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ABSTRACT
Event detection is a crucial tasks in wireless sensor networks.
The importance of a fast response makes distributed strate-
gies, where nodes exchange information just with their one-
hop neighbors to reach local decisions, more adequate than
schemes where all nodes send observations to a central en-
tity. Distributed detectors are usually based on average con-
sensus, where all nodes iteratively communicate to asymptot-
ically agree on a final result. In a realistic scenario, commu-
nications are subject to random failures, which impacts the
performance of the consensus. We propose an alternative de-
tector, which adapts to the statistical properties of the consen-
sus and compensate deviations from the average. Simulation
results show that this adaptive detector improves the perfor-
mance and approximates to the one of the optimal detector.

Index Terms— Distributed detection, average consensus,
deflection coefficient

1. INTRODUCTION

The detection of an unexpected event is a determining task
for multiple applications in wireless sensor networks (WSN).
Detection of primary users by spectrum sensing in cognitive
radios [1], intrusion detection [2], and catastrophe detection,
such as fire [3] or landslide [4], are representative examples.
Most of these applications require the detection process to be
fast enough so that corresponding actions can be adopted in
time. Hence, centralized schemes where nodes send their lo-
cal observations to a central entity, which perform the optimal
detection, are not the most appropriate strategies. In contrast,
and for large scale networks, distributed approaches, where
nodes exchange information just with their one-hop neigh-
bors to make their final local decisions, provide the degree of
flexibility and quickness that these applications demand. Fur-
ther advantages of distributed detection are reduced commu-
nication bandwidth, increased reliability and reduced cost [5].
Distributed detection is usually solved by means of iterative
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consensus [6][7][8]. These schemes, where nodes exchange
information until an agreement in a global common value is
reached, rely on the fact that this common quantity is the av-
erage of the initial values of the nodes. In fact, and under
certain conditions, this convergence to the average is guaran-
teed [9]. However, in a realistic scenario, where communica-
tions between nodes are subject to interferences and random
link failures, the agreement value is a random variable dif-
ferent, in general, from the average. In this work, and starting
from a consensus-based distributed implementation of the op-
timal detector for a known signal, we propose a variation of
this detector, where the special features of the probabilistic
consensus are considered. Our detector adapts itself to the
statistical properties of the consensus in order to compensate
its deviation from the average. We show how the adaptive
detector increases the performance and approximates the one
of the optimal detector. The paper is organized as follows: in
Section 2 we provide some background and introduce the sys-
tem models. In Section 3 we propose a consensus based dis-
tributed detector, and show how to refine it such that it adapts
to statistical consensus properties. Section 4 presents some
simulation results to verify the efficiency of our approach. Fi-
nally, conclusions are summarized in Section 5.

2. BACKGROUND AND SYSTEM MODELS

We present some background necessary for the formulation
of our proposal: the optimal detection of a known signal, and
the concept of iterative consensus.

2.1. Optimal detection of a known signal

A WSN is deployed over the area of interest with the final aim
of detecting an unexpected signal. The detection process can
be cast as a binary decision problem, where the two alterna-
tive hypotheses, namely H0 and H1, denote respectively the
absence or presence of the signal of interest, denoted by θ.
This signal is perceived at each node i attenuated by a fading
factor hi, thus at the placement of each sensor i, the signal
is received as si = hiθ. We denote by E the energy of the
whole received signal, such that E = ‖s‖22 =

∑N
i=1 s

2
i . The
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signal s is corrupted by additive zero-mean Gaussian noise w
with covariance matrix σ2I. If we denote by y the vector of
observations, both hypotheses can be formulated as follows:

H0 : y = w

H1 : y = hθ + w = s + w
(1)

If θ is known, the Neyman-Pearson theorem [10] provides
the optimal decision criterion, where the likelihood ratio is
compared with a threshold γ, previously computed to min-
imize a given false alarm probability PFA. For the linear
model in (1), the Neyman Pearson rule becomes:

T (y) = yT s =

N∑
i=1

yisi ≥ γ′ (2)

where γ′ = σ2logγ + sT s
2 . Since T (y) is Gaussian, we have

that the PFA of the detector is given by:

PFA = Pr {T (y) > γ′| H0} = Q

(
γ′√
σ2

)
(3)

The detection performance can also be characterized by
the deflection coefficient [11]:

d2 =
(E[T ;H1]− E[T ;H0])

2

var[T ;H0]
=

1

σ2
sT s =

E
σ2

which gives an accurate insight about the performance of the
detector even for non Gaussian scenarios [11]. The relation-
ship between d2 and PFA can be found in [10].

2.2. Iterative consensus under unreliable links

At each time instant k, the network can be modeled as a
random graph G(k) = (V,E(k)), with a set V of N
nodes and a set E(k) of links existing at time k. We de-
note by A(k) the N × N adjacency matrix, whose entry
[A(k)]ij is equal to 1 if (i, j) ∈ E(k) and 0 otherwise.
Thus, this matrix is random and, in general, not symmet-
ric. The random set of neighbors of a node i at time k
is defined as Ωi(k) = {j ∈ V : (i, j) ∈ E(k)}. The de-
gree matrix D(k) is a diagonal matrix whose entries are
[D]ii = |Ωi(k)|, and the instantaneous Laplacian matrix is
defined as L(k) = D(k) − A(k). If each node i of the
network takes a random value xi(0), the distributed consen-
sus problem consists of a succession of iterations, at each of
which every node i refines its own state xi(k) by exchanging
information only with those nodes belonging to Ωi(k). This
procedure continues until all nodes agree asymptotically on a
global common value, i.e. limk→∞ x[k] = α1. Denoting by
W(k) the matrix used by the nodes to mix their values at k,
we have that:

x(k) = W(k) . . .W(0)x(0) = M(k)x(0) (4)

This expression asymptotically reaches consensus if
limk→∞M(k) = 1mT . It occurs as long as every matrix
W(k) is row stochastic, that is, W(k)1 = 1, and the graph
is connected on average [12]. In this case, α = mTx(0).
If every matrix W(k) is also column stochastic, that is,
1TW(k) = 1T , then limk→∞M(k) = 1

N 11T , which en-
sures that the consensus value is the average of the initial
values, hence α = 1

N

∑N
i=1 xi(0). However, in a real setting,

each instantaneous topology defined by A(k) is also random,
and so is its corresponding weight matrix W(k). This last
condition can not be guaranteed, and m = [m1 . . .mN ] is a
random vector, different, in general, from 1

N 1. Close-form
expressions for the first two moments of m, namely its expec-
tation µm = [µm1 . . . µmN

], and covariance matrix Cm, with
diag(Cm) =

[
σ2
m1

. . . σ2
mN

]
, have been derived in [13], as a

function of the weight matrices W(k). Furthermore, by ap-
plying a conjecture in [14], we can also conjecture that each
component of m follows a log-normal distribution. Then, we
say that the iterative consensus process presents no deviation
from the average if the following two conditions hold:

µm =
1

N
1, Cm = 0 (5)

3. CONSENSUS BASED DISTRIBUTED DETECTION

In order to perform the detection task in a distributed fashion,
every node must be able to compute T (y) in (2) by just ex-
changing local information with their one hop neighbors. If
each node i takes xi(0) = Nyisi as initial value and the dy-
namic system in (4) is applied, all nodes asymptotically reach
consensus in the following random value:

Tc(y,m) = N

N∑
i=1

yisimi = NyT∆ms (6)

where ∆m = diag(m). The performance of this detector is
given by its deflection coefficient:

d2
c =

1

σ2

(
sTE[∆m]s

)2
sTE

[
∆2
m

]
s

(7)

It can be shown that this detector is, in general, subopti-
mal, and the optimality is achieved if and only if both con-
ditions in (5) hold. In order to improve its performance, we
propose a variation of this detector, whose design considers
not only the signal to be detected, but also the properties of
the consensus process, given by µm and Cm.

3.1. Adaptive distributed detector

The basis of the Neyman Pearson detector is to confront the
observation y with the desired signal s, such that the signal
to noise ratio is maximized when s is present. However, if
the detector is implemented in a distributed way by means of
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iterative consensus, the observation is not correlated with the
original signal. Therefore, our proposal consists in choosing a
different vector r to be confronted with the observations, such
that it compensates the consensus error, and improves the final
performance. Accordingly, each node i takes as initial value
xi(0) = Nyiri, and asymptotically computes:

Te(y,m, r) = NyT∆mr (8)

for some vector r. The moments of Te(y,m, r) are given by:

E[Te;H0] = 0, E[Te;H1] = NsTE[∆m]r

var (Te;H0) = N2σ2rTE
[
∆2
m

]
r

(9)

The deflection coefficient of Te(y,m, r) is given by:

d2
e(r) =

1

σ2

(
sTE[∆m]r

)2
rTE

[
∆2
m

]
r

(10)

If any one of the conditions in (5) is not satisfied, we have
the following result:

Theorem 1. There exists, at least, one N -dimensional vector
r satisfying the energy constraint

∑N
i=1 r

2
i = E , such that, for

N >> E , the detector Te(y,m, r) outperforms the detector
Tc(y,m) in terms of their deflection coefficients.

Proof. If both conditions (5) are fulfilled, the detector in (6)
is optimal (i.e.d2

c = d2) and cannot be improved. Therefore,
it is enough to show that its performance can be improved
as soon as any of the two conditions no longer holds. First,
we consider the case when only the first condition in (5) is
attained. Then, inequality d2

c < d2
e becomes:

E2

E +N2sT diag(Cm)s
<

(sT r)2

E +N2rT diag(Cm)r

For N >> E , and by rearranging terms, we have that:

rT
[

diag(Cm)− 1

E2
ssT diag(Cm)ssT

]
rT < 0 (11)

A sufficient and necessary condition for this inequality
to hold for some value of r is that λmin (U) < 0, where
U = diag(Cm)− 1

E2 ssT diag(Cm)ssT . The minimum eigen-
value of U is the minimum value of its Rayleigh quotient
λmin(U) = min

z,‖z‖=1
zTUz, which vanishes for z = 1

E s. It

implies that λmin(U) ≤ 0. However, λmin(U) = 0 implies
that det(U) = 0. If we apply the rule det(A + bcT ) =
det(A)(1 + bTA−1c), we can express det(U) as follows:(

N∑
i=1

σ2
mi

)(
1− 1

E2

N∑
i=1

s2
iσ

2
mi

N∑
i=1

s2
iσ
−2
mi

)
Since we are considering that diag(Cm) 6= 0, previous

expression becomes zero only if
N∑
i=1

s2
iσ

2
mi

N∑
i=1

s2
iσ
−2
mi

= E2,

which holds only for the particular case that diag(Cm) =
σ2
mI for any constant σ2

m, that is, the variance of all the en-
tries of m is the same. For any other case, λmin(U) < 0,
hence expression (11) holds for some vector r, and for this
vector d2

c < d2
e. Since only the second condition in (5) holds,

inequality d2
c < d2

e can be written as:

rT

{
E[∆m]2 − E[∆m]ssTE[∆m]2ssTE[∆m]

(sTE[∆m]s)
2

}
r < 0

(12)
By taking U = I − ssTE[∆m]2ssT

(sTE[∆m]s)2
, a necessary condition

for (12) to hold for some r is that λmin(U) < 0. Then:

λmin(U) = 1− E sTE[∆m]2s

(sTE[∆m]s)
2 = 1− d2

d2
c

Since dc < d for a suboptimal case, the previous eigen-
value is always negative and expression (12) holds for some
value of vector r, and d2

c < d2
e for this specific vector.

Given the log-normality of the entries of m, the distribu-
tion of Tc(y,m) and Te(y,m, r) under either hypothesis is
the sum ofN normal log-normal mixtures (NLNM) [15]. The
optimal threshold for a given false alarm probability can be
computed by numerical methods. However, it is well known
that the log-normal distribution approximates a Gaussian as
the ratio between the variance and the expectation tends to
zero. In our case, it can be shown that mi follows a normal
distribution for small enough values of σ2

mi
. On the other

hand, the product of two Gaussian variables is non Gaussian.
However, as the variance of one of the factors tends to zero,
the product approximates a normal distribution. Again, in our
case, it can be shown that for values of σ2

mi
small enough

to make mi Gaussian, the distribution of the product Nyimi

is also Gaussian. Finally, if several Gaussian variables are
jointly Gaussian, the sum of them is also Gaussian. Therefore,
and considering the above, for values of [σ2

m1
, . . . , σ2

mi
] small

enough the distribution of both Tc(y,m) and Te(y,m, r) can
be approximated by a Gaussian, and the threshold for a given
false alarm probability can be computed by (3) using the vari-
ance var (Te;H0) in (9).

3.2. Derivation of the optimal detector

We aim to find the vector r∗ that maximizes the performance
expressed in (10), or similarly:

r∗ = min
r,‖r‖22=E

rTE[∆2
m]r

rTE[∆m]ssTE[∆m]r

To solve this non-convex problem, we consider the Jagan-
nathan’s Theorem [16]. Given the problem:
min

{
τ(x) = Φ(x)

Ψ(x) : x ∈ X
}

, where Ψ(x) > 0 for all x ∈
X , then x∗ is an optimal solution if and only if it is also an op-
timal solution of the problem min {Φ(x)− τ(x∗)Ψ(x) : x ∈ X}.
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Fig. 1. Detection performance as a function of (a) consensus
bias, (b) consensus variance.

Based on that, the work in [17] presents the following itera-
tive method for solving non-linear fractional problems where
the function Ψ(x) is concave and Φ(x) is convex:

1. Take any x1, set τ1 = Φ(x1)/Ψ(x1) and k = 1.

2. Solve the following convex subproblem (xk+1):

f(τk) = min {Φ(x)− τkΨ(x) : x ∈ X}

3. If f(τk) = 0, stop and take xk+1 as the solution. Oth-
erwise, µk+1 = Φ(xk+1)/Ψ(xk+1), k = k + 1, go to
step 2.

The convergence of this iterative algorithm for the case of
general non-convex fractional problem is proven in [18]. In
our case, the optimization subproblem in step 2 becomes:

f(τk) = min
r,‖r‖22=E

rT
{
E[∆2

m]− τkE[∆m]ssTE[∆m]
}

r

whose solution is the eigenvector of the matrix E[∆2
m] −

µkE[∆m]ssTE[∆m] associated to its smallest eigenvalue.

4. NUMERICAL RESULTS

We present some numerical results that confirm the validity
of our approach. The setup includes N = 40 nodes randomly
deployed in a square area of L = 50 meters side, with trans-
mission power and attenuation such that the connectivity of
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Fig. 2. ROC of the different detectors. It shows the probabil-
ity of false alarm as a function of the probability of detection

the network is guaranteed. Besides, E = 1 and σ2 = 1. The
consensus process is based on the Laplacian matrix, such that
W(k) = I − εL(k), with a value of ε = 1/N to ensure
convergence [9]. Fig. 1 shows, as a function of the consensus
properties, the performance of the different detectors: central-
ized detector, consensus based distributed detector and adap-
tive distributed detector. We have also included an additional
detector, also based in consensus, but with a trivial precod-
ing, where each node divides its initial observation yi by µmi

to compensate the average deviation. In Fig. 1(a) horizon-
tal axis reflects the bias of vector m, defined by the distance
between µm and 1

N 1. The adaptive detector outperforms the
consensus based detector as the bias increases. Besides, the
performance of the precoded detector follows the one of the
adaptive detector, but starts dropping for large biases. In Fig.
1(b), horizontal axis reflects the variance of the consensus
process. Although both the adaptive and the precoded detec-
tors compensate the bias and attain the optimal performance
for a variance equal to zero, as this variance increases the per-
formance of the precoded detector falls. Fig. 2 compares the
receiver operating characteristic (ROC) curves of the central-
ized detector with those of the consensus based and adaptive
detectors, for Eσ2 = 4. We have assumed a Gaussian distri-
bution of both Tc(y,m) and Te(y,m, r∗), and computed the
different thresholds accordingly. It can be seen that despite
the Gaussian approximation, the thresholds give a reasonable
performance for both distributed detectors.

5. CONCLUSIONS

Due to the randomness of instantaneous connectivities, a
consensus-based distributed detector is, in general, subop-
timal. We propose an adaptive distributed detector, which
considers the properties of the probabilistic consensus, and
compensates deviations from the average. We show that both
the deflection coefficient and the ROC curves of the adaptive
detector outperform those of the consensus based one, and
approximate the performance of the centralized detector.
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