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ABSTRACT
The usability of hand-held glucose meters to self-monitor
blood sugar levels is crucially affected by the measurement
time. We consider an image-based photometric measurement
setup that optically tracks the chemical reaction that takes
place on the blood covered test strip. The aim is to obtain a
reliable estimate of the true underlying glucose concentration
in the blood sample at an early stage of the observed chemical
reaction in order to increase the testing speed. We propose
using particle filtering to track the required image statistics
that are subject to a non-linear process. Using real data, we
show that the developed algorithm drastically reduces the
measurement time at a comparable quality of results.

Index Terms— Particle filter, Bayes filter, glucose mea-
surement, measurement time, usability

1. INTRODUCTION

According to the World Health Organization (WHO) more
than 347 million people worldwide currently suffer from dia-
betes [1]. Frequent self-monitoring of blood sugar levels us-
ing small hand-held devices, so-called glucose meters, is es-
sential for diabetics in order to obviate long-term health com-
plications such as heart disorders, kidney failures or damage
of blood vessels and nerves [2].

We consider hand-held glucose meters that operate on
the novel photometric measurement principle [3, 4, 5], which
works with a much smaller blood sample volume compared
to state-of-the-art devices [6]. Here, a camera optically tracks
the chemical reaction between the blood glucose and the
chemical agent on the test strip, which leads to a color change
of the test strip. In order to estimate the underlying glucose
concentration, we require the intensity value of the region of
interest (ROI), i.e. the part of the test strip that reveals the
chemical reaction.

Ideally, we are interested in the intensity value of the ROI
at the saturation stage of the chemical reaction, which is iden-
tified by a constant color of the ROI. However, waiting for the
chemical reaction to reach this stage conflicts with the aim of

a fast measurement. A decreased measurement time is of spe-
cial interest in order to reduce inconvenience to the patient.
Hence, the usability of hand-held glucose meters is crucially
affected by the measurement time.

We propose a state-space approach to obtain an estimate
of the underlying glucose concentration at an early stage of
the monitored chemical reaction such that the measurement
time is decreased. Being able to model the temporal evolu-
tion of the observed chemical reaction, we apply particle fil-
tering for online prediction of the required image statistics.
Particle filters have become a popular tool for various visual
tracking applications, see e.g. [7]. They are capable of dealing
with non-linear state-space models and are suitable for track-
ing multi-modal distributions [8, 9], which are both needed to
solve the state estimation problem at hand. In fact, particle
filtering has also been applied for glucose measurements, as
e.g. in [10], to predict the daily progress of a patient’s blood
glucose level so as to ensure optimal treatment. However, to
the best of our knowledge, so far there is no previous work on
decreasing the measurement time of glucose measurements
using a photometric measurement setup.

2. IMAGE-BASED PHOTOMETRIC
MEASUREMENT PRINCIPLE

The photometric measurement principle is commonly used to
determine the concentration of an analyte in a fluid [5], such
as glucose in a blood sample [4, 3]. First, a blood sample is
placed on a test strip, which carries a chemical agent. Then,
the blood glucose reacts with the chemical agent yielding a
color change of the test strip. A light-emitting diode (LED)
illuminates the test strip, such that the color change can be
tracked optically by a camera. The captured images are pre-
processed [6] and the ROI is determined by applying a sta-
tistical image segmentation method using, e.g., a clustering
approach [11]. For each image, we measure the amount of
light reflected from the ROI, referred to as relative remission
RROI. At the saturation stage of the chemical reaction, we ob-
serve Rsat, which can be directly mapped to the underlying
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Fig. 1. Idealized model of the temporal behavior of the chem-
ical reaction for high and low glucose concentrations.

glucose concentration C in the blood sample. The saturation
stage is identified by tracking the temporal development of
RROI and is characterized by a constant intensity level.

The temporal evolution of RROI yields the kinetic curve,
which characteristizes the observed chemical reaction. Fig. 1
shows two idealized kinetic curves for a low and a high glu-
cose concentration. Typically, the kinetic curve reveals three
stages of the chemical reaction [12]:

1. Constant intensity stage for t < t0: the chemical reac-
tion has not started yet.

2. Moistening period for t ≥ t0: the blood sample is rec-
ognized by the chemical agent and the reaction starts;
after a rapid drop in relative remission to Rdrop, the ki-
netic curve decays exponentially.

3. Convergence at t = tconv: at the saturation stage of
the chemical reaction, the kinetic curve approaches the
final relative remission value Rsat.

Fig. 2 shows examples of measurement images and cor-
responding histograms of image intensities at different times
of the chemical reaction. Typically, the histograms reveal two
major modes, which can be associated with the ROI and the
remainder of the test strip, respectively. In the beginning,
the two modes lie closely together. As the chemical reac-
tion proceeds, the ROI mode moves towards lower intensity
levels. For high glucose concentrations, the two modes be-
come clearly separated at the convergence stage. Here, the
color change is more prominent than for low glucose concen-
trations, for which the two modes remain closely together.

In contrast to the previously described state-of-the-art
method, we claim that modeling the temporal evolution of
the probability density function (PDF) of relative remission
values is useful to obtain a reliable estimate of the underlying
glucose concentration already at an early stage of the ob-
served chemical reaction. In particular, we can predict image
statistics, e.g. the histogram modes at the saturation stage by
using a Bayesian approach and online particle filtering, as
explained in the following section.
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Fig. 2. Examples of measurement images and the correspond-
ing histograms with modes. (a)+(d) At t = t0 the chemical
reaction has just started and the modes lie closely together.
(b)+(e) For t > t0 the ROI mode moves towards lower inten-
sity values, until (c)+(f) the modes are fully separated at con-
vergence for t = tconv. In Fig. (d)-(f) the y-axis indicates the
absolute frequency of occurrence of relative remission values.

3. BAYESIAN APPROACH AND PARTICLE
FILTERING

The recursive Bayesian filtering approach is commonly used
to solve dynamic state estimation problems [13, 8, 14]. Us-
ing a Markovian probabilistic model for the state evolution,
the complete solution to the stochastic filtering problem can
be expressed in a recursive manner using the system model
(prior) p(xt|xt−1) and the observation model (likelihood)
p(yt|xt). Given that the initial PDF p(x0) is known, we can
infer the state of the system xt at time instant t as soon as
a new observation yt becomes available. Typically, we are
interested in a particular marginal of the posterior PDF, the
so-called filtering distribution p(xt|y1:t), which can be recur-
sively estimated by making use of the Chapman-Kolmogorov
equation and Bayes’ rule [8] as

p(xt|y1:t) ∝ p(yt|xt)
∫
p(xt|xt−1) p(xt−1|y1:t−1) dxt−1.

(1)
From the filtering distribution, we can obtain an optimal es-
timate of the system state, such as a minimum mean squared
error (MMSE) or maximum a posteriori (MAP) estimate.

However, an analytic solution to evaluate the filtering
distribution in (1) exists only in some special cases with
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restrictive assumptions [15]. For many practical applica-
tions, non-linear Bayesian filters are used as they allow for
less restrictive assumptions on the system models. Applying
Monte Carlo (MC) sampling techniques, such as importance
sampling (IS), the optimal solution may be approximated
numerically. In the recursive case, IS forms the basis of the
sequential importance sampling (SIS) algorithm, which is the
core technique of particle filters [8, 13].

Particle filters propagate a set of Np random samples,
called particles, with associated scalar weights, {(xit, wit)}

Np

i=1,
through the given system to approximate the filtering distri-
bution p(xt|y1:t) by

p(xt|y1:t) ≈
Np∑
i=1

wit δ(xt − xit), (2)

where δ(·) denotes Dirac’s delta function and the weights are
normalized such that

∑Np

i=1 w
i
t = 1 [8]. Using SIS, the im-

portance weights are recursively updated by

wit ∝ wit−1

p(yt|xit) p(xit|xit−1)

q(xit|xit−1,yt)
, (3)

where q(xt|xt−1,yt) refers to the so-called proposal distri-
bution, which covers the support of the filtering distribution
p(xt|y1:t) and from which we can easily draw particles such
that xit ∼ q(xt|xit−1,yt) with i = 1, ..., Np [13]. Note that
for a very large number of particles, (2) is equivalent to a func-
tional description. Thus, we obtain a weighted approximation
of the MMSE estimate for the state of the system xt as [13]

x̂MMSE
t ≈

Np∑
i=1

wit x
i
t. (4)

4. PROPOSED ALGORITHM

4.1. Modeling and State-space Approach

Generally, we are interested in the final remission value of
the ROI Rsat. In principle, this value is not accessible until
the chemical reaction has saturated. However, we can model
the temporal behavior of the chemical reaction for t ≥ t0 as
[16]

R(t) = (Rdrop −Rsat) · eτ(t−t0) +Rsat, (5)

where Rdrop is the relative remission value after the drop of
the kinetic curve at t = t0 and τ denotes the decay rate.

Following a state-space approach, we define the static
state of the system as the true final remission value Rsat and
observations as pixel intensity values of a pre-processed im-
age, which is described by the matrix IM×N . Here, M andN
are the number of pixels in vertical and horizontal direction,
respectively. Each image element I(m,n) for m = 1, ...,M
and n = 1, ..., N describes a pixel’s intensity value and rep-
resents the measured relative remission at the corresponding
location in the image.

4.2. System and Observation Model

We explicitly introduce a dynamic to the originally static state
of the system. Thus, the state is artificially made to follow a
first order Markov process, where the current state only de-
pends on the previous state given a random walk dynamic
with small variance. This application-driven solution, for-
mally known as artificial evolution of parameters [17, 18],
eases the need of perfect initialization of the particle filter
and decreases the problem of sample degeneracy as poten-
tially more particles obtain a significant weight in the update
stage via (3). Hence, the system model is given by

Rsat,t = Rsat,t−1 + ut−1, (6)

where u is an i.i.d. additive zero-mean Gaussian noise com-
ponent distributed according to ut ∼ N (0, σ2

u) ∀ t ∈ R.
For the observation model we use (5) to relate an obser-

vation It(m,n) at time instant t to the state Rsat,t as

It(m,n) = (Rdrop−Rsat,t)·eτ ·(t−t0)+Rsat,t ∀ (m,n) ∈M×N.
(7)

Note that in the following we will drop the pixel location in-
dex (m,n) for national convenience when referring to a single
measurement pixel.

4.3. Particle Filtering

We choose particle filters to solve the given state estimation
problem as they are able to deal with the required multi-modal
PDF of image intensities as well as with the non-linear obser-
vation model. Here, we design two parallel, identical particle
filters that operate on different image regions, which together
form the region-based particle filter (RBPF). The image re-
gions are chosen such that one region is most likely to include
the ROI, and another region that most probably does not con-
tain ROI pixels. Overlapping regions are chosen to account
for uncertainty about the exact location of the ROI in the cap-
tured images.

For the design of the RBPF we use the system model in
(6) to formulate the prior as

p(Risat,t|Risat,t−1) = N (Risat,t;R
i
sat,t−1, σ

2
u), (8)

which is used as the proposal distribution such that (3) re-
duces to

wit ∝ wit−1 p(It|Risat,t). (9)

The likelihood p(It|Risat,t) is found by evaluating a kernel
density estimate f̂ of the PDF of observed pixel intensities
It = {Ijt}M×N

j=1 at It, which is obtained using (7), such that

p(It|Risat,t) = f̂(It; It, h), (10)

where we use a kernel density estimator based on a Gaussian
kernel function with adaptive bandwidth parameter h.
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Ref RBPF
C ≤ 100 0.37 1.06
C > 100 0.01 0.02
Overall 0.10 0.28

(a) Variation coefficient.

Ref RBPF
C ≤ 75 11.41 7.56
C > 75 8.03 11.55
Overall 8.64 10.83

(b) gMAD in mg/dl.

Table 1. Comparison of glucose-specific evaluation methods
for the reference (Ref) and the proposed algorithm (RBPF)
for different underlying glucose concentrations C in mg/dl.

We note that the RBPF generally enables the use of two
different likelihood formulations: one for the ROI and one
for the remainder of the test strip. However, we found that (7)
models the temporal evolution of non-ROI pixels sufficiently
well. In order to mitigate sample degeneracy, i.e. all but a few
samples will have negligible weight after a few iterations, the
particles are resampled at each time step [8].

5. EXPERIMENTAL RESULTS

5.1. Data Set and Setup

The available data set consists of 78 measurement videos that
were obtained using the setup as described in Sec. 2. The
measurements were taken using whole blood samples with
16 different underlying glucose concentrations ranging from
30 mg/dl to 550 mg/dl. Each video is of 20 s duration and
the camera takes 30 frames per second, such that each mea-
surement consists of 600 frames in total. Thereof, we only
consider those images that reveal the chemical reaction for
t ≥ t0. The particle filter uses 500 particles per region and
time step. Each region-based filter is initialized by a Gaussian
distribution with small variance centered at 100 and Rdrop, re-
spectively, which approximate well the distributions of im-
age intensities at t = t0. Here, Rdrop is obtained from the
first image by utilizing the state-of-the-art method. The vari-
ance of the system noise component is chosen as σ2

u = 3 to
overcome the straightforward initialization but to avoid sam-
ple degeneracy. The decay rate τ in (7) depends on the un-
derlying glucose concentration and can be approximated by
τ ≈ a · Rsat + b. Using the available data set, the parame-
ters are estimated as a = −1.24 · 10−4 and b = −0.02 via a
robust non-linear least squares method. The RBPF converges
as soon as the changes in both state estimates are sufficiently
small. In this way the measurement time is determined.

5.2. Results

Using the RBPF for image-based photometric glucose mea-
surement, the average testing time is reduced by approxi-
mately 50% at a comparable accuracy and precision of results
as for the state-of-the-art method described in Sec. 2. Fig. 3
reveals the average measurement times for different underly-
ing glucose concentrations. On average, the RBPF predicts
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Fig. 3. Average measurement times when using the RBPF
compared to the state-of-the-art method.

the required image statistics by 4.8 s compared to 9.8 s for the
reference. For specific measurement groups the testing speed
is even increased by 65%.

The quality of glucose measurements is assessed by
appropriate evaluation methods: an inter-group variance,
i.e. variation coefficient [6], that describes the precision of re-
sults and a glucose-specific mean absolute deviation (gMAD)
[19], which specifies the accuracy of the measurements. The
corresponding averaged values, which should both be small,
are given in Table 1. We find that the overall quality of re-
sults is comparable to the reference method, as both quality
measures do not deviate significantly from the reference. In
fact, Table 1(b) shows that for low glucose concentrations,
the RBPF leads to clinically more accurate results compared
to the reference. This is an important case, as in these cases
hypoglycemia is present and overestimation of the glucose
concentration can be fatal to the patient.

Additionally, our MATLAB simulations reveal that on av-
erage the proposed algorithm requires less than a third of the
computational complexity of the reference. This is mainly
due to the fact that we can omit typically computationally
costly segmentation procedures here. As a result the proposed
algorithm is suitable for hand-held devices with limited power
supply and storage capacities.

6. CONCLUSION AND FUTURE WORK

We have shown that applying particle filtering to the problem
of image-based photometric glucose measurement in hand-
held devices can drastically reduce the average testing time
at a comparable quality of results. Our findings encourage
to dedicate future work to tracking the complete multi-modal
image PDF instead of region-based components of it. Here, a
non-parametric mixture approach as outlined by Vermaak et
al. in [20] or a parametric approach using ideas by Kotecha
and Djurić in [21, 22] may be of interest.
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