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ABSTRACT

This paper presents a new interlaced sigma-point information
filtering (ISPIF) algorithm for distributed state estimation of
multi-agent systems (MAS). The ISPIF is derived by first p-
resenting an interlaced information filtering (IIF) algorithm
for linear MAS and then embedding the sigma-point trans-
formation (SPT) that used in the sigma-point Kalman filters
into the IIF architecture through a statistical linear regres-
sion methodology. The ISPIF enjoys both the effectiveness
brought by the interlacement technique and the accuracies and
flexibilities brought by the SPTs. Performance comparison of
the ISPIF with the interlaced extended information filter is
demonstrated through network localization simulations.

Index Terms— distributed state estimation, multi-agent
system, Kalman filter, information filtering, interlacement
technique

1. INTRODUCTION

Distributed state estimation (DSE) of multi-agent systems
(MAS) has attracted much attention in novel application-
s such as network (or cooperative) localization [1-3], and
multi-robot control and exploration [4-6]. Usually, for a
MAS involving | M| networked agents, the DSE aims at dis-
tributing the centralized state estimation into a set of |M|
decentralized procedures each corresponding to an agent, so
that each agent only needs to estimate its own state on the
basis of local observations and inter-agent communications.
Compared with the centralized algorithms, the DSE can pro-
vide more flexibility, achieve more robustness, and require
less computation and communication overheads [7, 8].

As a classical technique, Kalman filtering (KF) has been
studied for DSE of MAS for many years [9—15]. In [9], an in-
terlaced extended Kalman filter (IEKF) has been developed—
which was lately used for self-localization of wireless net-
works [11]—by neglecting any coupling terms in the covari-
ance matrix of the state estimation error and counteracting the
errors so introduced by suitably “increasing” the noise covari-
ance matrices. After that, an interlaced extended information
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filter (IEIF), which is essentially an IEKF expressed in terms
of the inverse of the covariance matrix, has also been pro-
posed in [12], due to the advantages of information filtering
(IF) over the KF; the structure of the information estimation
is computationally simpler than the KF update equations, and
the IF is easily initialized compared to the KF without know-
ing a priori information of the state of the systems [16].

This paper proposes an interlaced sigma-point infor-
mation filtering (ISPIF) algorithm for DSE of MAS. The
motivation behind this paper comes from the fact that the
sigma-point transformation (SPT) based statistical lineariza-
tion methods adopted in the sigma-point Kalman filters (SP-
KFs)' are more accurate and easier to implement than the
first-order Taylor series expansion based deterministic lin-
earization method adopted in the EKF. The remainder of this
paper is organized as follows. Section II describes the system
model of MAS. Section III derives the interlaced informa-
tion filtering (IIF) for linear MAS. Section IV generalizes
the IIF into nonlinear MAS by a statistical linear regression
methodology. Section V presents the simulation results.

2. SYSTEM MODEL

Consider a generic nonlinear networked multi-agent system
involving |M| agents, with the indexes set of all agents de-
noted by M = {1,2,--- ,| M|} (|-| represents the cardinality
of the set). The state of agent m € M evolves as

m __ em f,m m
< =t (xh 6 ) M
where x}* represents the state of agent m; ;" (-) is the nonlin-
. f,m,Nf
ear process function; x o™ = {xb ! xbm2 Lyl ey C

x, in which xf = {xI" | m € M} is the set consist-

ing of the states of all | M| agents at time k, xi”’”’l £ xr,

and the number of agent in xz’m is denoted as Nf > 1;
&1 ~N(0,Q™) is the corresponding process noise. We de-

note X?’m = {XZ" | XZ’” 5> X', n e M}

'Besides the algorithms mentioned in [17], we extend the coverage to
embrace the recently proposed Gauss-Hermite quadrature filter [18], cuba-
ture Kalmal filter [19], sparse-grid quadrature filter [20], and their variations.
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At time k, there are |®}"| observations related to x", we
call these observations the local observations of agent m, of
which the jth observation is described by

hym,j _pm.j (. hmjg  m,j
Z, =h, (Xk Uy 2)
where hj"’(-) is the corresponding observation function;
hm,j _ h,m,j,1 _hm,j,2 h,m,j,N;‘L’j M
X’ = {x s Xy, s Xy P Coxg

the states set consisting of all states that related to the
jth observation, in which X,}:’m’j’l £ x]" and NbBi > 1,
v~ N(0,R™7). We denote xp™" = {x™7 | j =
1,2,---,|®%"|}. We say that two agents are connected if they
can communicate directly with each other. The set of agents
connected to a certain agent m € M is called the neighbor-
hood of agent m, with the corresponding states set denoted
by X", We assume that x3"™ U xp™ C xi""™, and all
process and observation noise vectors are uncorrelated.

At each time slot k, each agent needs to locally estimate
the mean Xk‘ . and covariance P2’ K|k of its state x".

3. IIF FOR DSE OF LINEAR MAS

We first consider a linear MAS corresponding to (1) and (2):

m § : Non m i f m i £m
= + b + Skfla (3)
. NE J’ o
mj _ ity qrd g g
Zp " =) X +d, + v “)
where a}" and ¢}’ are known matnces by and d}" are

deviations; £ ~ N(0,Q™) and ;" ~ N'(0,R™7).

We can see that the process and observation functions are
not only related to the state of agent m of time k, but also
related to the states of some of its neighbors of time k, thus,
conventional Kalman/information filters cannot be straight-
forwardly adopted by agent m to estimate its state locally.

3.1. IKF

The interlacement technique was first developed in [9] to re-
duce the computational load of a nonlinear filter. It can be
applied to DSE of linear MAS that modeled by (3)-(4), taking
advantage of inter-agent communications.

3.1.1. State Prediction

Each agent m € M broadcasts its state estimate of time k — 1
to its neighbors, receives state estimates from its neighbors
and uses them to predict its state as

= YAl b 5

N .
~ o m _m,iafm,i m,i\T m
Pxx,k|k—1*§ 3 P (@) Q™

3.1.2. Interlaced Observation Update

Each agent m € M broadcasts its state predict to its neigh-
bors, receives state predicts from its neighbors and uses them
along with its local observations to update its state as

Start with

Sm S
Xk < Xk|k—1

< < (6)
pxx,k\k’ — pxx,k'|k—1’
Then, for j = 1,2,--- ||
kil" = Do (i )T
: ( s wpe—t(ch ST +sz) )

m/=m,j m,j,lam
Rile < X H k(27 — o k)
m,j,1am
pxx,k\k — pxx,k|k kk Ck Pxx, Jklk—1

. h,j
sm.g _ -~ New?  mogiahm g 2t R m,j
where R = 375 e p i (e )¥+R™7, and
m,j __ _m,j NEI g, z~h ,m,j,i m,j
e D D Ry —dg

The interlacement technique is introduced in (7), where
agent m’s local observation noise covariance matrices are
“suitably” increased using the predicted state error covari-
ance matrices of its neighbors.

Proof: The above update can be derived by: 1) augment-
ing all agent’s state predicts into a vector with its mean X, =
(D)7 (RR)T - (&))" and covariance Pxox -1 =
diag{Pre pi— 1> Prx fe—17" " » If)L/\,:”Mk 1}>2) usingaKF to
update it, and 3) decoupling this update into m parallel inter-
laced ones each corresponding to an agent.

3.2. IIF

Using the matrix inversion lemma, the IKF can be rewritten
into an equivalent information form [8,21], the interlaced in-
formation filtering (IIF), in terms of the information state vec-
tor 1 = p~'%k and the information matrix A = p~'. Where,
the state prediction equation (5) can be rewritten as

NE £ . -1
m o m _m,i~f,m,i m,iN\T 2 YL
k|k1_<§ :izlak P i—1pe—1(a; ) +Q >
®)
m mzAfmz m
Yijk—1=Akjk—1 <§ LA Xk 1+bk—1>v

and the observation update (6)-(7) can be rewritten as

pm I

m m m , m, ™ j,1
Akl = Akjk—1 +Z IHTR™) e

|® kl
m J 1
Vil = Vrjk—1 + E

The architecture of the IIF is similar to that of IEIF [8],
and a detailed discussion and performance analysis of the in-
terlaced IF over the interlaced KF can be seen in [8].

€))
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4. ISPIF FOR DSE OF NONLINEAR MAS

This section develops the ISPIF by embedding a SPT-based s-
tatistical linear regression methodology into the IIF structure.

4.1. statistical linear regression
4.1.1. SPT

Consider a random variable x with mean X and variance
Dxx, and a generally nonlinear function g(-). Firstly, a set
of N, weighted points {Xl,Wl}iisf are deterministically
chosen such that the mean X = Zfis{’ W, X, and variance
Pxx = lj\ﬁf Wi(X — %)(&; — x)T are equal to X and
Pxx (Details in the realization of SPT are different among
the available SPKFs). These points are then propagated
through the nonlinear function g(-), yielding a set of trans-
formed points J; = g(X;). The weighted sigma points

{0, Y, W ,Wl(c)}N"” are then used to approximate the
second-order statistics of x and y as:

v= ZNSPlel

Dyy = Z Wi -3 -
= Zl:m [ - —§]".

ik (10)

From the view of statistical linear regression [21], the SP-
T can be seen as propagating the mean X and variance Pxx
through the linearization

g"(x)=ax+b+te, (11)
where a = pxypxx, b = ¥ — aX and e is the linearization

noise with mean & = 0 and variance Pe = Pyy — apxxal.

4.1.2. State-Space Linearization

We use the SPT to linearize (1) and (2). Noted that the ex-
pressions of (1) and (2) are similar, detailed linearization pro-
cedures are only demonstrated for (1).

Denoting Xk = [(xzmll)T7 e (x Z:”le )T1T with
mean and covariance
& f, 1 f Nm
Xp, = [(kal\k 1)T7 ... (kallkf 1)T]T

~fom,1

3 f,m, N
m — At f
P¥x k11 = dlag{pxx k—1k—1>""" }

7pxx,k71|k71 ’

and X¢_ ) = [(X3 )7, (& ,)"]" with mean and covariance

k-1 = [(X’;ZZl)T,O]T
P%X,k—llk—l = diag{PgX,k—l\k—l? Q"},
(1) can be rewritten into

g = £ (X5-1)- (12)

Then, based on (11), (12) can be linearized as
X' =A% 1, Bg— 1 JXG 1 T+ (13)
=ay',  Xpltady &l bl &
where
[ k1881 = (PR ) Pl e ape) ™ (14)
— & X (15)

Defining the total process noise

_—
by, = xk|k—1

Er1=agy 1€ + & (16)
with its corresponding variance given by
. . B T oA
Qi =ag, 1Q™ (&g 1) +PJ% 1
R ~ A = T
:P)Tx,kw—l *ag,k—lpgx,k—ukq(ag,k—ﬂ X))

a linearized form of (1) can be finally obtained, as:

m =m m ) £m
xp =ag, 1 XpL +brl +61
NE £

m o .m,i m,t . m m
=D A kX ThELi g, (8

Where, in (14),(15), and(17), szakuc X and P ey
are obtained by SPT as in (10).
Similarly, the observation function (2) can be linearized

into the form of

, Nh.J
m,) m vTVL,J i h 77117_77 7}'L,] v’ﬁ'l,j
z,"=) . S +d + o (19)

4.2. ISPIF for DSE of MAS

At this point, naively substituting (1)-(2) with (18)-(19), the
interlaced sigma-point information filtering (ISPIF) for DSE
of MAS can be derived, as summarized in Algorithm 1.

Algorithm 1 : The ISPIF for DSE of Nonlinear MAS

For m=1,--- ,|M|, initialize
1 A~
>‘0|0 (p0|0) Q/”0|0 (p0|0) Xglo-
End
For time k =1,2,---
Form=1,--- | M|, do in parallel

Broadcasts its last state estimate to its neighbors;
Receive state estimates from its neighbors;
linearizes (1) into (18) using the SPT;
Predicts the state information using (8).

End

Form =1,---,|M]|, do in parallel
Broadcasts its state predict to its neighbors;
Receive state predicts from its neighbors;
linearizes (2) into (19) using the SPT;
Updates the state information using (9).

End

End
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Fig. 1: Agent movements and anchor deployments.

5. AN APPLICATION EXAMPLE

Consider a 2 dimensional network localization scenario in-
volving | M| mobile agents with the agent indexes set M =
{1,2,---,|M]|}. The state of agent m € M consists of po-
sition and velocity, i.e., x7* £ (p/)T, (vi*)T)T with pi* £
(zi,ym)T and vi* £ (0 ks v;’fk)T. We assume that agent
1 is a leader, whose positional states are used as a reference
of other agent’s movements. At time &, the state evolution of
agent m is described by

m m m 1em
(p]fn> = <pk1+mvk1 +m 2€k1) , if m=1; else
Vi Vit +E

(pZ”L) _ <(1 - oz)pZilJr(lxp,lel + V?1+§£1T1)
Vit ta(Pr_y — Pily) HEEL

(20)

where « is a positive scalar for velocity adjustment, and in all
our simulations, v = 0.1 and &} ~ N(0,0.1 - I55). From
time k£ = 1 to 50, every node can communicate and range with
its neighbors, and the distance measurement of agent m &
M relative to its neighboring agent (or anchor) n is given by
2" = ||lp — p| + v ", in which v ~ N(0, 10).

In the first simulation, we compared the root mean square
errors (RMSEs) and the corresponding error cumulative dis-
tribution functions (c.d.f.s) of the position estimates obtained
by 4 algorithms, as shown in Fig.2, where CEIF and CUIF
are centralized algorithms based on augmenting all states in-
to a state vector and centralized implementing the EIF [16]
or the UIF [21], while IEIF [12] and IUIF are decentralized
algorithms, in which the IUIF is one of proposed ISPIF algo-
rithms that realized using unscented transformation [22]. The
position estimate error of agent m at time k& is given by

i’ = 1B — i Il,
and all RMSE:s are obtained by averaging all agents and 1000
simulation runs, while the c.d.f.s are determined over states
of all nodes, all simulation runs, and all time slot between
4 and 50. In all simulation runs, |M| = 3 and two an-
chors are placed at (0,80) and (0 -80); all trajectories are

generated according to (20) with the initial states x,,"™° =

(—210,0,7.88,0)T, x;"™ = (—200, —20,7.69,0.38)T and
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Fig. 2: The simulated RMSEs and c.d.f.s.

Table 1: Time cost for different agent numbers (seconds)

M [ 5 [ 10 ] 20 [ 40 | 80
CEIF | 0.10 | 0.52 | 4.73 | 16.09 | 135.16
CUIF | 0.28 | 1.02 | 7.22 | 23.80 | 208.54
IEIF | 0.24 | 0.59 | 1.56 | 4.87 19.18
IUIF | 032 | 0.80 | 1.85 | 6.77 25.45
XM = (=220,30,8, —0,57)7; all agents can communi-

cate and range with each other and the anchors; the initial
state estimate of agent m € M at time k = 1 is given by
X7 = N(x""™¢ diag{60, 60, 10, 10}); and an illustration of
agent movements and anchor deployments is given in Fig.1.

In the second simulation, we compared the computation
complexities under different agent numbers, where all simu-
lations are carried out in MATLAB on an Intel(R) Core(TM)2
Duo P8400 CPU, and each agent can only communicate with
no more than 5 nearest neighbors (including anchors, where
30 anchors are randomly scattered in the simulated region).
Table.1 shows the total time costs of these algorithms.

We can see that in our simulations, 1) the IUIF outper-
forms the first Taylor series expansion-based IEIF in accu-
racy, while its computation complexity is similar to that of
IEIF; 2) compared with their centralized counterparts, the de-
centralized IUIF and IEIF work at the cost of sacrificing accu-
racies, however, as the number of agents grows, the computa-
tion effectiveness of the IUIF and IEKF will gradually show
up, not to mention the communication efficiencies.

6. CONCLUSION

This paper proposes a new ISPIF algorithm for DSE of MAS.
The ISPIF is achieved by deriving an IIF for linear MAS and
embedding the SPT based statistically linearization method
that used in SPKFs into the IIF architecture. Thus, the pro-
posed ISPIF can enjoy both the effectiveness of the interlace-
ment technique and the accuracies and flexibilities of SPKF-
s. What is more, since it inherits the advantages of SPKFs
which outperform EKF in performance, it can outperform the
IEIF in performance, which is partly validated by network
localization simulations. The ISPIF can be applied to multi-
robots/sensors networks, or other systems of large scale.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

7. REFERENCES

H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative
localization in wireless networks,” Proc. IEEE, vol. 97,
no. 2, pp. 427-450, 2009.

M. Win, A. Conti, S. Mazuelas, Y. Shen, W. Gif-
ford, D. Dardari, and M. Chiani, “Network localization
and navigation via cooperation,” IEEE Commun. Mag.,
vol. 49, no. 5, pp. 56-62, May 2011.

F. Cattivelli and A. Sayed, “Distributed nonlinear
kalman filtering with applications to wireless localiza-
tion,” in Proc. 35th IEEE Int. Conf. Acoust., Speech,
Signal Process, Mar. 2010, pp. 3522-3525.

D. Fox, J. Ko, K. Konolige, B. Limketkai, D. Schulz,
and B. Stewart, “Distributed multirobot exploration and
mapping,” Proc. IEEE, vol. 94, no. 7, pp. 1325-1339,
Jul. 2006.

S. Bandyopadhyay and S.-J. Chung, “Distributed es-
timation using Bayesian consensus filtering,” in Proc.
IEEE Amer. Contr. Conf., Portland, Oregon, USA, Jun.
2014, pp. 634-641.

M. Bryson and S. Sukkarieh, “Architectures for cooper-
ative airborne simultaneous localisation and mapping,”
J. Intell. Robot. Syst., vol. 55, no. 4-5, pp. 267-297,
2009.

R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “Dis-
tributed kalman filtering based on consensus strategies,”
IEEE J. Sel. Areas Commun., vol. 26, no. 4, pp. 622—
633, May 2008.

F. Cattivelli and A. Sayed, “Diffusion strategies for dis-
tributed Kalman filtering and smoothing,” IEEE Tran-
s. Autom. Control, vol. 55, no. 9, pp. 2069-2084, Sep.
2010.

L. Glielmo, R. Setola, and F. Vasca, “An interlaced
extended Kalman filter,” IEEE Trans. Autom. Control,
vol. 44, no. 8, pp. 1546-1549, Aug. 1999.

S. Roumeliotis and G. A. Bekey, “Distributed multirobot
localization,” IEEE Trans. Robot. Autom., vol. 18, no. 5,
pp- 781-795, Oct. 2002.

A. Ribeiro, G. Giannakis, and S. Roumeliotis, “SOI-KF:
Distributed Kalman filtering with low-cost communica-
tions using the sign of innovations,” IEEE Trans. Signal
Process., vol. 54, no. 12, pp. 4782-4795, Dec. 2006.

A. Gasparri and F. Pascucci, “An interlaced extended in-
formation filter for self-localization in sensor networks,”
IEEE Trans. Mobile Comput., vol. 9, no. 10, pp. 1491—
1504, Oct. 2010.

4392

[13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

[22]

R. Olfati-Saber, “Distributed kalman filtering for sensor
networks,” in Proc. 46th IEEE Conf. Decision Control,
Dec 2007, pp. 5492-5498.

J. Hu, L. Xie, and C. Zhang, “Diffusion kalman filtering
based on covariance intersection,” IEEE Trans. Signal
Process., vol. 60, no. 2, pp. 891-902, Feb 2012.

U. Khan and J. Moura, “Distributing the Kalman filter
for large-scale systems,” IEEE Trans. Signal Process.,
vol. 56, no. 10, pp. 49194935, Oct. 2008.

A. G. Mutambara, Decentralized Estimation and Con-
trol for Multisensor Systems. Boca Raton, FL: CRC
press, 1998.

R. Van Der Merwe, “Sigma-point kalman filters for
probabilistic inference in dynamic state-space model-
s,” Ph.D. dissertation, OGI School of Science & Engi-
neering, Oregon Health & Science University., Portland,
OR, USA., 2004.

I. Arasaratnam, S. Haykin, and R. Elliott, “Discrete-
time nonlinear filtering algorithms using Gauss-Hermite
quadrature,” Proc. IEEE, vol. 95, no. 5, pp. 953-977,
May 2007.

I. Arasaratnam and S. Haykin, “Cubature Kalman fil-
ters,” IEEE Trans. Autom. Control, vol. 54, no. 6, pp.
1254-1269, Jun. 2009.

B. Jia, M. Xin, and Y. Cheng, “Sparse-grid quadrature
nonlinear filtering,” Automatica, vol. 48, no. 2, pp. 327-
341, 2012.

T. Vercauteren and X. Wang, “Decentralized sigma-
point information filters for target tracking in collabo-
rative sensor networks,” IEEE Trans. Signal Process.,
vol. 53, no. 8, pp. 2997-3009, Aug 2005.

S. Julier and J. Uhlmann, “Unscented filtering and non-
linear estimation,” Proc. IEEE, vol. 92, no. 3, pp. 401-
422, Mar. 2004.



