varying and cannot 
be known in advance, we must estimate the sparse vector 
and weighing dictionary simultaneously to deal with the 
uncertainty of the dictionary. According to the CS theory 

and DL technology, the above problem in (2) can be 
converted into the following problem 

2

1,
10

min
L

iF
i




  
H X
H

HX xY                         (3) 

where Y=[y1,…, yL] is the training dataset, and X=[x1,…, xL] 

is the corresponding sparse representations.  F  and 1       

are the Frobenius norm and l1 norm respectively. λ is the 
parameter tuning the constraint on the sparsity. 

Since the above problem is not convex with respect to the 
pair (H, X), most DL algorithms deal with this problem by 
alternately performing a two-step procedure: Starting with 
an initial dictionary H0=W, the following two steps are 
repeated several times. 

 
3.1. Sparse recovery step 
   Let us first consider the sparse recovery step, where H is 
fixed. The penalty term can be rewritten as 
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Thus, the sparse recovery problem posed in (3) can be 
decoupled to L distinct problems of the form  
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This problem is a normal sparse coding problem and many 
algorithms have been proposed. In this paper we employ the 
BGMP algorithm in [12] to calculate sparse vectors.   
 
3.2. Dictionary calibration step 
3.2.1. Offline DL stage 
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In this stage, the ideal initial dictionary is firstly trained by 
using the available training data to construct a practical 
initial dictionary according to the offline DL method. Since 
the sparse vectors are known in the dictionary update step, 
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where tr[·] and vec(·) respectively represent the trace and 
the vertical concatenation of columns of a matrix. (·)T, I and 
 denote transpose, the identity matrix, and the Kronecker 
product, respectively. For clarity of notation, we denote 
α=vec(HT) , G=I  XXT and γ= vec(XYT) . Omitting the 
terms that do not depend on H, the objective function in (6) 
can be equivalent to 

0
arg min 2T T


 

α
α α Gα αγ                          (8)                      

Note that (8) is a quadratic programming problem which 
can be solved by many algorithms such as the active set 
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method in [14]. The cost function in (3) alternately descends 
between (5) and (8) until the absolute difference of cost 
function (3) is smaller than the convergence threshold, then 
obtaining the optimal offline pre-trained dictionary Hoff. 
 
3.2.2. Online DL stage 

Although the off-line DL stage has adjusted the basis 
matrix according to the training data, it is impossible to be 
fit for all kinds of time-varying RSS variation patterns. 
Moreover, its computation load is very large for real-time 
localization. To accommodate further the unseen dynamic 
variation when new samples arrive, the offline pre-trained 
dictionary needs to be updated according to the latest 
measurements. Therefore, we add the online DL stage to 
dynamically calibrate the pre-trained initial dictionary 
according to the past on-line measurements. Thus, the 
dictionary calibration procedure in this paper includes two 
stages: one for constructing the practical initial dictionary, 
and one for performing real-time calibration.  

So far, most existing online DL methods do not use the 
robust function in the data fitting term and might be 
vulnerable to large outliers [15]. In fact, during the process 
of object tracking, there may be some outlier links due to 
the measurement noise and multi-path propagation. The 
RSS measurement is also sensitive to be affected by 
temperature, humidity, intrinsic motion, et al. These 
challenging factors are easy to induce outliers. In [15], l1 
norm fitting functions are found to make estimation more 
reliable than l2 norm in robust statistics. Inspired by the 
previous work in [15], we propose a robust online DL 
method with non-negativity constraints. Different from l2 

norm constraints, the objective function of robust DL is 
defined as  

1
0

arg min



H

XY HH                           (9) 

Since the sparse vectors and the initial dictionary Hoff are 
known, (9) can be regarded as a l1 regression problem. As in 
[15], the iterative reweighed least squares (IRLS) algorithm 
can be used to solve (9): 
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where yi(j) is the jth element of yi, H(j,:) represents the jth 

row of H, and 21 / ( ( ) ( ,:) )j
i i ij j    y H x . δ is a 

small positive value to prevent the occurrence of the 
overlarge value. By taking derivatives for (10) and setting 
them to zeros, the optimum result can be reached by solving 
H(j,:) in the linear system as follows: 

( ,:) , . . ( ,:) 0j jj s t j C H D H             (11) 
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can be solved by the nonnegative least squares (NNLS) 
algorithm, which can be directly implemented in MATLAB 
as the function lsqnonneg. 

To meet the requirement of real-time localization, we 
utilize the low-complexity incremental training method in 
the on-line DL stage. As the dictionary updates with the 
coming data, the online versions of Cj and Dj are as follows: 
                              

1 ( )j j j T
t t t t tj C C y x                        (12) 

1
j j j T
t t t t t D D x x                            (13) 

For completeness, a full description of the algorithm is 
summarized in Algorithm 1. 

 
Algorithm 1  Online Robust Nonnegative Dictionary Update 
Input: the sample set Y=[y1, …, yL]; regularization parameter λ 
           the initial dictionary obtained from the off-line stage; 

          0 0, , 1, ,j j j M  C D0 0   

1.    for  t=1 to L do 
2.       Sparse recovery by using BGMP:  

2

1 2 1
arg min

t
t t t t t  

x
xx H xy  

3.       Dictionary update: compute Ht by using Ht-1 as warm restart: 
4.       repeat 
5.          for j=1 to M do  

6.            
2

1( ( ) ( , :) )1 /j

t t t tj j    y H x  

7.            
1 ( )j j j T

t t t t tj C C y x  

8.            
1

j j j T
t t t t t D D x x  

9.             solve linear system ( ,:)j j
t t tjC H D by using NNLS 

10.        end for 
11.     until convergence 
12.   end for  
Output:  online trained dictionary Hon 
 

 
4. EXPERIMENTAL RESULTS 

 
An experimental network (EN) containing 28 nodes was 
deployed in an indoor area which is bounded by glass 
windows on one side, and has a concrete column within the 
deployment area. Each node is placed 1.0m apart along the 
perimeter of 7×7m2 and 0.9m off the ground on a pedestal. 
A photograph and map of the experimental setup are shown 
in Fig.1. Each node operates in the 2.4G frequency band 
and runs the IEEE 802.15.4 protocol for communication. To 
avoid network transmission collisions, a simple token ring 
protocol is used to control transmission. A base-station node 
is used to gather signal strength information from each node, 
and saves them to a laptop with Intel i7 3.5GHz processor 
and 8GB memory for real-time processing.  

To evaluate the performance of the proposed algorithm, 
we compare it with the CS-DFL method in [12] and the RTI 
technique [5]. In the experiment, a target (a person) moved 
clockwise along a rectangular trajectory and its location was 
estimated once per second. Before the target entered into the 
area, we recorded 0.5 minutes RSS scans for off-line 
training. The default parameters are as follows: grid size is 
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0.25 m× 0.25 m, the width of the ellipse in the NES model 
is 0.15m, and true speed of the target is about 0.55m/s. 

 

 
（a） 

 
                                   （b） 

Fig. 1  (a) Photograph of the EN. (b) Geometry of the EN. 
 
The tracking error, which is denoted as the Euclidean 

distance between the true location and estimated one, is 
shown in Fig. 2. The results show that the proposed 
approach has the least tracking error. Moreover, it should be 
noted that the tracking errors of the CS-DFL and RTI 
methods are distinctly large for some instants, especially 
when the target walks around the concrete column. This is 
because the concrete column obstructs signal propagation 
between some links, which not only aggravates model 
mismatch, but also results in fewer links travelling through 
the target. On the contrary, the variation of the tracking 
errors in the ADFL algorithm is very small, so the tracking 
performance of the ADFL algorithm is relatively stable to 
the environmental variations. This advantage results from 
the fact that the weighting model in the ADFL algorithm is 
automatically calibrated by using the two-stage DL method. 
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Fig. 2   Tracking errors in the experiments. 

The detailed statistical character of the tracking errors are 
summarized in Table 1. We can see that the tracking 
performance of the ADFL algorithm is better when 
compared with the CS-DFL and RTI methods, with mean 
tracking error reduced by 36% and 49%, respectively. 
Meanwhile, we can see that although the mean values of the 
tracking errors in three schemes are all less than 0.51m, the 
ADFL approach has significantly better performance than 
the other two methods in terms of max error. These results 
reveal that the ADFL method can enhance location accuracy 
in time-varying environments. The complexity is also 
compared in terms of the CPU running time. From Table 1, 
it shows that the average running time of the proposed 
method is largest. However, most running time is spent at 
the offline training stage. Since offline training is performed 
before the tracking starts, the slight complexity increase in 
the on-line stage is acceptable. 
 

Table 1: Comparison of localization error and running time 
 
 
 
 
 
 

 
 

5. CONCLUSION 
 
In this paper, we have exploited the inherent spatial sparsity 
to present a novel DFL method by combining the offline 
training and online learning into a unified DL framework, 
thereby overcoming the problem of model mismatch and 
better matching time-varying scenarios. Meanwhile, since 
outlier links are inevitable in the practical process of object 
tracking, a robust online DL algorithm with non-negativity 
constraints is proposed to overcome the impacts of outliers. 
The effectiveness of the proposed scheme has been verified 
by experimental results where substantial improvement for 
localization accuracy is achieved. 
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Algorithm Mean (m)
Standard 
Deviation (m) 

Max (m) 
Average 
Running Time (ms)

CS-DFL
RTI 
ADFL 

0.402
0.509
0.259

0.238
0.348
0.083

1.280 
1.750 
0.500 

25.76 
11.13 
388.11(offline) 
+37.29(online)
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