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ABSTRACT

Particle filtering is a widely used sequential methodology that
approximates probability distributions by using discrete random
measures composed of weighted particles. A large number of
particles improves the quality of the approximation but increases
the computational requirements. Although there exists an abundant
variety of particle filtering algorithms in the literature, there is lack
of work devoted to selecting or adapting the number of particles
systematically. In this paper we propose a novel methodology for
online assessment of convergence of particle filtering. Based on
theoretical analysis of the assessment, we propose an algorithm for
the adaptation of the number of particles in online manner. The
performance of the proposed algorithm is demonstrated for two
state-space models.

Index Terms— Particle filtering, sequential Monte Carlo,
convergence assessment, predictive distribution, convergence
analysis, computational complexity, adaptive complexity.

1. INTRODUCTION

In many problems of science and engineering, observations arrive
sequentially and the interest is in inferring a hidden state that
evolves over time and that is linked to observations through a state-
space model. The Bayesian approach allows to include some prior
information and to provide a probabilistic estimation of the sequence
of hidden states. The inference can be performed in a closed form
only in few scenarios (e.g., linear Gaussian state-space models using
the well-known Kalman filter [1]), while in most of the cases, the
solution must be approximated.

The publication of [2] introduced the particle filtering
methodology (also known as sequential Monte Carlo), which has
become one of the most popular tools for stochastic filtering. A
particle filter approximates filtered distributions by sets of particles,
where the number of used particles is critical. It is well known that
when the number of particles grows to infinity, the approximation
error vanishes (see for instance [3, 4]). However, when the number
of particles grow, so do the computational costs. Therefore, this
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performance-computational cost tradeoff plays a key role in the
selection of the number of particles, and it is of utmost importance
for practitioners.

The number of particles is usually fixed throughout the
simulation and is set in an ad-hoc manner. To our best knowledge,
the problem of how to select the number of particles has been rarely
addressed in the literature. Some algorithms have been proposed in
[5, 6, 7], but all of them are heuristic and they do not provide any
theoretical guarantees.

In this paper, we present a model-independent methodology for
online assessment of the convergence of the particle filter and an
algorithm that dynamically adapts the number of particles. The
methodology is based on theory that guarantees the consistency
of the proposed method [8]. The convergence assessment method
measures the discrepancy between the observation at each time
step and a set of “fictitious observations” generated from the
predictive probability distribution of the observations. We propose
an algorithm that adjusts the number of particles and that is light in
computations. Numerical results show the validity of the method on
two different state-space models.

The rest of the paper is organized as follows. We formulate the
problem in Section 2. In Section 3 we introduce the method for
online assessment of convergence and an algorithm for adapting the
number of particles. We present simulation results in Section 4 and
conclusions in Section 5.

2. PROBLEM FORMULATION

2.1. State-space models in discrete time

Mathematically, we describe the state-space model and the
observation model by using the set of equations

xt = g(xt−1,ut) (1)
yt = h(xt,vt) (2)

where
t ∈ N is a discrete time index,
xt ∈ Rnx is the hidden state of the system at time t,
yt ∈ R is a scalar observation,
ut ∈ Rnu is a noise vector with known distribution,
vt ∈ Rnv is a noise vector with known distribution,
g : Rnx × Rnu → Rnx is a known function, and
h : Rnx × Rnv → Rny is a known function.

Although the method presented in this paper could be used in
problems where some of the model parameters were unknown, here
we focus on the case were all of them are known. The prior
distribution of the state p(x0) is also known.
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Algorithm 1 Bootstrap filter.

1. Initialization. At time t = 0, draw M i.i.d. samples, x
(i)
0 ,

i = 1, . . . ,M , from the distribution p(x0).

2. Recursive step. Let {x(m)
t−1}Mm=1 be the particles (samples)

generated at time t − 1. At time t, proceed with the two steps
below.

(a) For m = 1, ...,M , draw a sample x̄
(m)
t from the pdf

p(xt|x(m)
t−1) and compute the normalized weight as

w
(m)
t =

p(yt|x̄(m)
t )∑M

k=1 p(yt|x̄
(k)
t )

. (3)

(b) For m = 1, ...,M , let x(m)
t = x̄

(k)
t with probability

w
(k)
t , k ∈ {1, ...,M}.

The problem consists in obtaining the densities of the hidden
states by making use of all of the observations available at time t,
i.e., approximating the distribution p(xt|y1:t).

2.2. Bootstrap Particle Filter

Particle filters sequentially approximate the posterior distribution
p(xt|y1:t) by updating the previous approximation of p(xt−1

| y1:t−1) with the new observation yt. The particle filter
approximation of p(xt|y1:t) is a random measure π̄Mt =

{x(m)
t , w

(m)
t }Mm=1, where M is the number of particles, and x

(m)
t

and w(m)
t are respectively the particles and the normalized weights.

The bootstrap particle filter (BPF), also called sequential importance
resampling (SIR) algorithm, was proposed in [2] and is the simplest
particle filter.

The BPF algorithm is described in Algorithm 1. In Step 2.(a)
the state predictive distribution is implicitly approximated as

pM (xt | y1:t−1) =
1

M

M∑
m=1

p(xt|x(m)
t−1). (4)

The Step 2.(b) represents the resampling step and, in particular,
here we have used the so-called multinomial resampling algorithm
[9, 10]. Nevertheless, many other resampling algorithms exist [11],
and the convergence of the filter can be easily proved for various of
them (see for instance [12]).

3. ONLINE SELECTION OF THE NUMBER OF
PARTICLES

Our goal is to evaluate the convergence of the BPF in real time and,
based on the assessment, adapt the number of used particles M . In
practice, since only the observations are available, we will measure
the accuracy of the approximation of the predictive observation
distribution pMt (yt) ≡ pMt (yt|y1:t−1).

We run the BPF in the usual way (as in Algorithm 1) with a
light addition of computations described below. At each iteration,
we generate K “fictitious observations”, denoted ỹ

(1)
t , . . . , ỹ

(K)
t ,

from the approximate predictive observation pdf pMt (yt). If the
BPF is operating with a small enough level of error, these fictitious
observations come approximately from the same distribution as the
acquired observation, i.e., pMt (yt) ≈ pt(yt) [8, Theorem 1].

Below we describe the method, justify its theoretical validity,
and discuss its computational complexity.

3.1. Generation of fictitious observations

The proposed method generates at each time t K fictitious
observations (i.e., Monte Carlo samples), denoted {ỹ(k)t }Kk=1,
from the approximate predictive observation pdf pMt (yt) =
1
M

∑M
m=1 p(yt|x̄

(m)
t ). Since the latter density is a finite mixture,

drawing from pMt (yt) is in general straightforward. In order to
generate ỹ(k)t , it is enough to draw a sample j(k) from the discrete
uniform distribution on {1, 2, ...,M} and then generate ỹ

(k)
t ∼

p(yt|x̄(j(k))
t ).

3.2. Assessing convergence via invariant statistics

Let us first assume the perfect approximation case where pMt (yt) =
pt(yt) = p(yt|y1:t−1), i.e., there is no approximation error and,
therefore, the fictitious observations {ỹ(k)t }Kk=1 and the observation
yt come from the true distribution. We define the set AK,t := {y ∈
{ỹ(k)t }Kk=1 : y < yt} and the associated r.v. AK,t := |AK | ∈
{1, 2, ...,K}. Note that AK,t is the set of fictitious observations
which are smaller than the actual observation, while AK,t is the
number of such observations (the cardinality of the set). If we let QK
denote the probability mass function (pmf) of AK , it can be shown
that QK is uniform independently of the value and the distribution
of yt, which is a useful property that will be further exploited. This
is rigorously proven by the Proposition below.

Proposition 1 If yt, ỹ
(1)
t , . . . , ỹ

(K)
t are i.i.d. samples from

a common continuous (but otherwise arbitrary) probability
distribution, then the pmf of the r.v. AK,t is

QK(n) =
1

K + 1
, n = 0, ...,K. (5)

Proof : Since yt, ỹ
(1)
t , · · · , ỹ(K)

t are i.i.d., all possible orderings of
theK+ 1 samples are a priori equally probable, and the value of the
r.v. AK,t depends uniquely on the relative position of yt after the
samples are sorted (e.g., if yt is the smallest sample, then AK,t = 0;
if there is exactly one ỹ(i)t < yt then AK,t = 1, etc.). There are
(K+1)! different ways in which the samples yt, ỹ

(1)
t , · · · , ỹ(K)

t can
be ordered, butAK,t can only take values from 0 toK. In particular,
given the relative position of yt, there areK! different ways in which
the remaining samples ỹ(1)t , · · · , ỹ(K)

t can be arranged. Therefore,
QK(AK = n) = K!

(K+1)!
= 1

K+1
for every n ∈ {0, 1, ...,K}. �

In practice, pMt (yt) is just an approximation of the predictive
observation pdf pt(yt), and therefore, the actual observation and
the fictitious observations are not i.i.d. However, under some
mild assumptions stated in [8, Section III], the a.s. convergence
of pMt (yt) enables us to obtain an “approximate version” of the
uniform distribution in Proposition 1, with the error vanishing as
M → ∞. To be specific, we introduce the set AK,M,t := {y ∈
{ỹ(k)t }Kk=1 : y < yt}, which depends onM because of the mismatch
between pMt (yt) and pt(yt), and the associated r.v. AK,M,t with
pmf QK,M,t. The statistic AK,M,t is asymptotically distribution-
invariant (independently of t and the model) since QK,M,t(n) →

1
K+1

when M →∞ (see [8, Theorem 2] for a proof).

3.3. BPF algorithm with adaptive number of particles

We propose a simple algorithm that dynamically adjusts the number
of particles of the filter (in this case, the BPF) by exploiting the
properties of the r.v. AK,M,t. The proposed method is summarized
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by Algorithm 2. The method is embedded into the basic BPF and
can be seen as an extra Step 2.(c) in Algorithm 1.

Note that the algorithm adapts the number of particles, nowMn,
where n is a temporal index referring to the epochs in which the
number of particles remains fixed. Each epoch lasts W iterations
and the number of particles is adapted at the end of it. The
algorithm is initialized with n = 1 and a certain initial number
of particles M1. At each iteration, in Step 1(a), K fictitious
observations {ỹ(k)t }Kk=1 are drawn, and in Step 1(b), the statistic
aK,M,t = AK,M,t is obtained. At the end of an epoch, in Step 2(a),
once a set of W consecutive statistics have been acquired, St =
{aK,M,t−W+1, aK,M,t−W+2, ..., aK,M,t−1, aK,M,t}, a statistical
test is performed for checking if St is a sequence of i.i.d. samples
from the pmf given by Eq. (5).

There are several approaches that can be used to exploit the
information contained in St, and here we perform a Pearson’s chi-
squared test [13], where the χ2

t statistic is computed according to
Eq. (6). Then, a p-value p∗K,t for testing the hypothesis that the
empirical distribution of St is uniform is computed. The value p∗K,t
is obtained by comparing the χ2

t statistic with the χ2 distribution
with K degrees of freedom. The p-value is then compared with two
different significance levels: a low threshold p` and a high threshold
ph If p∗K,t ≤ p`, the number of particles is increased according to
the rule Mt = fup(Mt−1) whereas, if p∗K,t ≥ ph, the number of
particles is decreased according to the rule Mt = fdown(Mt−1). If
p` < p∗K,t < ph, we keep the number of particles unchanged.

The two significance levels ph and p` allow the practitioner to
select the operation range in the performance-computational cost
tradeoff. We can control the maximum and minimum computational
complexity with Mmin and Mman, respectively, and the adaptation
speed with fup(·) and fdown(·), i.e., the rules for increasing and
decreasing M , respectively.

3.4. Computational complexity

The cost of the added computations is in general negligible
compared to the cost of running the BPF with M particles. Note
that extra cost of the algorithm comes from (1) drawing K pseudo
observations every time instant t, and (2) performing a chi-squared
test every W time instants. In general K << M , as we will show
in Section 4.

4. SIMULATION RESULTS

In this section, we implement the proposed algorithm within the
standard BPF, and we test it in two different scenarios. We have
set the algorithm parameters as W = 15, K = 5, Mmax = 212,
Mmin = 24, fup(Mn−1) = 2Mn−1, and fdown(Mn−1) = Mn−1/2.

4.1. Stochastic volatility model

We tested the algorithm on a stochastic volatility model where the
hidden state xt represents the log-volatility and is an AR(1) process
[14, Chapter 14]. The model equations are

xt = αxt−1 + ut, (7)

yt = exp
(xt

2

)
vt, (8)

where α = 0.999 is the AR parameter, and ut and vt denote
independent zero-mean Gaussian random variables of variances
σ2
u = 1 and σ2

v = 0.5, respectively. Note that ut is additive noise
while vt is multiplicative.

Algorithm 2 Adapting the number of particles

1. At time t, [Statistic computation]

(a) Draw ỹ(k)t ∼ pM (yt|yt−1), k = 1, . . . ,K.

(b) Compute aK,M,t = AK,M,t, i.e., the position of yt within

the set of ordered fictitious observations {ỹ(k)t }Kk=1.

2. If t = nW , [Convergence assessment and adaptation of M ]:

(a) Compute the χ2
t statistic over the empirical distribution of

St = {aK,M,t, aK,M,t−1, ..., aK,M,t−W+1} as

χ2
t =

K∑
j=0

(Oj − Ej)2

Ej
, (6)

where Oj is the frequency of the observations being in
the jth relative position, i.e., Oj = |aK,M,τ ∈ St :
aK,M,τ = j|, and Ej is the expected frequency under the
null hypothesis, i.e., Ej = W · QK(j) = W

K+1
(see Eq.

(5)).

(b) Calculate the p-value p∗K,t by comparing the statistic χ2
t to

the χ2-distribution with K degrees of freedom.

(c) If p∗K,t ≤ p`,

increase Mn = min{fup(Mn−1),Mmax}.
Else, if p∗K,t ≥ ph,

decrease Mn = max{fdown(Mn−1),Mmin}.
Else,

keep Mn = Mn−1.

(d) Set n = n+ 1.

[pl − ph] [0.2− 0.6] [0.3− 0.7] [0.4− 0.8]

MSE 2.18 1.44 1.30
M 23 882 1842
p-val 0.4712 0.4997 0.5071
ex. time (s) 0.87 6.93 31.20

Table 1. Stochastic volatility model (Subsection 4.1): α = 0.999,
σ2
u = 1, σ2

v = 0.5, T = 3000.

Table 1 displays the results of the MSE of the approximation
of the posterior mean, the average number of particles, the p-values
of the χ2 test, and the average execution time per run. The results
have been averaged over 500 runs and the first half of time steps
have been discarded (e.g., M̄ = 2

T

∑T
k=T

2
+1
Mk). We can see

that the relation between the MSE, M̄ , and the pair of significance
levels [pl − ph] allows for selection of the operation range: a high
operation range yields good performance (low MSE) at the cost of
using a large number of particles (high M̄ ). When we decrease the
range, the algorithm decreases the number of particles, increasing
consequently the approximation error.
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Fig. 1. Stochastic growth model (Subsection 4.2): Evolution in the
number of particles averaged of 500 runs. Fixed underlying process
for all runs.

4.2. Stochastic growth model

The non-linear growth model (e.g., see [15]) is given by

xt =
xt−1

2
+

25xt−1

1 + x2t−1

+ 8 cos(φt) + ut, (9)

yt =
x2t
20

+ vt, (10)

where φ = 0.4 is a frequency parameter (in rad/s), and ut and
vt denote independent zero-mean Gaussian random variables of
variances σ2

u = 2 and σ2
v = 0.1, respectively.

Table 2 shows the MSE of the approximation of the posterior
mean, the average number of particles, the p-values, and the
execution time. For each run, the underlying process has been
simulated, and again the first half of time steps have been discarded.
The same conclusions can be extracted for this model: the
pair [pl − ph] allows for operating at different ranges of the
performance/computational effort tradeoff.

Figure 1 shows the averaged evolution of the number of
particles for two different operation ranges [pl − ph] ∈ {[0.3 −
0.7], [0.4−0.8]}, and two different initial number of particlesM0 ∈
{16, 4096}. We see that the initial number of particles does not have
any effect after some iterations. In this simulation, the underlying
process is simulated once and kept fixed for all runs. It can be seen
that algorithm adapts the number of particles.

Figure 2 also shows the averaged evolution of the number
of particles for the same operation ranges and initial number of
particles. In this case, the underlying process is simulated for every
different run. We see that after some iterations, regardless the initial
number of particles, there is a stable number of particles that the
algorithm automatically selects for every operation range.
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Fig. 2. Stochastic growth model (Subsection 4.2): Evolution in
the number of particles averaged of 500 runs. Different random
underlying process for every different run.

[pl − ph] [0.2 − 0.6] [0.25 − 0.65] [0.3 − 0.7] [0.4 − 0.8] [0.5 − 0.9]

MSE 17.78 11.88 5.13 3.92 3.46
M 158 522 1716 2452 3652
p-val 0.459 0.4765 0.4932 0.4956 0.4966
ex. time (s) 3.5 25.4 90.0 131.3 187.3

Table 2. Stochastic growth model (Subsection 4.2): φ = 0.4,
σ2
u = 2, σ2

v = 0.1, T = 3000.

5. CONCLUSIONS

The number of particles used in sequential Monte Carlo methods
is usually set in an ad hoc way and kept fixed during the whole
simulation. In this paper, we have proposed an online methodology
for convergence assessment of the filter that allows for modification
of the number of particles dynamically. We have presented a
simple and light algorithm as an example, stating that the novel
methodology opens the door for a range of algorithms for adapting
the number of particles. We have shown the performance of the
algorithm by numerical simulations in two different state-space
models.
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