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Abstract—We consider the problem of selecting and ordering
a subset of N ′ out of N observations to be presented to a human
being in the context of a binary hypothesis testing problem.
We restrict our attention to i.i.d. Gaussian observations. We
propose an extension of the approximate subset sum algorithm,
and show that it can be used to solve the problem with polynomial
complexity. Furthermore, we show that the solution yields near
optimal detection performance when compared to the case where
all N observations are optimally processed.

Index — Cognitive biases, Subset selection, Neyman-
Pearson, Likelihood, Subset sum.

I. INTRODUCTION
Statistical inference methods allow to optimally draw con-

clusions from data. For these methods, the larger the number
of observations, the lower the probability of errors. However,
humans do not process information optimally due to cognitive
biases they are subject to. For example, humans might become
insensitive to new data after some point. Furthermore, the
order in which information is presented to a person can affect
their decision. Hence with the increase in the number of data
sources available to each individual, it is becoming critical to
figure out what subset of information to emphasize to a human
being, and in which order, to optimize their decision-making.

Sensor selection has been widely studied in the literature,
with the aim of cutting the number of sensors and saving
resources. In [10], a heuristic is proposed to solve the problem
of selecting k out of m sensors based on convex relaxation.
In [15], the sensor selection problem is cast as the maximiza-
tion of a submodular function over uniform matroids, and
solved using a greedy algorithm with performance guarantees.
However, in our case, we would like to leverage all the
available sensors, and select in real time an optimal subset
of observations to show to a human subject.

The way humans process information has also been widely
studied, and modeled based on statistical inference models.
For hypothesis testing problems, the Neyman-Pearson (NP)
test, which is a likelihood ratio test, is the most powerful
test to maximize the probability of detection under some
constraint on the probability of false alarm, when the number
of observations is determined in advance [11, 16]. If the
number of observations is not predetermined, the sequential
probability ratio test (SPRT) is the optimal test for i.i.d.
observations in terms of the expected number of observations
needed to make a decision within the required probabilities of
missed detection and of false alarm [11, 16].

These models have been adapted to humans in different
ways in order to incorporate cognitive biases. Cognitive biases
are heuristics that hinder humans from making rational deci-
sions [4]. As an example, we cite the anchoring bias, modeled
in [5] and [8], where humans are influenced by starting
points or initial beliefs. Other biases are the confirmation

bias modeled in [3] where humans tend to emphasize data
confirming their beliefs, and disregard data contradicting their
beliefs. In [9], Hogarth and Einhorn closely study the order
effects in the update of belief, and mention two main biases:
the primacy effect [2, 14] where humans emphasize the first set
of information and the recency effect where humans emphasize
the last set of information. They point out that as the number of
pieces of information increase, subjects can get tired if asked
to process all the data, and beliefs become less sensitive to
new observations; this is the primacy effect [9]. Hence it is
important to study which subset of the observations should be
presented to humans, and in which order, in order to maximize
their performance given these biases.

The problem of optimal ordering of observations for humans
have been considered in [1], where the bias is modeled by
modifying the values of the thresholds in the SPRT test. How-
ever, the ordering is done based on the statistics of the data
and not on their real time values, and bias is modeled based on
the SPRT test, differently than in this paper. In [13], a heuristic
is proposed for optimally ordering data to humans using the
bias model of this paper, and giving good performance, but
not near optimal performance.

In this paper, we study the problem of selecting and ordering
information to show to humans in real time in order to
achieve near optimal performance. In Sec. II, the main problem
is defined as well as the approach to solving it, when the
observations are Gaussian i.i.d. In Sec. III, we propose and
describe an algorithm for the subset selection and ordering
based on the approximate subset sum algorithm. We then
verify in Sec. IV the performance of the proposed algorithm
through simulations in case of biases.

II. PROBLEM STATEMENT
In the context of binary hypothesis testing, consider 2 agents

Alice and Bob, where Alice is unbiased and Bob is affected by
cognitive biases. Alice has access to N observations, and can
only show Bob N ′ out of the N observations. The problem
is finding out which N ′ observations to present to Bob, and
in which order, such that Bob makes an optimal decision, i.e.,
his probability of detection is maximized for any constraint on
the probability of false alarm that he adopts. In other words,
such that Bob’s probability of detection for a given upper
bound on the false alarm rate is as close as possible to Alice’s
optimal probability of detection for the same upper bound on
the probability of false alarm. Alice and Bob use the NP test
which is the optimal test for maximizing the probability of
detection given an upper bound on the probability of false
alarm. Alice has N i.i.d. Gaussian observations, and Bob
considers that he has N ′ i.i.d. Gaussian observations. (Note
that by selecting a subset of observations, the statistics of the
subset change. However, Bob doesn’t know that and treats the
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new observations as independent observations with the same
initial statistics). We consider that the observations yi seen by
the agents are distributed as follows under both hypotheses:

H0 : Yi = Vi, ∀ 1 ≤ i ≤ N
H1 : Yi = m+ Vi, ∀ 1 ≤ i ≤ N, (1)

where Vi are i.i.d. with a Gaussian distribution N(0, σ2) and
m is the difference in the means under the two hypotheses.
Let li denote the log-likelihood ratio for observation yi, li =
log( f(yi|H1)

f(yi|H0)
) = (2myi −m2)/2σ2. Note that, under the two

hypotheses, li follows Gaussian distributions with variances
Var[li|H0] = Var[li|H1] = m2/σ2. Moreover, we have
E[li|H0] = −m2/(2σ2) and E[li|H1] = m2/(2σ2). Let
Li denote the cumulative log-likelihood ratio up to the ith
observation yi, i.e.,

Li = log(

i∏
k=1

f(yk|H1)

f(yk|H0)
) =

i∑
k=1

log(
f(yk|H1)

f(yk|H0)
) =

i∑
k=1

lk.

For Alice, under the two hypotheses, LN follows Gaussian
distributions with variances Var[LN |H0] = Var[LN |H1] =
Nm2/σ2 and means E[LN |H0] = −Nm2/(2σ2) and
E[LN |H1] = Nm2/(2σ2). Similarly for Bob, LN ′ fol-
lows Gaussian distributions with variances Var[LN ′ |H0] =
Var[LN ′ |H1] = N ′m2/σ2 and means E[LN ′ |H0] =
−N ′m2/(2σ2) and E[LN ′ |H1] = N ′m2/(2σ2). In an NP test,
for a given upper bound α on the probability of false alarm,
Alice and Bob use the thresholds λA =

√
Nm
σ Q−1(α)− Nm2

2σ2

and λB =
√
N ′m
σ Q−1(α) − N ′m2

2σ2 , respectively (where Q is
the standard Q-function). We assume that α is small enough
not to fall in the trivial case where Alice and Bob can use
threshold of zero.

A. Biased information processing model
Bob may process the information in a biased way due to

cognitive biases. In other words, he updates his cumulative
log-likelihood ratio according to a model proposed in [13],
which is based on the belief adjustment framework by Hogarth
and Einhorn [9]. These biases are quantified by the adjustment
weight for the new observation as such:

Li = Li−1 + wili. (2)

where wi is the adjustment weight that the subject gives to
the new observation due to biases. The model parameters are
learned through an adaptive learning process, that may involve
asking the subject to do specific tasks. However, the parameter
estimation problem is beyond the scope of the paper, and is
discussed elsewhere. See also [9], [7].
This model allows representing many cognitive biases that
humans could be subject to, as we will show in the following
sections. From now on, LN ′ denotes the cumulative log-
likelihood ratio of Bob, resulting from a biased updating as
described in (2). Since Alice represents the optimal perfor-
mance we are trying to match, her cumulative log-likelihood
ratio LN is unbiased.

B. Problem formulation
For the NP test thresholds λA and λB , let Pd(λA) (Pd(λB))

and Pf (λA) (Pf (λB)) denote the probabilities of detection and
false alarm of Alice (Bob), respectively. Note that for same

upper bound α on Pf (λA) and Pf (λB), the best Bob can hope
for is Pd(λB) = Pd(λA). Thus, the problem boils down to the
following optimization problem:

argmin
K⊆[N ]:|K|=N ′

∫ +∞

LN=λA

p(LN |H1)−
∫ +∞

LN′=λB

p̂(LN ′ |H1)

subject to
∫ +∞

LN′=λB

p̂(LN ′ |H0) ≤ α.

Here, p̂ denotes the altered statistics of the sum of the subset
K of N ′ observations after selecting them from the complete
set of N observations. We note that even if Bob uses λB such
that his probability of false alarm is less than α (he considers
the observations to be i.i.d.), this doesn’t ensure that the actual
probability of false alarm, based on the true statistics p̂, is less
than α. Hence the added constraint.

Writing out the problem relative to the performance metrics
of Alice would allow us to tackle the problem without figuring
out p̂. In order to make Pd(λB) as close as possible to Pd(λA)
while keeping Pf (λB) ≤ α, we can make Pd(λB) as close
as possible to Pd(λA), and make Pf (λB) as close as possible
to Pf (λA), which is guaranteed to be less than α. This will
be satisfied by making the event {LN ′ ≥ λB |H1} and the
event {LN ≥ λA|H1} statistically equivalent, and by also
making the event {LN ′ ≥ λB |H0} and the event {LN ≥
λA|H0} statistically equivalent (Two events are equivalent if
the occurrence of one event implies the occurrence of the other
and vice versa).

Let λ̃A = λA − E[LN |H0] = λA + Nm2

(2σ2) =
√
Nm
(σ) Q−1(α)

and λ̃B = λB − E[LN ′ |H0] = λB + N ′m2

(2σ2) =
√
N ′m
(σ) Q−1(α).

We notice that λ̃B =
√

N ′

N λ̃A.
Now if the subset K of N ′ elements is chosen such
that LN ′ − E[LN ′ |H0] =

√
N ′(LN−E[LN |H0])√

N
(i.e. LN ′ =

√
N ′(LN−E[LN |H0])√

N
+E[LN ′ |H0]), then the two events {LN −

E[LN |H0] ≥ λ̃A|Hi} and {LN ′ − E[LN ′ |H0] ≥ λ̃B |Hi}
become equivalent for any value of λ̃A since λ̃B =

√
N ′

N λ̃A.
Therefore, the two events {LN ≥ λA|Hi} and {LN ′ ≥
λB |Hi} are now equivalent, and thus Pd(λA) = Pd(λB) and
Pf (λA) = Pf (λB). Hence we are interested in finding a subset
K of N ′ observations such that LN ′ sums up to the target
T =

√
N ′(LN−E[LN |H0])√

N
+ E[LN ′ |H0]. If there is no set K

such that LN ′ equals T exactly, then the closer LN ′ to T , the
more the two events coincide, and the smaller the difference
between Pd(λA) and Pd(λB), as well as between Pf (λA) and
Pf (λB).

III. APPROXIMATE SOLUTION
A. Approximate solution performance guarantee

Given that finding a subset K of N ′ out of the N ob-
servations that give a cumulative log-likelihood ratio LN ′

equals to the target T is not always feasible, we need to find
an approximate solution resulting in LN ′ as close to T as
possible.

Lemma .1. Let LN ′ be such that T − δ
2 ≤ LN ′ ≤ T + δ

2 ,

then Q(
λA−E[LN |H1]+

√
N δ

2√
N′

Var(LN ) ) ≤ Pd(λB) and Pf (λB) ≤
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Q(
λA−E[LN |H0]−

√
N δ

2√
N′

Var(LN ) )

Proof.

T − δ

2
≤ LN ′ =⇒ Pd(λB) ≥ P(T − δ

2
≥ λB |H1) (3)

=⇒ Pd(λB) ≥ P(LN ≥ λA +

√
N δ

2√
N ′
|H1) (4)

=⇒ Pd(λB) ≥ Q(
λA − E[LN |H1] +

√
N δ

2√
N ′

Var(LN )
) (5)

where (3) follows since Pd(λB) = P (LN ′ ≥ λB |H1), and
(4) follows since λB−E(LN ′ |H0) = (λA−E(LN |H0))(

√
N ′√
N
)

and by replacing T with its value. We prove similarly the upper
bound of Pf (λB).

B. Approximate subset sum algorithm
In order to find the set K of N ′ observations which cumula-

tive log-likelihood ratio LN ′ is the closest to the target T , an
exhaustive solution would be to try all the N ′ combinations of
observations, and chose the closest cumulative log-likelihood
ratio to the target T . However, this solution is exponential in
complexity if we let N ′ and N scale.
Another solution would be to use an algorithm based on the
approximate-subset-sum algorithm which is a FPTAS (fully
polynomial-time approximation scheme) [12] for the subset
sum problem, where the set of elements xi’s corresponds to
the set of log-likelihood ratios li’s from which we are trying
to select a subset.
In the classical subset sum problem (S, t) [6], S =
{x1, x2, ..., xn} denotes a set of positive integers and a positive
integer t represents the target. The decision problem asks for
a subset of S whose sum is as large as possible, but not
larger than the target t. This problem is NP-complete. The
approximate subset sum algorithm (S, t, ε) [6], for 0 < ε < 1,
is a FPTAS for the subset sum problem that approximates the
optimal solution to within a ratio bound of 1 + ε, and works
as follows:

Algorithm 1 Approximate subset algorithm (S, t, ε)

1: n ← |S|
2: R0 ← {0}
3: for i← 1 to n do
4: Ri ← MergeLists(Ri−1, Ri−1 + xi)
5: Ri ← Trim(Ri , ε/2n)
6: Remove from Ri every element greater than t
7: end for
8: return the largest element in Rn

Trimming a list Ri by β = ε/2n means removing as many
elements as possible such that every element that is removed
is approximated by some remaining element in the list. More
precisely, given 0 < β < 1 , element z approximates element
y if y

1+β ≤ z ≤ y, β = ε/2n in this algorithm.
The solution returned is within a factor 1+ ε of the optimal

solution. The running time is polynomial in both N and 1/ε.

C. Proposed algorithm based on the approximate subset sum
algorithm

When the adjustment weight wi depends for example on the
position of li (as for the anchoring bias) or on the cumulative
log-likelihood ratio Li−1, then permutations of the elements in
the same subset lead to different sums, and thus the ordering
of observations matters. The subset sum algorithm would need
to be modified to account for all permutations of the same
subset (Notice line 3 of algorithm 1 which restricts an order
of appearance of the elements in the subset sum). A solution
to the limitation of the approximate subset algorithm would
be to redefine the set of initial elements S as S1 where
S1 is a multiset consisting of the set S repeated N ′ times:
S1 = {S,S, ...,S} with |S1| = NN ′. Now each element
in S1 is tagged by its index in the initial set S to avoid
picking an element twice. The modified approximate subset
sum algorithm designed in this section is executed on S1, but
now, at each time a new element of S1 is added to list of
subset sums (in line 4 of algorithm 2), we make sure that the
existing subset sum value does not include an element with
the same index as the new element.

This problem is thus approximately solved by modifying
the approximate subset sum algorithm used in Sec. III-B as
described below.

Algorithm 2 Modified approximate subset algorithm (S1,T,ε)

1: n ← |S1|
2: R0 ← {0}
3: G0 ← {0}
4: for i← 1 to n do
5: Ri ← MergeLists(Ri−1, Ri−1 + wj li)
6: Gi ← MergeLists(Gi−1, Gi−1 + 1)
7: (Ri,Gi) ← Trim(Ri, Gi, N ′, ε/2n)
8: end for
9: return the closest element in Rn to T with size in Gn

less than or equal to N ′

The list Gi keeps track of the corresponding sizes of
the elements in Ri, and its use is explained in the next
section. The modification for accounting for biases is in the
Merge list step, where when adding the log-likelihood ratio
li, we incorporate its corresponding adjustment weight wj .
We change the subscript from i to j in wj to emphasize that
the adjustment weight at step i need not only depend on li.

D. Taking into account other variations from the approximate
subset sum algorithm

There are several differences of the proposed algorithm from
the usual approximate subset sum algorithm described earlier
in III-B. First, the values of xi (corresponding to li’s) as well
as the target T could be positive or negative.
Second, the subset size is restricted to N ′ or less elements. To
deal with this, the algorithm keeps track of the size of every
element in the list Ri in another list Gi. By size of an entry
we mean the number of observations which sum resulted in
this entry. We then modify the trimming function so that it
keeps the elements with the smallest size in the trimmed list.
This is briefly explained as follows. In the traditional trimming
function, we add gradually to the output list elements z, such
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Student Version of MATLABFigure 1: ROC curves under different selection of Gaussian
i.i.d. observations for anchoring bias with small F/N ′

that an element zi is added whenever it is not approximated by
the latest element in the output list zi−1. In modified trimming
function, we keep generating the list {z1, z2, ...} throughout
the algorithm. However, instead of adding to the output list
the element zi, we add the element ui, which is the element
with the smallest size among the elements approximated by zi
(ui could be zi only if zi has the smallest size). Keeping the
subset sum with the smallest size ensures that, if an element
in the final list is disregarded because its size exceeds N ′,
then there was not another subset sum approximated by this
element with N ′ or fewer elements that was trimmed during
the process.
Finally, the returned subset sum by the algorithm is not re-
stricted to be less than T and can exceed T , but it should be the
closest element in Rn to the target T with a size less than or
equal to N ′. If the returned subset sum has strictly less than N ′

observations, the N̂ missing observations should be replaced
by dummy observations (with log-likelihood ratio very close
to 0). If this is not desired, then the trimming algorithm should
be modified to trim subset sums that don’t correspond to
exactly N ′ observations; The rest of the algorithm as well
as its analysis remain the same.

E. Results from the analysis of the new algorithm
The analysis of the performance of the algorithm is done

but not included in this paper. Let’s denote by u∗ the value
returned by the algorithm, and by y∗ be the optimal solution,
i.e., the closest biased subset sum of length less than or equal
to N ′ to the target T . Since |T | − δ/2 ≤ |y∗| ≤ |T | + δ/2,
then the analysis done concluded that (1 − ε)(|T | − δ/2) ≤
|u∗| ≤ (1 + ε)(|T |+ δ/2) and thus that the solution provided
by the approximation algorithm is guaranteed to be ε away
from the target +/−δ/2. As for the running time, an analysis
was also done and it concluded that the time complexity is
O(NN ′ logN ′). The NN ′ factor is due to the fact that S1 is
of size NN ′, and the polynomial complexity is due the fact
that the values that the subset sums can take are statistically
bounded. Also, the algorithm is polynomial in 1/ε.

IV. RESULTS
A. Anchoring bias and results

In the anchoring bias, the first F observations are given
the highest weight, and the subsequent observations are given
small adjustment weights. So wj depends on the size of the
subset sum that xi is being added to. In Fig. 1, we plot the
ROC curve (blue) corresponding the unbiased performance
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Figure 2: ROC curves under different selection of Gaussian
i.i.d. observations with confirmation bias

of Alice given the total set of N observations. We plot the
corresponding ROC of Bob (green) under the anchoring bias
such that for each threshold used by Alice, we compute
the corresponding threshold and probability of detection of
Bob when using the approximate subset sum algorithm. The
results show that for the anchoring bias model, the algorithm
described allows obtaining the ROC (green) nearly overlapping
the optimal unbiased ROC of Alice in the region of interest
(low Pf and high Pd). In the simulations, the value of N used
is 10, and the value of N ′ is 4. We note that the lower the
fraction F/N ′ of unaffected observations F to the number of
selected observations N ′, the worse the performance of the
subset sum approximation algorithm under bias, and thus the
corresponding ROC won’t completely overlap with the original
ROC. This is illustrated in Fig. 1 where we chose N ′ to be
much larger than F . We notice that this is mainly notable for
low probability of detection and for large probability of false
alarm. This is because in those cases, it is more crucial to
have the subset sum match exactly the target. And the smaller
the fraction F/N ′, the farther the subset sum returned by the
algorithm from the target.

B. Confirmation bias and results

The confirmation bias happens when humans emphasize
data supporting one hypothesis, and neglect disconfirming
data. Thus in the model, the adjustment weight wj will depend
on the value of the current log-likelihood ratio li; wj will be
hence denoted by wi. We model the bias by assigning small
adjustment weights wi to li contradicting a given hypothesis,
and wi close to 1 to li supporting this hypothesis. Since wi
only depends on the current observation, different permuta-
tions of the same set of observations would lead to the same
sum, and hence the approximate subset sum algorithm adapted
to the bias can be used with the values li drawn from the set
S and not S1 (And thus the running time is O(N log(N ′))).
We simulate the performance of the algorithm whenever the
hypothesis supported by the subject is H0, and as shown in
Fig. 2, the algorithm gives an ROC (green) nearly overlapping
the original ROC (blue). However, for low probability of
detection, the green ROC is not completely matching the blue
ROC. This is because whenever hypothesis H1 is true, the
bias leads to larger gap between the closest subset sum to the
target and the target, and when the probability of detection is
low, it is more important for the subset sum to be as close as
possible to the target as discussed earlier.
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