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ABSTRACT

We formulate the target tracking problem for radar in a multipath
environment where significant uncertainty on the locations of the
multipath causing obstacles (walls) is present. Most of the recent ef-
forts towards investigating target tracking in multipath environments
assume knowledge of these wall locations. Relaxing this assumption
makes the tracking problem very challenging. We propose a statisti-
cal filter (tracker) and a data association method based on importance
sampling to address these challenges.

Index Terms— Multipath Radar, Importance sampling, Bayesian

1 Introduction
Target tracking in a multipath environment has recently been a
highly researched topic among the statistical signal processing re-
search community. This is mainly motivated by its applications in
areas such as defence, autonomous navigation, and communication.

Many interesting approaches have been used by researchers in
investigating the problem of estimation/detection in a multipath en-
vironment where the geometry of the surveillance area is known
[1, 2, 3, 4, 5, 6, 7]. As a summary, most of this work consider an
environment where the number of obstacles is limited or configured
in a special way, e.g., parallel walls. The work done by us using raw
sensor measurements to track a target in an urban terrain where walls
are not necessarily parallel to each other can be found in [8, 9, 10]. A
natural extension of our previous work was to investigate the prob-
lem of tracking in a multipath environment where a large uncertainty
about the environment prevails. This paper describes the work done
towards that end.

Our task of tracking in an uncertain multipath environment
closely resembles the well established Simultaneous Localisation
and Mapping (SLAM) problem appearing in the domain of robotics
and control research [11, 12]. However, the difference between the
SLAM and tracking in an uncertain multipath environment comes
from the measurement model used; much of SLAM uses LiDAR
technology where multipath is not relevant. For the problem consid-
ered in this paper, the relationship between the measurements and
the environment is more indirect than in conventional SLAM setups.

Some recent work on radar tracking in an unknown multipath
environment is found in [13]. The problem considered there is to
track a moving radio frequency emitter. The data associations are
performed using the well known Viterbi algorithm. The associations
are achieved via a maximum likelihood method. The authors take
a suboptimal approach of using only the predicted target state when
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evaluating the cost function for the Viterbi algorithm. The disadvan-
tage of this approximation is that, if the process covariance is broad,
the chances of the true target state being significantly different from
the predicted are high, and hence inaccurate association weights.

In this paper, we present our work on tracking a target in a highly
uncertain multipath environment where the radar system (both the
transmitter and the receiver) is not collocated with the target. It is
assumed that, a priori, not much information about the location of the
walls is available; hence the large uncertainty about the environment.
The tracking problem proved to be vary challenging, due to: large
uncertainty in the environment and the data association problem.

The brute force calculation of all the association probabilities
is computationally very expensive and thus we use an importance
sampling procedure to draw samples from association events. The
posterior moments conditioned on the sampled association events
are also calculated using a Monte Carlo approach. Finally, the state
estimate is obtained by averaging the conditional posteriors over as-
sociation probabilities. Special care is needed in fusing the mixture
of conditional posterior distributions. This is due to the implicit or-
dering in a vector representation, which results in unnecessary con-
fusion between the labels assigned to the walls. Conventional data
association algorithms such as Probabilistic Data Association Filter
(PDAF) [14] or Joint Probabilistic Data Association Filter (JPDAF)
[14] do not address this problem. We used the Set JPDAF (SJPDAF)
method suggested in [15] to address the issue which yields more
accurate Gaussian approximations. Because it is desired to focus
on the problems posed by an unknown environment, we analyse the
case where the environment contained two walls and assume in this
work perfect detections with no false alarms.

The rest of the paper is organised as follows. We introduce the
process and measurement models in Section 2. The estimation prob-
lem is also formulated in that section. The methodology is then pre-
sented in Section 3. Simulation examples along with a discussion
are presented in Section 4 followed by concluding remarks.

2 Modelling and notation
Consider a surveillance area pixelated as a K × K grid. Two walls
are located within this surveillance area. The (linear) walls are rep-
resented by slope-intercept pairs [αi, βi] (i = 1, 2) corresponding to
the line:

x cosα− y sinα+ β = 0.

A point target is moving across the surveillance region and the kine-
matic state of it at discrete time k is denoted by Tk. Tk consists of
position and velocity information in the Cartesian plane; that is,

Tk = [xk ẋk yk ẏk]′,
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where (xk, yk) ∈ R2 is the position of the target and the dot no-
tation denotes differentiation with respect to time. Without loss of
generality, we consider the origin (0, 0) to be the bottom left most
point of the surveillance region. A radar transmitter and a receiver
are located at known positions within the surveillance region to col-
lect measurements for use in localizing the target. Note that one of
the limitations of our representation is that we assume the wall to ex-
ist throughout the intersection between the straight line represented
by the wall parameters and the surveillance area. We believe that
the extension to the general case involving line segments could be
developed based on the foundations laid out in this paper.

2.1 State dynamics

The kinematic state of the target is assumed to transition from time
k − 1 to k according to the following stochastic model:

Tk = FTk−1 + vk, (1)

where

F = I2 ⊗
[
1 1
0 1

]
and vk ∼ N (·; 0,Q), (2)

with the symbols ⊗ , I, and 0 denoting the Kronecker operator,
Identity matrix, and Zero matrix of appropriate dimensions respec-
tively, andN (·; ,µ,Σ) the usual notation for the Gaussian distribu-
tion.

The wall parameters are modelled as static random parameters.
Additionally the wall parameters for the two walls are independent
of each other. If it is assumed that all the possible lines passing
through the surveillance area are equally likely to be a wall, then
it can be shown that the first two moments of a prior distribution
satisfying this requirement are given by:

Mean (α, β) =

[ π
2

− k
π

]
and Cov (α, β) =

 π2

12
−
k

π

−
k

π

k2(2π2 − 6 + π)

6π2


(3)

We use a normal distribution with the above moments as a prior dis-
tribution for the wall parameters. The state vector xk at time k con-
sists of both the target dynamics and wall parameters; that is,

xk = [T′k α1 β1 α2 β2]′. (4)

2.2 Measurements

The measurements at time k consist of range (r) and Angle of Ar-
rival (AOA) (θ) of each multipath and the direct path. We define a
multipath as a path from the transmitter to the radar sensor which has
been in contact with the target as well as at least with one wall. Any
path that has hit a wall more than twice is ignored in the model un-
der the assumption that such paths are subject to severe attenuation
in signal power. We assume that the walls act as specular reflectors
and that necessary processing has been carried out to reject clutter
measurements.

The measurement vector at time k for N paths is given by:

yk = [r′1,k r′2,k . . . r′N,k]′ + uk = [y′1,k y′2,k . . . y′N,k]′, (5)

where

ri,k = [ri,k θi,k]′ denotes a vector containing (noiseless)

range and AOA of the ith path at time k,
uk ∼ N (·; 0; R) is the measurement noise,

yi,k is the vector containing the range and AOA of the ith

multipath at time k.

The noise covariance matrix R is:

R = IN ⊗
[
σ2
r 0

0 σ2
θ

]
.

We assume that all the possible paths arising from reflections from
the two walls exist at time k.

2.3 Path configurations and the measurement
association vector

A path can be decomposed into two segments: the forward path from
the transmitter to the target and the reverse path from the target to the
sensor. Assume that at most one wall is hit in each segment. Thus
a path is uniquely identified by two numbers given by the labels of
the walls that were hit in each segment respectively. If a wall is not
hit on a particular segment, then that segment would be identified by
‘0’. We denote this pair of non-negative integers identifying a path
as a path configuration.

Note that for a 2 wall environment, 9 distinct path configurations
exist. Let the 9×2 matrix C denote the collection of all the path
configurations, where the ith row Ci contains the ordered pair of
numbers identifying the ith path configuration; that is,

C =

[
0 1 2 0 0 1 1 2 2
0 1 2 1 2 2 0 0 1

]′
. (6)

By itself the measurement vector yk does not provide information
about how the measurements are associated with path configurations.
The association vector ek provides the mapping between measure-
ments and path configurations. Let ek ∈ S9 (set of permutations of
integers 1, 2, . . . , 9). Then, the ith element of ek, denoted by ei,k
maps the path configuration represented by the ith row of C to the
ethi,k measurement yei,k,k at time k.

2.4 Estimation problem

Let yk = [y′1 y′2 . . . y′k]′ denote the vector of measurements up
to time k. We are interested in estimating the state vector xk upon
observing yk and in particular the posterior density p(xk|yk).

3 Method
It is convenient to define the following indexing notations which will
be used to describe the methodolody.

1 : j ··= [1 2 . . . j]′ where j ∈ Z+ (7)

xv ··= [xv1 xv2 . . . xvN ] where xn is the nthelement of x

and the index vector v consist of N integer indices. (8)
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Consider the posterior distribution of the target state xk:

p(xk|yk) =
∑
ek

p(xk|yk, ek)p(ek|yk). (9)

First, we concentrate on the posterior probability for an associa-
tion hypothesis p(ek|yk):

p(ek|yk) ∝ p(yk|ek,yk−1)p(ek|yk−1), (10)

=

N∏
n=1

pn(yen,k|y
k−1), (11)

where N = 9 is the number of path configurations, and

pn(yen,k,k|y
k−1) ··= p(yen,k,k|e1:n,k,ye1:n−1,k,k,y

k−1). (12)

Note that we have assumed p(ek|yk−1) = p(ek) is a uniform prior
distribution in deriving (11).

An optimal implementation of the filter using (9) and the pos-
terior association probability (11) is not possible because there are
too many association hypotheses ek, as well as intractable integrals.
Procedures for addressing these issues are discussed next.

Assume that we have at our disposal, a sample approxima-
tion p̂(xk|e1:n−1,ye1:n−1,k,y

k−1), which approximates the dis-
tribution p(xk|e1:n−1,ye1:n−1,k,y

k−1). Then, using Chapman-
Kolmagarov formula and Monte Carlo sampling, we approximate:

pn(yen,k|y
k−1) ≈ 1

M

M∑
m=1

pn(yen,k|x
(n,m)
k ,yk−1), (13)

where x
(n,m)
k ∼ p̂(xk|e1:n−1,ye1:n−1,k,y

k−1).
The approximate distribution p̂(xk|e1:n−1,ye1:n−1,k,y

k−1)
that was used to draw samples in (13) can be updated to
p̂(xk|e1:n,ye1:n,k,y

k−1) as shown by (14), which satisfies the
recursive dependence required to evaluate pn+1(·):

p̂(xk|e1:n,ye1:n,k,y
k−1) ∝

M∑
m=1

pn(yen,k|x
(n,m)
k ,yk−1)δ(xk − x

(n,m)
k ). (14)

In the implementation, we improved the sample approximation
(14) by introducing resampling and regularisation [16] and the re-
sulting distribution is summarised as a Gaussian (by matching the
sample mean and covariance). Additionally, we used the method of
progressive correction as in [17], which proved to be invaluable in
the presence of large uncertainty in the environment. Space restric-
tions inhibit us from being more descriptive on these improvements.

Again, consider p(ek|yk). We use (13) in (11) to approximate
the posterior distribution for the association vector as:

p(ek|yk) ∝
N∏
n=1

M∑
m=1

pn(yen,k|x
(n,m)
k ,yk−1). (15)

Drawing a sample directly from (15) is not computationally
feasible because of the enormous number of possible hypotheses.
Hence we now present an importance distribution q(ek|yk) to draw
association vector samples.

First, define fn(xk,y
k, e1:n−1, v):

fn(xk,y
k, e1:n−1, v) ··=

pn(yv,k|e1:n−1, en = v,x
(n,m)
k ,yk−1) where v ∈ An, (16)

with An ··= {1, 2, . . . , N}\{e1, e2, . . . , en−1}. Now, define the
importance density q(ek|yk) as:

q(ek|yk) =

N∏
n=1

(∑M
m=1 fn(x

(n,m)
k ,yk, e1:n−1, v) where v ∈ An∑

v∈An

∑M
m=1 fn(x

(n,m)
k ,yk, e1:n−1, v)

)
,

(17)

In the context of importance sampling, the samples obtained
from q(ek|yk) are assigned a weight φ̃ given by:

φ̃ = p(ek|yk)/q(ek|yk), (18)

∝
N∏
n=1

∑
v∈An

M∑
m=1

pn(yv,k|e1:n−1, en = v,x
(n,m)
k ,yk−1). (19)

We obtain the posterior densirty for the target state:

p(xk|yk) =

∫
p(xk|yk, ek)p(ek|yk)dek, (20)

∝∼
J∑
j=1

φ̃j p̂(xk|e(j)
k ,yk), (21)

where

e
(j)
k ∼ q(ek|y

k), (22)

φ̃j ∝
N∏
n=1

∑
v∈An,j

M∑
m=1

pn(yv,k|e(j)
1:n−1, en = v,x

(n,m)
k ,yk−1),

(23)

with An,j given by:

An,j = {1, 2, . . . , N}\{e(j)1 , e
(j)
2 , . . . , e

(j)
n−1}. (24)

3.1 The need for the Set JPDAF
A common problem with data association algorithms such as PDAF,
JPDAF, and Multiple Hypothesis Tracking (MHT) filter [18] is the
requirement of these algorithms to retain the label assigned to each
target throughout the trajectory. This is a consequence of the im-
plicit labelling when parameter vectors are concatenated into a vec-
tor. As an illustration of the problem observe that the association
vector samples e

(1)
k and e

(2)
k given below represent the same physi-

cal mapping, if the labels of the walls are swapped under any one of
those hypothesis:

e
(1)
k = [2 9 4 3 5 1 6 8 7]′, e

(2)
k = [2 4 9 5 3 7 8 6 1]′. (25)

The consequences of this effect on the estimates are significant.
Consider the posterior estimates of just the slope parameters of the
two walls (that is, α1 and α2). Assume that the true slope parameters
are given by π/4 and −π/6. For the purpose of demonstration we
restrict the number of ek samples to just the 2 samples e

(1)
k and e

(2)
k

explicitly given in (25). Further, assume that the two hypotheses are
equally weighted; that is, φ̃1 = φ̃2 ∝ .5. Finally assume that the
conditional posteriors are given by the following two equations:

p̂(α1, α2|e(1)
k ,yk) = N

(
·;
[

0.74
−0.49

]
, 0.01I2

)
(26)

p̂(α1, α2|e(2)
k ,yk) = N

(
·;
[
−0.55

0.8

]
, 0.01I2

)
(27)
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The contour plot for the posterior obtained by substituting
(26) and (27) into (21) is shown in Figure 1(a). It is evident that
the posterior is bimodal. Therefore, the posterior mean, given by
[0.095 0.155]′, is quite distant from the true value and a Gaussian,
as used in JPDAF, is a poor approximation to the posterior.
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Fig. 1: Contour plot of p(α1, α2|yk): (a) before label switching (b)
after label switching.

Suppose now, we exchange the wall labels under the data asso-
ciation hypothesis e

(2)
k . Then the conditional posteriors are:

p̂(α1, α2|e(1)
k ,yk) = N

(
·;
[

0.74
−0.49

]
, 0.01I2

)
(28)

p̂(α1, α2|e(2)
k ,yk) = N

(
·;
[

0.8
−0.55

]
, 0.01I2

)
(29)

The contour plot for the posterior distribution after label switch-
ing is given in Figure 1(b). Note that the posterior approximation af-
ter label switching is much closer to the true parameters. Of course
we could have alternatively exchanged the labels under e

(1)
k instead

of e
(2)
k and obtained [−0.52 0.77]′ as the posterior mean, which is

equally acceptable because we are only interested in knowing where
the walls are. A modification to the traditional JPDAF algorithm
with the emphasis on label switching to solve the above problem is
known as Set-JPDAF [15]. We have incorporated SJPDAF in the
context of the mixture appearing in (21).

4 Results and discussion
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Fig. 2: Multipath environment.

Consider the simulation setup depicted in Figure 2, where K is
set to 200. The two walls are represented by the parameters (α, β)
given by [π/4 150 cos(π/4)]′ and [5π/8 250 cos(3π/4)]′ respec-
tively. The coordinates of the radar transmitter and receiver are
(100, 120) and (90, 90) respectively. The initial prior for the target
kinematic state T0 is a multivariate normal with mean [60 0 50 5]′

and the covariance matrix is diagonal with the diagonal elements

given by [9 1 9 1]′. The covariance matrix Q for the process noise
is:

Q =

[
κ1 0
0 κ2

]
⊗

 (∆T )3

3

(∆T )2

2
(∆T )2

2
∆T

 , (30)

where κ1 = κ2 = 0.5 and the state sampling interval ∆T = 1.
Measurement noise parameters are set by σ2 = 1 and σθ = π/90.

We tested the filter against two separate prior distributions for
the wall parameters. The first is a normal approximation using the
moments (3). Let this prior be denoted by pw,1(·). The second prior
pw,2(·) is less uncertain about the environment compared to pw,1(·).
To put the level of uncertainty assumed by the prior distributions
in some context, note that for pw,1, the standard deviation (of the
marginal distributions) for the intercept (β) is approximately 106.8
and for the angle parameter (α) is approximately 52 degrees. The
corresponding numbers for pw,2 are 70 and 30 respectively.

The number J of association samples drawn is fixed at 300 for
the simulations appearing in this section. Further, all the simulation
results that follow are produced by Monte Carlo using 150 realisa-
tions of each experiment. The filter was run against various uncer-
tainty levels ranging from a deterministic environment (wall param-
eters are known) through to pw,2 and pw,1. The results are shown in
Figure 3(a). By observing the three curves in Figure 3(a) which had
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Fig. 3: (a) Assessing the effect of uncertainty on the filter perfor-
mance. (b) Assessing the effectiveness of SJPDAF.

used M = 1000 samples, we conclude that the results confirm the
intuition that larger uncertainty makes the tracking problem harder.
In fact with M = 1000 for pw,1 the filter loses the track. However
increasing the sample size to M = 3000 produces good results even
for the prior with the largest uncertainty pw,1. The prior pw,1 with
M = 3000 was used to assess the contribution of the SJPDAF algo-
rithm and the result is illustrated in Figure 3(b). The algorithm failed
when the SJPDAF was not used, which is not surprising due to the
reasoning in Section 3.1.

5 Conclusion
We have addressed a challenging problem of tracking a target in a
highly uncertain multipath environment. An importance sampling
based filter is proposed to solve the tracking problem. In particular,
the proposed method is able to avoid the typical exhaustive calcu-
lation involving a summation over the potentially large number of
possible data association hypotheses. We incorporated the Set Joint
Probabilistic Data Association filter to address a common labelling
problem linked to conventional data association algorithms. Though
we have assumed a clutter free model with two walls, the frame-
work presented can be extended to incorporate clutter and multiple
unknown walls.
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