
DIRICHLET PROCESS MIXTURE MODELS FOR TIME-DEPENDENT CLUSTERING

Kezi Yu and Petar M. Djurić
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ABSTRACT
In many problems of signal processing, an important task is the
classification of data. A group of methods that has attracted much
interest for this purpose are the nonparametric Bayesian methods,
and in particular, those based on the Dirichlet process. A useful
metaphor for various generalizations of the Dirichlet process has
been the Chinese restaurant process. Often the task of classification
must be carried out in a sequential manner, and to that end
the concepts from Bayesian non-parametrics cannot be applied
straightforwardly. Recently, we introduced the notion of Chinese
restaurant process with finite capacity to allow for classification
of data on a time-varying basis. In this paper, we introduce
the hierarchical Chinese restaurant process with finite capacity to
provide further flexibilities to the process of classification. We show
a generative model based on the process and then describe how
to make online inference using the model. We demonstrate the
approach with computer simulations.

1. INTRODUCTION

Classification of data is of significant importance in machine
learning [1]. A standard approach is to use mixture models to cluster
data. If the number of clusters (mixands) is known beforehand, one
could employ algorithms such as expectation-maximization (EM) to
estimate the parameters of each mixture and get the clustering result
[2]. However, in many cases, it is difficult to decide the number of
mixands in advance. One common approach is to fit several models
and then select the best of them using model selection techniques [3].
Model selection metrics often include two terms: one that measures
how well the data are fit by the model, and the other that quantifies
the complexity of the model. The best model is considered the one
that yields the best trade-off between performance and complexity.

Another popular approach in dealing with this problem is to use
Dirichlet process mixture models (DPMMs) [4]. DPMMs do not
specify the number of mixands in advance. Instead, the number
of mixands increases as more data are observed. The parameters
and the number of mixands are determined by the data via the
mechanism of posterior inference. During this process, the tuning
of parameters is minimal.

One weakness of the Dirichlet process models is that they cannot
be applied in sequential processing for obtaining dynamic clustering
of the data. In our recent work [5], we investigated a variation of
the Dirichlet process, which we referred to as Chinese restaurant
process with finite capacity (CRPFC). According to this model, at
any time we process a limited amount of data. Once the number of
data samples reaches a limit, new data are processed only after the
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“oldest” data are removed. This scheme readily enables sequential
processing, where the computations do not grow with time.

In this paper, we investigate the CRPFC for modeling time-
varying mixtures. In the sequel, a customer and a table represent
a data point and a mixand, respectively. We also show how we make
inference with CRPFC. We study time-varying Gaussian mixtures
and demonstrate with simulations how the number of mixands
evolve as new data come and old data are removed. Furthermore, we
propose and employ hierarchical CRPFC mixture models to analyze
several time series jointly.

The modification of standard DPMMs and extension to a
hierarchical structure are applicable in various real-world scenarios.
In [6], the authors used standard hierarchical DPMMs to analyze
time series signals obtained from different fetuses. The employment
of CRPFC mixture models to process the data can provide timely
clustering results and real-time assessment of fetal health.

The main contribution of the paper is the extension of the
CRPFC to a mixture model. We also propose a hierarchical
formulation of the CRPFC and a corresponding mixture model. We
apply the proposed models for generation of data and then in reverse,
we use the data to make inference about the models, and in particular
how the clustering of the data varies with time.

The paper is organized as follows. In the next section,
we provide a brief background about DPMMs and hierarchical
Dirichlet processes (HDPs). In Section 3, we propose DPMMs and
hierarchical DPMMs for time dependent clustering and show how
we can make inference using these models. In the following section,
we provide simulation results based on these models. Finally, we
conclude the paper in Section 5.

2. BACKGROUND

2.1. Dirichlet Process Mixture Models

DPMMs, unlike standard mixture models, allow for the presence of
countably infinite number of mixands in the data. This is achieved by
using a Dirichlet process as the prior of the mixtures and parameters,
i.e.,

G|α,H ∼ DP (α,H)

zi|G ∼ G
xi|zi ∼ F (zi),

(1)

where G is a random probability measure, DP stands for Dirichlet
process, H is a base measure, α is a concentration parameter, zi is
a random variable, xi is an observation, and F is the distribution of
the mixands.

An insightful description of the Dirichlet process is by the
Chinese restaurant process metaphor [7]. Consider a restaurant with
infinite number of tables. Let zi denote the dish that customer i is
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served. The conditional distribution of zi given zj , j = 1, 2, · · · , i−
1 is

zi|z1, . . . , zi−1, α,H

∼
K∑
k=1

mk

i− 1 + α
δθk +

α

i− 1 + α
H,

(2)

wheremk is the number of customers seated at table k, θk is the dish
served at table k, and K is the number of tables already occupied.
The dishes are drawn from H . In our setting, we consider that each
table corresponds to a cluster. To complete the DPMM, we need to
draw the actual serving of the ith customer, xi. It comes from F (zi),
and in signal processing context, the drawn value represents a data
sample.

In theory, the number of mixands generated by DPMMs can be
infinite. This number grows logarithmically with the number of data
samples (approximately as O(αlogN)) [9]. The classification of
the data given a DPMM is obtained by posterior inference methods,
such as Markov chain Monte Carlo (MCMC) sampling [4]. One
of these methods, the Gibbs sampling method, and in particular the
collapsed Gibbs sampling or blocked Gibbs sampling, is preferable.
A collapsed Gibbs sampler integrates out one or more variables
whose values are not of importance. This makes the algorithm more
efficient since less variables need to be sampled during inference. An
alternative approach for approximating the posterior is variational
inference [10].

2.2. Hierarchical Dirichlet Processes

DPMMs are useful in tasks of unsupervised classification of data
from one single set. Consider now the more general problem of
classification by using multiple data sets where the clusters are
shared across the whole corpus of data sets. We want to get the
clustering information not only within each set, but also jointly
over all the sets. Hierarchical Dirichlet process mixture models
(HDPMMs) are suitable for dealing with these types of problems.

The HDP can be constructed by recursively drawing the base
measure Gj from a Dirichlet process G0, which itself is also a
draw from a Dirichlet process. This will guarantee that all the Gj’s
share the same support. We use the Chinese restaurant franchise
metaphor to further explain the construction process. Consider a
restaurant franchise with a shared menu across the restaurants. One
dish is ordered at each table in each restaurant, and shared by all
the customers seated at that table. Different tables in different
restaurants can serve the same dish.

Let xji be the ith customer in the jth restaurant, and zjt be the
dish served at table t in restaurant j. We also introduceK iid random
variables φ1, . . . , φK generated from H to represent global dishes.
Here we also need a notation for counts. Let njtk be the number
of customers in restaurant j at table t served dish k, and mjk be
the number of tables in restaurant j serving dish k. Marginal counts
are represented by dots. For example, njt· represents the number of
customers in restaurant j at table t, and m·k represents the number
of tables serving dish k.

A new customer in a restaurant can either choose an occupied
table according to the probability proportional to the number of
customers already seated in the table, or get a new table. In the jth
restaurant the choice is based on the probability measure Gj , where

Gj |α0, G0 ∼ DP (α0, G0), (3)

where
G0|γ,H ∼ DP (γ,H). (4)

The conditional distribution of zji given zj1, zj2, . . . , zj,i−1, α0,
and G0 is given by

zji|zj1, zj2, . . . , zj,i−1, α0, G0

∼
mj·∑
t=1

njt·
i− 1 + α0

δθjt +
α0

i− 1 + α0
G0,

(5)
where θjt is originally drawn from H . More specifically,

θjt|θ11, θ12, . . . , θj,t−1, γ,H

∼
K∑
k=1

m·k
m·· + γ

δφk +
γ

m·· + γ
H,

(6)

where φk ∼ H . Again, we see that the probability of choosing a
table is proportional to the number of customers sitting at that table.

Finally, the conditional distribution of xji given zji is

xji|zji ∼ F (zji). (7)

Thereby, we have completed the construction of the HDPMM. In
summary, the mixands of the various data sets are shared across the
data sets and are regulated by the same base distribution G0.

3. MODELS FOR TIME-DEPENDENT CLUSTERING

In this section, we propose two types of Dirichlet process mixture
models that allow for time-dependent clustering. The first is based
on the CRPFC and the second on a hierarchical version of the
CRPFC.

3.1. DPMMs for time-dependent clustering

Here we propose mixture models based on the CRPFC [5]. One can
take advantage of the models to observe how the data vary across
time. This is particularly useful when the timing of the clusters is
critical.

First, we briefly review the concept of CRPFC. In the original
setting of the CRP, a customer (a data sample) xi comes to a
restaurant with infinite number of tables, and is seated at table k
with probability

P (zi = k|z1, z2, · · · , zi−1) ∝

{
nk

i−1+α
, if k is occupied

α
i−1+α

, if k is unoccupied
,

(8)
where nk is the number of customers seated at table k. However,
in our modified CRP, the capacity of the restaurant is limited to N
only. That is, the restaurant has a finite number of tables, equal to
N . Furthermore, we assume that the restaurant cannot serve more
than N customers at the same time. In particular, we impose the
restriction that before a new customer comes in the restaurant, the
oldest customer must leave the restaurant. Clearly, for the first
N customers, the seating probabilities remain the same as in the
original CRP. However, for the customer i > N , the probabilities
become

P (zi = k|zi−N+1, · · · , zi−1) ∝

{
n∗
k

N−1+α
, if k is occupied

α
N−1+α

, if k is unoccupied
,

(9)
where n∗k is the number of customers currently seated at table k.
When customer xi enters the restaurant, only customers xi−N+1 to
xi−1 are still in the restaurant. The earlier customers have already
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left the restaurant. With this modification, we can readily show how
one can have time-varying structures of clusters [5].

Now we extend this model to a mixture model. As before, each
table corresponds to one mixture component, and each customer
corresponds to a data sample. Thus, it is straightforward to create
a generative model based on this idea. We simply add the generation
step

xi|zi ∼ F (zi). (10)

The inference proceeds as follows. Once the restaurant is
full (meaning, it serves N customers), and a new customer is
about to enter, the customer whose time at the restaurant expired
(observation) leaves (the observation is removed from its cluster),
and thus the posterior probability of each cluster is changed.

We proceed by way of example. Consider a multivariate
Gaussian mixture model where the number of mixands of the
mixture and/or its parameters vary with time. It is well known
that the conjugate prior of multivariate Gaussian distributions
with unknown mean and covariance is the normal-inverse-Wishart
distribution. Thus, we choose the base distribution H of the DP
to be the normal-inverse-Wishart distribution. When the number of
customers is less than the restaurant capacity, the sampling scheme
follows Algorithm 3 in [4] according to the following probabilities:

P (zi = k|z−i, x) =b
n−i,k

n−1+α

∫
P (xi|θ)[

∏
j 6=i

P (xj |θ)]H(θ)dθ, if occupied

b α
n−1+α

∫
P (xi|θ)H(θ)dθ, if unoccupied

,

(11)
where b is the normalizing factor, n is the number of customers in
the restaurant, n−i,k is the number of customers at table k excluding
customer i, z−i are all the indices of the tables of all the customers in
the restaurant except that of the ith customer, and similarly x are the
first i observations. Here, we integrated out the parameters θ to make
the algorithm more efficient. The integrals result in multivariate t-
distributions that can readily be evaluated for a given xi.

After the capacity is reached, that is when i > N , the sampling
probabilities of the tables become

P (zi = k|z−i, x) =
b
n∗
−i,k

N−1+α

∫
P (xi|θ)[

∏
j 6=i,
j∈J

P (xj |θ)]H(θ)dθ, if occupied

b α
N−1+α

∫
P (xi|θ)H(θ)dθ, if unoccupied

,

(12)
where n∗−i,k is the number of customers sitting at table k, excluding
customer i, and J is the set of indices of the customers currently
in the restaurant. Since the conjugate prior is used, the integral
can be solved analytically. The marginal distributions p(xi|z−i, x)
are again multivariate t-distributions. The parameters of these
distributions when we remove the “oldest” sample can readily be
obtained with minimal computation.

3.2. Hierarchical DPMMs for time-dependent clustering

One can readily extend the CRPFC mixture model to a hierarchical
structure where the capacity of a restaurant in a franchise is finite
but the number of dishes remains unlimited. The mixture model
based on hierarchical CRPFC is similar to the standard HDP mixture
model. The idea of drawing samples from an HDP mixture
model amounts to sampling the table assignment according to the
distribution of customers in the local restaurant and choosing dishes

from the hierarchical probability measure G0 [11]. For hierarchical
CRPFC mixture models, let xji still be the ith customer in restaurant
j, and njt denote the number of customers in restaurant j seated at
table t. The seating probabilities in restaurant j after the capacity is
reached is given by

P (zji = t|zj,i−N+1:i−1) ∝

{
n∗
jt

N−1+α
if k is occupied

α
N−1+α

if k is unoccupied
(13)

Now we proceed with assigning dishes to each table. Since the
distribution of dishes is generated from a standard Dirichlet process,
the probability is not affected by the finite capacity limitation. Let
mk denote the number of tables serving dish φk in the entire
franchise, and M denote the total number of different dishes served
in all franchise. Then the dish probability is given by

P (θjt = φk|θ11, · · · , θj,t−1) ∝

{
mk
M+γ

, if φk is drawn already
γ

M+γ
, if φk is new

(14)
where if φk is new, it is generated from H . Once the θjts are drawn,
we need to obtain xji from F (θji), which completes the generating
process of the hierarchical CRPFC mixture model. The inference
process can be deduced based on the generation process as was done
in Section 3.1.

4. SIMULATIONS

In this section, we provide results of simulations of the proposed
mixture models. First we show results of the CRPFC mixture model,
and then the hierarchical CRPFC mixture model.

4.1. CRPFC Mixture Model

A time series of 400 data points, each generated from a two-
dimensional Gaussian distribution, was classified by DPMM for
temporal clustering. We set N = 100. The data sets were
generated from a mixture of five multivariate Gaussian distributions
with different means and an identical covariance matrix. The whole
simulation process was carried out as follows:

1. Classification of the first 100 data samples using a standard
DPMM.

2. Removal of the first sample in the current data window
from the clusters inferred from the previous step, and
recomputation of the parameters (mean and covariance) of
the clusters.

3. Addition of the next data sample, and assignment of the
cluster according to the mechanism described by the CRPFC
mixture model.

4. Repetition of step (2) until all the data are processed.

In Fig. 1, we plotted all the samples in time series 2, with different
symbols representing the clusters that the samples belong to. In
Fig. 2, we plotted the classification of the data where different
colors represent different clusters. The means of the clusters are
represented with stars. Clearly, the method identified correctly both
the number of clusters and the class of the specific observations. In
Fig. 3, we display the time variation of the number of samples in a
particular cluster. This cluster was only present among the first 300
samples. According to the simulation results, the CRPFC mixture
model has satisfactory performance in classifying data and capturing
the dynamics of each cluster.
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Fig. 1: Sample distribution in time series 2. Different symbols
represent samples from differet clusters.

Fig. 2: Classified samples. Different colors represent different
clusters, and the stars are located at the true true mean values.

Fig. 3: Variation of the number of samples in a cluster with time. The
horizontal axis represents time and the vertical axis is the number
of data samples in the cluster. The red line is the true number of
samples in the cluster.

4.2. Hierarchical CPRFC Mixture Model

The same data generating process was used as in Section 3.2. We
worked with three independent time series. These series shared
clusters as described before. We used a hierarchical mixture model
with the capacity of 100 of each restaurant to classify the data.

We present some results in Fig. 4. There we see the number of
points of the same cluster in the different time series as they change
with time. The red line is the true value, and the blue dots are the
values inferred from the data. For each of the time series we only
show results of one cluster due to lack of space. The results show
good agreement between the true and estimated values of the cluster
sizes.

(a) Times series 1

(b) Time series 2

(c) Time series 3

Fig. 4: Number of points of the same cluster in different time series
as functions of time. The red line represents the true values, and the
blue dots are the values inferred from data.

5. CONCLUSION

In this paper, we proposed Dirichlet process mixture models for
time-dependent clustering. These models have a finite horizon of
operation at any time which enables them to capture time varying
structures. We explained how data are generated using these models,
and how one can make inference from them. Our simulation
results showed that the mixture models can accurately capture the
evolution of clusters, namely their appearance, disappearance and
reappearance. Furthermore, for the same purpose we also studied
hierarchical mixture models for joint processing of data in a corpus
of data.
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[5] P. M. Djurić and K. Yu, “On generative models for sequential
formation of clusters,” Proceedings of the European Signal
Processing Conference, Nice, France, 2015.

[6] K. Yu, J. G. Quirk, and P. M. Djurić “Fetal heart rate analysis by
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