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ABSTRACT

Rényi’s entropies play a significant role in many signal pro-
cessing applications. Plug-in kernel density estimation meth-
ods have been employed to estimate such entropies with good
results. However, they become computationally intractable
in higher dimensions, because of the requirement to store in-
termediate probability density values for a large number of
data points. We propose a method to reduce the number of
the samples in a plug-in kernel density estimation method for
Rényi’s entropies of real exponents and to improve the result
of the standard plug-in kernel density method. To this end, we
derive a univariate estimator, using an Hermite expansion of
sums of Gaussian kernels and a hierarchical clustering of the
samples. On simulated data from a univariate Gaussian distri-
bution, our method performs better than a k-nearest neigbour
algorithm and other kernel density estimation methods.

Index Terms— Rényi’s entropy estimation, Gaussian
kernels, Hermite expansion, hierarchical clustering

1. INTRODUCTION

The estimation of Rényi’s entropy and divergence is an im-
portant problem in information theory, because of their role
in a wide range of information-theoretic and signal process-
ing applications. Csiszár [1] relates Rényi’s entropy to cutoff
rates in channel and block coding. Rényi’s entropy has been
employed to measure the complexity and information content
of deterministic signals using their time-frequency function
as a probability density of the signal’s energy [2]. It also
appears in the definition of Rényi’s information dimension,
which is involved in coding theorems in compressed sensing
[3]. Quadratic order Rényi’s entropy plays a fundamental role
in statistical learning [4]. Rényi’s divergence has been applied
in clustering [5], in training for time series prediction [6], in
blind deconvolution [7] and machine learning [8].

The rich body of work on the estimation of Rényi’s and
Shannon’s entropies in the multivariate case includes methods
based on kernel density estimation, k-nearest neighbour dis-
tances and Euclidean graphs. As Shannon’s entropy is a limit-
ing case of Rényi’s α-entropy, when α→ 1, we describe prior

work on both types of entropy, for completness. A weighted
ensemble of kernel density estimation is proposed in [9], to
estimate multivariate entropy functionals, such as Shannon’s
entropy with applications to hypothesis testing and Rényi’s
entropy with applications to Panter-Dite factor estimation in
vector quantization. The information potential is derived as
a variation on kernel density estimation in [8], with applica-
tions to Rényi’s entropy estimation. Wang et. al. [10] in-
troduce a k-nearest neighbour estimator for multidimensional
Kullback-Leibler divergence. A different k-nearest neighbour
estimator is derived for Rényi’s entropy of multidimensional
densities in [11]. In the context of manifold learning, Rényi’s
entropy is estimated using the method of the minimal span-
ning tree, which is a subset of continuous quasiadditive Eu-
clidean graphs, for multivariate densities [12]. For α ∈ (0, 1),
Rényi’s entropy is estimated as the logarithm of the total edge
weight of a minimal k-point Euclidean graph created with a
greedy algorithm [13]. A minimax rate-optimal functional
estimation method is proposed in [14] to estimate Shannon’s
entropy and Rényi’s entropy with α ∈

(
0, 3

2

)
. The number

of samples required to estimate Rényi’s entropy, for discrete
distributions with k symbols, is a particular type of a function
of k, according to the order of the entropy, α, [15]: it is super-
linear for all α < 1, approximately linear for real α > 1 that
are not integers, and sub-linear for integer α > 1.

The accuracy of kernel density methods makes them ap-
pealing to estimate Rényi’s entropy. However, in higher di-
mensions, such methods suffer either from the need to store
a large number of intermediate probability values or from the
need to run a large number of nested for loops to compute
such probabilities. As an effort to solve this problem, we de-
velop an estimation algorithm for one-dimensional densities,
by improving on the plug-in kernel density estimator. The fi-
nal aim is to develop a multivariate kernel density estimator,
with high accuracy and requiring a lower number of points
than the original samples. However, this is beyond the scope
of the paper and we focus here on the one-dimensional case.
Our aim is to reduce the number of points used for compu-
tation and to improve the estimate. To this end, we create
a clustering scheme of the samples, which produces an im-
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provement in the entropy estimate over the standard plug-in
kernel method. Based on an Hermite expansions of the expo-
nential kernels and using hierarchical clustering, we replace
the original samples with a smaller number of strategically
placed points, such that Rényi’s entropy estimate is improved.
The derivation starts with a sum of Gaussian kernels, as found
in kernel density estimation [16], [17]. We expand each Gaus-
sian kernel into an Hermite infinite sum, similarly to the main
idea in the Fast Gauss Transform, introduced by [18] and ex-
tended in [19]. After classification, for each cluster of sam-
ples, we apply a linear approximation to transform the orig-
inal sum of the kernels into a new sum using fewer points,
which are the cluster centroids. We prove that our estimator
tends to the plug-in kernel estimator, as N →∞, and that the
latter estimator converges almost surely to the true entropy.
As a result, our estimator is strongly consistent for α ∈ R.

The paper is organized as follows: in section 2 we pro-
vide the mathematical derivations, describe the clustering al-
gorithm and prove consistency results. In section 3, we com-
pare our method with the k-nearest neighbour algorithm [11]
and several kernel density estimation methods, in simulation
experiments, and we reserve the last section for conclusions.

2. DERIVATION OF THE ESTIMATOR AND ITS
PERFORMANCE ANALYSIS

2.1. Mathematical derivations

For continuous probability density functions, Rényi’s α-

entropy [20] is Rα(p) =
1

1− α
log

∫
x

pα(x)dx.

We will use the the Gaussian kernelK(u) =
1√
2π

e− 1
2u

2

and

the kernel density estimator p̂(x) =
1

Nh
·
N∑
i=1

K

(
x−Xi

h

)
.

⇒ p̂α(x) = 1

(Nh
√

2π)
α ·
[∑N

i=1 e− 1
2 ( x−Xih )

2]α
.

Let S1 (x) =

N∑
i=1

e− 1
2 ( x−Xih )

2

and I1 =

∫
x

Sα1 (x) dx.

Let N be the number of samples, h = 1.06 · σ̂ · N−0.2 the
Silverman’s rule for kernel bandwidth estimation, σ̂ a con-
sistent standard deviation estimate, M the number of clusters
and XjC ,∀j = 1 : M , the cluster centroids.

Definition 1. With the above notations, Rényi’s entropy esti-
mator of real order α ∈ R is given by

R̂α(p) =
1

1− α
· log

[
1(

Nh
√

2π
)α · I1

]
=

1

1− α
·

· log

[
1(

Nh
√

2π
)α · ∫

x

 M∑
j=1

e−
1
2

(
x−XjC

h

)2

·Nj

α dx

]
.

The Hermite expansion of an exponential function is de-

fined as [21]: ext− t
2

2 =

+∞∑
n=0

Hn(x) · t
n

n!
.

⇒ e− 1
2 ( x−Xih )

2

= e− 1
2 ( xh )

2

·

[
+∞∑
n=0

Hn

(x
h

)
·
(
Xi
h

)n
n!

]

⇒ S1 = e− 1
2 ( xh )

2

·

[
N∑
i=1

+∞∑
n=0

Hn

(x
h

)
·
(
Xi
h

)n
n!

]
=

= e− 1
2 ( xh )

2

·

[
+∞∑
n=0

Hn

(x
h

)
· 1

hn · n!
·
N∑
i=1

(Xi)
n

]
.

Let S2 =

N∑
i=1

(Xi)
n. We separate the N data points into M

clusters, each cluster having Nj number of components, with
M∑
j=1

Nj = N,∀j = 1 : M , ⇒ S2 =

M∑
j=1

Nj∑
k=1

(Xjk)
n. We

create the clusters of samples to be able to use a linear ap-
proximation (1 + γ)

n ' 1 + n · γ, with γ � 1, γ → 0. For
each cluster j = 1 : M , we write the points as the centroid,
XjC , plus a small linear deviation: Xjk = XjC · (1 + γjk),
γjk � 1, γjk → 0,∀k = 1 : Nj . Let γj =

∑Nj
k=1 γjk, ∀j =

1 : M . We observe that γjk =
Xjk
XjC
−1 andXjC =

∑Nj
k=1Xjk
Nj

⇒ γj =

Nj∑
k=1

(
Xjk

XjC
− 1

)
= 0⇒ S2 =

M∑
j=1

Nj · (XjC)
n
.

⇒ S2 =

M∑
j=1

Nj∑
k=1

[(XjC)
n · (1 + γjk)

n
]

'
M∑
j=1

Nj∑
k=1

[(XjC)
n · (1 + n · γjk)]

=

M∑
j=1

(XjC)
n ·

 Nj∑
k=1

1 + n ·
Nj∑
k=1

γjk


=

M∑
j=1

Nj · (XjC)
n
. (1)

⇒ S1 = e− 1
2 ( xh )

2

·

(
+∞∑
n=0

Hn

(x
h

)
· 1

hn · n!
· S2

)

= e− 1
2 ( xh )

2

·

{
M∑
j=1

[
+∞∑
n=0

Hn

(x
h

)
· Nj · (XjC)

n

hn · n!

]}

= e− 1
2 ( xh )

2

·

(
M∑
j=1

Nj ·HE0

)
, (2)
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where we denoted HE0 =

+∞∑
n=0

Hn

(
x
h

)
n!

·
(
XjC

h

)n
. The

definition of the Hermite expansion of an exponential expres-

sion yields HE0 = e
x
h ·
XjC
h −

1
2 ·
(
XjC
h

)2

.

⇒ S1 ' e− 1
2 ( xh )

2

·
M∑
j=1

Nj · e
x
h ·
XjC
h −

1
2 ·
(
XjC
h

)2

=

=

M∑
j=1

Nj · e−
1
2

(
x−XjC

h

)2

. (3)

⇒ R̂α(p) follows from this result, as stated in definition 1.

2.2. Clustering of the data points

We perform the clustering of the samples with hierarchical
clustering [22]. This method offers a division on multi-
ple levels, meaning that clusters are created within clus-
ters. To find one separation of points, we need to specify
a distance threshold, such that all the elements within this
distance from the cluster centroid belong to this collection.
We use γ from the linear approximation, as a distance mea-
sure between points instead of the more widely used Eu-
clidean distance. For each cluster j, we write the elements as
Xjk = XjC · (1 + γjk) , γjk � 1, γjk =

Xjk−XjC
XjC

. We cre-
ate the distance matrix between any two data points, Xi, Xj ,
as γij = abs[

Xj−Xi
Xi

].
Since information about the data source is not available,

we will employ a data-driven technique of selecting the clus-
tering threshold. We use ideas similar to cross-validation. We
start with the plug-in kernel density estimate, applied on the
entire data set of size N . We compute 10 additional Rényi’s
entropy estimates, using different clustering thresholds. The
final Rényi’s estimate will be the mean of these 11 values. The
procedure of selecting the partitioning of the data is similar to
a 10-fold cross-validation scheme: we select uniformly at ran-
dom a subset ofN−100 samples from our data vector. We use
a grid search to find the best clustering threshold, such that the
optimization criterion is minimized. The optimization crite-
rion is the standard deviation of the vector of Rényi’s entropy
estimates up to the current iteration. The lower limit of the
grid search is CthrL = h

N , the step is equal to δthr =
CthrL

10
and the upper limit is equal to CthrU = CthrL · 50. We ini-
tialize a vector RE with the plug-in kernel density value, as
mentioned above. At every step i = 2 : 11, we memorize two
arrays of values: RE that consists of the previous i − 1 esti-
mates and RC that stores the entropy estimates given by the
grid of clustering thresholds described above, for the current
ith set. The clustering threshold at the ith iteration will be
selected such that its corresponding element of RC provides
the minimum standard deviation for the newly formed vector
of RE . This element will be added to RE . The final entropy
estimate will be the mean over RE .

2.3. Asymptotic analysis of the estimator

We prove that, in the limit N → ∞, our estimator from defi-
nition 1 (renamed Rhc in the simulation experiments) tends
to the plug-in kernel density estimator of Rényi’s entropy,
Rkde. We prove that Rkde is strongly consistent, i.e. con-
verges almost surely to the true value, using Theorem 3.1
from [23] and the continuous mapping theorem [24]. As a
result, Rhc converges almost surely, i.e. is strongly consis-
tent. Let hN = h = 1.06 · σ̂ ·N−0.2, where σ̂ is a consistent
estimator of the standard deviation of the unknown distribu-
tion. We used the built-in Matlab function for its estimation.

Theorem 1. The estimator Rhc → Rkde, as N →∞.

Proof. We have that 0 ≤ hN ≤ 1 and limN→∞ hN = 0.

⇒ lim
N→∞

CthrL = lim
N→∞

hN
N

= 0

⇒ lim
N→∞

δthr = 0 and lim
N→∞

CthrU = 0. (4)

This implies that the number of clusters M → N or, equiv-
lently γik → 0, ∀j = 1 : M,k = 1 : Nj , from the linear ap-
proximation. This means that we obtain the original plug-in
kernel density estimate, Rkde. In the 10-fold cross-validation
scheme, all the elements become equal toRkde, as well as the
initial element. As a result, the mean of this vector will be
equal to the plug-in kernel estimate. Thus, Rhc → Rkde, as
N →∞.

We apply the theory presented in [23], to prove that Rkde
converges almost surely. With their notation, the unknown
probability density is denoted by f(x) and

T (f) =

∫
R

Φ(f(x))dx, k = 0,Φ(x) = xα, α ∈ R (5)

and its kernel density estimator is

f̂hN =
1

N

N∑
i=1

KhN (x−Xi),∀x ∈ R,

KhN (x−Xi) =
1

hN
K(

x−Xi

hN
). (6)

Then, Rényi’s entropy becomes Rα(f) = log T (f) and
Rkde = Rα(f̂hN ) = log T (f̂hN ).

Theorem 2. The plug-in kernel density estimator is strongly
consistent, i.e. Rkde → Rα(f) a.s., as N → ∞, where a.s.
stands for almost surely.

Proof. In our simulation experiments, the probability den-
sity function is a Gaussian distribution, which satisfies con-
ditions (F.i−F.iii) from [23]. The proofs of this section are
valid for any probability density f that satisfies conditions
(F.i− F.iii), not only for Gaussian distributions. The kernel
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function K is a Gaussian distribution, which satisfies condi-
tions (K.i)− (K.v) of [23]. The function Φ(x) = xα, α ∈ R
satisfies conditions (Φ.i)− (Φ.ii) of [23]. The second deriva-
tive of Φ is equal to Φ′′(x) = α · (α − 1) · xα−2. As the
probability density f and the kernel K are bounded, the do-
main of Φ is bounded, i.e Φ : [aΦ bΦ] → R, Φ(x) = xα,
α ∈ R ⇒ sup Φ′′ is bounded, i.e. sup Φ′′ ≤ BΦ. Thus,
condition (Φ.iii) is fulfilled.

In addition, we have that limN→∞
logN
N ·hN = 0. Thus, all

the conditions of Theorem 3.1 of [23] are satisfied and this
yields T (f) → T (f̂hN ) a.s., as N → ∞. Then, as the log-
arithm is a continuous function, by the continuous mapping
theorem [24], Rkde → Rα(f) a.s., as N →∞.

3. SIMULATION RESULTS

We perform simulation experiments with data generated from
a univariate Gaussian distribution with mean µ = 5 and vari-
ance σ = 1. We compare the newly derived estimator Rhc
with the theoretical Rényi’s entropy for a Gaussian distribu-
tion, Rth, with the plug-in kernel density estimator, Rkde,
with the information potential estimator [8], Ra, and with
the k-nearest neighbour estimator [11] with k = 25, Rknn.
The theoretical value can be easily derived and is equal to
Rth = 1

2 log 2π + log
√
σ + 1

2·(α−1) logα. The Rényi’s en-
tropy estimates are denoted by R and the empirical mean by
E.

Fig. 1. R in the order of best to worst: Rth - line with x
marker (-x-), Rhc - solid line (-), Rkde - dashed line (–), Ra
- no line with * marker (*) and Rknn - dotted line with dot
marker (...), ∀α ∈ R.

Fig. 2. The logarithm of the empirical mean error, logE(R−
Rth), in the order of best to worst: Ehc - solid line (-), Ekde
- dashed line (–), Ea - no line with * marker (*) and Eknn -
dotted line with dot marker (...), ∀α ∈ R.

Fig. 3. The logarithm of the empirical MSE,
logE(R−Rth)2, in the order of best to worst: MSEhc -
solid line (-), MSEa - no line with * marker (*), MSEkde -
dashed line (–) and MSEknn - dotted line with dot marker
(...), ∀α ∈ R.

In figure 1, we present the empirical mean of the estima-
tors, as a function of α ∈ R. The size of the data sets is
N = 1000 samples. The values are averaged over 100 exper-
iments. Our method is the best performing algorithm.

In figure 2, we show the logarithm of the empirical mean
error between the entropy estimates and the theoretical value,
as a function of the sample size, N , in the case α = 2. In fig-
ure 3, we present the logarithm of the empirical mean-square
error between the entropy estimates and the theoretical value
(MSE), as a function of the sample size,N , in the case α = 2.
The results are averaged over 100 experiments. We selected to
display the logarithm of these values, to make the lines clearly
visible in the figures, because the difference between the ker-
nel density methods is much smaller than that of these meth-
ods and the k-nearest neighbour algorithm. Our method pro-
duces the smallest mean error and mean-squared error. These
errors are decreasing, as the sample size N is increasing.

4. CONCLUSIONS

We have successfully obtained a univariate strongly consis-
tent estimator for Rényi’e entropy of real order, using Gaus-
sian kernels. We have reduced the number of samples re-
quired for the estimation and we have improved the plug-
in kernel density estimate. Our experiments reveal that the
newly proposed method is the best performing algorithm. As
the sample size increases, our estimator tends to the plug-
in kernel density estimator, which, in turn, tends to the true
entropy. The improvement on the plug-in kernel density es-
timator takes place for smaller number of samples. This is
beneficial in applications where the number of data points is
limited. As an extension to higher dimensions, we would de-
rive a multivariate Hermite expansion of the exponentials and
then apply the hierarchical clustering of the samples.
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