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ABSTRACT
We consider the problem of solving a quadratic potential game with
single quadratic constraints, under no monotonicity condition of the
game, nor convexity in any of the player’s problem. We show ex-
istence of Nash equilibria (NE) in the game, and propose a frame-
work to calculate Pareto efficient solutions. Regarding the corre-
sponding non-convex potential function, we show that strong duality
holds with its corresponding dual problem, give existence results of
solutions and present conditions for global optimality. Finally, we
propose a centralized method to solve the potential problem, and a
distributed version for compact constraints. We also present sim-
ulations showing convergence behavior of the proposed distributed
algorithm.

Index Terms— Non-convex quadratic optimization, non-
monotone games, Nash equilibrium, Pareto efficiency

1. INTRODUCTION

Quadratic problems have been of great interest due to the strong re-
sults that can be derived from them, leading to optimal solvability
and efficient computation. For this reason, they have been widely
used in the literature as suitable approximations of general models,
and form the basis of analysis of trust region methods [1]. In this
paper we propose a quadratic potential formulation with single con-
straints that extends the optimization problem into a game, which is
not necessarily monotone, and where the players objective functions
are not necessarily convex. We present results regarding existence
and computation of global solutions, and provide a framework that
can lead to the development of new algorithms for non-monotone
games.

Quadratic games have a long history of research, for instance
using linear constraints in dynamic games [2], and is fundamental
in control theory [3, Ch.4]. They have been used widely as approx-
imating models, such as those summarized in [4, Ch.5.B], in port-
folio game optimization [5] and smart grid applications such as in
demand-side management [6], among others. Thus, quadratic prob-
lems, as well as quadratic games, are pervasive both in models and
algorithms in many different applications.

The state of the art in solving quadratic games with quadratic
constraints is, as far as we know, that of solving monotone games [7].
This implies, that not only should these games present a convex ob-
jective function, i.e., with positive semidefinite Hessian matrix, but
also the coupling between individual problems should be limited. In
our framework, we skip these conditions: allowing non-convex ob-
jectives and constraints, and assuming no limitation in the coupling
among players. Furthermore, our NE existence results are not based
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on the monotonicity properties of the game [8], but on the potential
problem and its dual.

Being the focus of this paper solving potential games, the anal-
ysis of the potential function is critical in devising centralized and
distributed algorithms. However, general non-convex quadratic op-
timization problems with multiple constraints remains an unsolved
problem [9], and few cases, such as the quadratic programs with sin-
gle quadratic constraints have known solution [10, Appx.B]. Given
the quadratic potential program that results from our game, we ex-
tend the results of problems with single constraints to problems with
non-overlapping constraints. In order to do that, we build on the re-
sults of previous work [11], which showed global optimality condi-
tions of quadratic problems under the S-property requirement. This
property is for instance analyzed in [12]. In our results, we proved
that the S-property is satisfied in the potential problem, which is a
sufficient condition for strong duality to hold. Finally, this method-
ology allowed us to propose both a centralized and distributed algo-
rithm to globally solve the quadratic game.

The paper is structured as follows. In Section 2 we introduce the
game model and the potential function. We analyze the properties of
the player’s individual optimization problems and provide existence
results of NE. In Section 3 we present results regarding the strong
duality of the potential problem, and give existence results of such
solutions. Also, we briefly characterize Pareto efficient solutions
of the game within the quadratic framework. Finally, in Sections 4
and 5 we present the algorithmic framework to globally solve the
game, and simulations to support our results, respectively.

2. QUADRATIC POTENTIAL GAME

Given a set of players Q = {1, . . . , Q}, we introduce the quadratic
potential game Gp where every player i ∈ Q has to solve

min
xi∈Rn

fi(xi, x−i) = xTi A
ii
0 xi + 2

∑
j 6=i

xTj A
ij
0 xi + 2bT0ixi + c0i

s.t. hi(xi) = xTi A
i
1xi + 2bT1ixi + c1i ≤ 0

(1)

where Aii0 , Ai1 ∈ Sn, Aij0 ∈ Rn×n,Sn is the set of symmetric ma-
trices of size n; b0i, b1i ∈ Rn are column vectors; and c0i, c1i ∈ R
are scalar numbers. We do not assume thatAii0 , Ai1 � 0, so for every
player i ∈ Q, problem (1) is not a convex optimization problem. We
refer to the user optimization variables as xi ∈ Rn, x−i = (xj)j 6=i
and globally to all of them with x = (xi)

Q
i=1. Then, the game is

potential if, and only if, its Jacobian given by

A0 =

A
11
0 · · · A1N

0

...
. . .

...
AN1

0 · · · ANN0

 ,
is symmetric, i.e., Aij0 = (Aji0 )T . This can be readily seen since we
can express every user’s objective in the form
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fi(xi, x−i) = V (x) + ui(x−i) (2)

where
V (x) = xTA0x+

∑
j

(
2bT0jxj + c0j

)
(3)

is the potential function associated to the game, and

ui(x−i) =
∑
j 6=i

∑
r 6=i

−xTr Arj0 xj − 2bT0jxj − c0j (4)

is a term proper of dummy games [13, Prop.1]. The potential func-
tion V (x) is useful because the global maximum is itself an NE of
the game; we will analyze some of its properties in Section 3. Before
that, we further analyze the game and existence of solutions.

2.1. Analysis of the player’s optimization problem

We make the following assumption throughout the whole paper:

Assumption 1. There ∃ x̄i ∈ Rn |hi(x̄i) < 0 for every i ∈ Q.

Given Assumption 1, known as Slater’s condition, strong duality
holds for each player’s primal problem (1), and can be reformulated
in the form of its dual problem [10, Appx.B.1]. The dual function
takes the form

gi(λi, x−i) =


−(bgi + λib1i)

T (Aii0 + λiA
i
1)†(bgi + λib1i)

+c0i + λic1i if Aii0 + λiA
i
1 � 0

and (bgi + λib1i) ∈ R(Aii0 + λiA
i
1)

−∞ otherwise

where bgi = b0i+
∑
j 6=iA

ij
0 xj , Z

† is the Moore-Penrose pseudoin-
verse of Z, R(Z) represents the range of Z and λi ≥ 0. Then, the
maximum of gi(λi, x−i) characterizes the solution of (1) for given
strategies x−i. The previous formulation allows us to establish lower
and upper bounds on λi, namely

{λmin
i |λmax

i } = arg{min |max}λi
s.t. Aii0 + λiA

i
1 � 0, λi ≥ 0

(5)

which effectively define the convex region

Λi =
{
λi ∈ R+ |λmin

i ≤ λi ≤ λmax
i

}
where R+ represents the nonnegative real numbers, and λmax

i may
be unbounded. It is also useful to define

Xi =
{
xi ∈ Rn |hi(xi) ≤ 0

}
and X−i =

∏
j 6=i

Xj .

Throughout the paper we make the following assumption:
Assumption 2. For all λi ∈ rel int(Λi) and for all x−i ∈ X−i, it
is satisfied that (b0i +

∑
j 6=iA

ij
0 xj + λib1i) ∈ R(Aii0 + λiA

i
1), ∀i.

Assumption 2 guarantees that gi(λi, x−i) is continuous. The
condition is not difficult to satisfy in practice, in fact,R(Aii0 +λiA

i
1)

does not vary for λi ∈ rel int(Λi), so the only requisite is that the
other coefficients belong to such subspace.

We can now present the following theorem. A definition of co-
ercivity can be found in [8, Eq.2.1.4].

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and the set
rel intΛi is nonempty. Then, it follows:

1. Functions gi(λi, x−i) are coercive in λi for all i ∈ Q.
2. The set of maxima of gi(λi, x−i) is nonempty and compact

for all x−i ∈ X−i.
3. The set of solutions of problem (1) is nonempty ∀x−i ∈ X−i.

Proof. See Appendix A.

2.2. Existence results of NE

The previous result showed existence of solutions for the dual prob-
lems, but it did not account for the existence of NE in the game. We
will use the following definition: a point x∗ is an NE if

fi(x
∗
i , x
∗
−i) ≤ fi(xi, x∗−i) ∀xi ∈ Xi (6)

is satisfied for every player i ∈ Q. In other words, a strategy x∗i
minimizes the user’s objective function fi given the fixed strategies
x∗−i of other players, for all players i ∈ Q.

The state of the art in establishing existence of NE in general
potential games is normally guaranteed through the existence of so-
lution of the equivalent potential problem [14], which we introduce
below in (7). In the specific case of quadratic games with single
quadratic constraints we can establish the following result:

Proposition 1. Suppose Assumptions 1 and 2 are satisfied. Then, an
NE exists if and only if a solution to the potential problem exists.

For lack of space we will provide a formal proof in an extension
of this paper. Suffice it to say that the KKT conditions derived from
the game and from the potential problem are equal and, therefore,
the conditions for the existence of solutions for both problems is the
same. In Section 3 we analyze sufficient conditions for the existence
of solutions of the potential problem and, thus, for the game.

3. QUADRATIC OPTIMIZATION PROBLEM WITH NO
OVERLAPPING CONSTRAINTS

Solving the potential function (3) provides an NE solution of the
game. Therefore, in this section we analyze some properties of the
potential problem. We introduce the following notation:

b0 = (b0i)
Q
i=1, b1 = (b1i)

Q
i=1, c0 = (c0i)

Q
i=1

A1 = diag[A1
1, . . . , A

i
1, . . . , A

Q
1 ]

D(λ) = diag[λ]⊗ In×n, c1 = (c1i)
Q
i=1

where “diag” is the block diagonal matrix operator and “⊗” is the
Kronecker product. Now we can express the potential problem as

min
x

V (x) = xTA0x+ 2bT0 x+ 1Tn×1c0

s.t. xTi A
i
1xi + 2bT1ixi + c1i ≤ 0 ∀i ∈ Q.

(7)

The dual function of (7) is given by:

q(λ) =


−(b0 +D(λ)b1)T (A0 +D(λ)A1)†(b0 +D(λ)b1)

+1Tn×1c0 + λT c1 if A0 +D(λ)A1 � 0

and (b0 +D(λ)b1) ∈ R(A0 +D(λ)A1)

−∞ otherwise.

Hence, the dual problem of (7) is

max
λ≥0

q(λ). (8)

The following theorem shows strong duality between the problems:
Theorem 2. Suppose Assumptions 1 and 2 hold. Then, the primal
problem (7) and the dual problem (8) have zero duality gap.

Proof. See Appendix A.

We can identify the (convex) feasibility region of q(λ)

Γ =
{
λ ∈ RQ+ |A0 +D(λ)A1 � 0

}
and give some conditions on the existence of solutions of (8):
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Theorem 3. Suppose Assumptions 1 and 2 are satisfied and the set
rel intΓ is nonempty: Then, the following holds:

1. Function q(λ) is coercive in λ.

2. The set of maxima of q(λ) is nonempty and compact.

3. The set of solutions of problem (7) is nonempty.

Proof. See Appendix A.

3.1. Pareto efficient problem formulation

Before finishing this section, we briefly consider the problem of find-
ing Pareto efficient points of game Gp. One method to find these, is
to solve the scalarization problem [10, Sec.4.7.5], i.e., solving

min
xi∈Rn ∀i

Q∑
i=1

βifi(xi, x−i)

s.t. hi(xi) ≤ 0, ∀i ∈ Q

(9)

where βi > 0 weights the relative importance of objective function
i with the rest. These weights define the inward normal vector to
the optimal trade-off surface described by problem (9), and yield a
particular Pareto efficient solution. Problem (9) is quadratic with no
overlapping constraints and has a form similar to (7). This allows (9)
to be solved with the algorithms from Section 4.

Finally, consider the potential quadratic game with form

min
xi∈Rn

V (xi, x−i)

s.t. hi(xi) ≤ 0
∀i ∈ Q,

i.e., eq. (2) with ui(x−i) = 0 for every i ∈ Q. Then, the maximum
solution of the potential (7) is both an NE and a Pareto efficient point.

4. ALGORITHMIC FRAMEWORK

A centralized solution of game Gp is straightforward when solving
the dual problem of the potential function. Since (8) is concave (all
dual problems are concave) and, if Γ is nonempty, one can sim-
ply use convex optimization solvers and find an optimal dual so-
lution λ∗. Then, in order to obtain the primal solution of (7), solve

min
x

xT (A0 +D(λ∗)A1)x+ (bT0 + bT1 D(λ))x, (10)

which is convex since A0 +D(λ∗)A1 � 0, and obtain

x∗ ∈ −(A0 +D(λ∗)A1)†(bT0 + bT1 D(λ)) +N (A0 +D(λ∗)A1)

where x∗ is an NE of Gp, and N (Z) represents the nullspace of Z.
Note that x∗ belongs to a subspace if the solution is not unique.

For a distributed algorithm we focus on the case in which all Ai1
are positive definite. This implies that regions Xi are compact and
that a solution to potential problem (7) and game Gp exists. Note
that Aii0 has no restrictions and the problem remains non-convex. If
Ai1 � 0, a more general distributed algorithm would be necessary,
and it will be presented in an extension of this paper. The centralized
method is general and is still valid in this case.

We show in Algorithm 1 the steps to solve such problems.
In line 4 of Algorithm 1, information of all users is aggregated,
and in line 16 the operator ΠΓ((λki )Qi=1) represents the Euclidean
projection onto set Γ. Both operations need to be performed by a
central unit, and lines between 5-15 can be performed in parallel
or distributed. The rest of the algorithm is based on a bisection

0 5 10 15 20

1
10−2

10−4

10−6

10−8

10−10

10−12

Iteration number

‖x
k
−
x
k
−

1
‖

Fig. 1. Mean convergence values over 200 simulations.

scheme where λi, λi represent the upper and lower limits, respec-
tively. These values are calculated in lines 7-8 and are guaranteed
to be found because of the coercivity of the problem. Finally, lines
between 10-15 perform the bisection algorithm until convergence.
On the special case in which λi ≈ 0, then the loop can finish, since
complementarity slackness is satisfied. Otherwise, it is required that
hi(xi) ≈ 0 for the same reason.

For lack of space we do not present proof of convergence, but
we will include it in a future extension of the paper. To support our
results, in Section 5 we performed extensive simulations of Algo-
rithm 1 plotting the convergence behavior, and verified that optimal-
ity conditions were satisfied.

Algorithm 1 Distributed Jacobi scheme (Ai1 � 0 ∀i ∈ Q)

1: Initialize (x0
i )i. Determine λmin

i ∀i. Set k ← 0.
2: while ‖xk − xk−1‖ ≥ εouter do
3: Set k ← k + 1.
4: Calculate bgi = b0i+

∑
j 6=iA

ij
0 xj ,∀i //Mix strategies

5: for i ∈ Q do
6: Set λi = λmin

i , λi = 2λmin
i + 1, and xi = x̂i(λi, bgi).

7: while hi(xi) ≥ 0 do //Find bisection limits
8: Update λi = λi; λi = 2λi. Solve xi = x̂i(λi, bgi)

9: Set Ψcost ≥ εinner

10: while |Ψcost | ≥ εinner do //Perform bisection steps
11: Set λki = 1

2
(λi + λi), determine xki = x̂i(λ

k
i , bgi).

12: if hi(xi) ≤ 0, then λi = λi
13: else, λi = λi.
14: if λki > 0, then Ψcost = hi(x

k
i ) //Slackness violation

15: else, Ψcost = 0 //case λi ≈ 0

16: Solve (λki )Qi=1 = ΠΓ((λki )Qi=1), update xki = x̂i(λ
k
i , bgi).

5. SIMULATIONS

In this section we present convergence results for 200 simulated
games of model Gp with Q = 10 payers, and size of each player’s
problem n = 4. Local constraints were generated using the model

‖(Ai1)1/2xi − bsq
1i‖

2 ≤ csq
1i (11)

where coefficients of matrix (Ai1)1/2 and vector bsq
1i were Gaussian

distributed, and csq
1i uniform distributed with positive support. The

coefficients of the player’s objective function, Aii0 , Aij0 , b0i and c0i
were also Gaussian distributed. In Figure 1 we show the mean values
of the convergence criteria chosen in Algorithm 1 versus the number
of iterations. In all cases, the algorithm converged efficiently in few
iterations.
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6. CONCLUSIONS

We presented a framework for quadratic potential games with single
constraints assuming neither convexity nor monotonicity. We an-
alyzed the existence of NE, studied the potential problem through
its dual equivalent, and proved strong duality among them. Fur-
thermore, we characterized the global optimality criteria and gave
existence results. We proposed a centralized method and an effi-
cient distributed algorithm to reach these equilibrium points. We
also introduced the problem to obtain Pareto efficient points within
the same quadratic framework.

Our current work focuses on extending these results to Nash
Equilibrium Problems (NEPs) without being necessarily potential,
and investigate the impact this framework can originate in non-
quadratic games through iterative quadratic approximations.

A. APPENDIX

Proof of Theorem 1. For the first part (coercivity) we need to prove
that if λi → ∞, it necessarily implies that gi(λi, x−i) → −∞,
since we are maximizing. We can distinguish two cases: i) if Ai1has
at least one negative eigenvalue, and ii) all eigenvalues are nonneg-
ative. In the first case, λmax

i < ∞, therefore Λi becomes compact,
and gi(λi, x−i) = −∞ for λi /∈ Λi. In the second case λmax

i is
unbounded, so we have Aii0 + λiA

i
1 � 0 for all λi ≥ λmin

i and
limλi→∞ gi(λi, x−i) results in

lim
λi→∞

λi

(
c1i −

( bgi
λi

+ b1i
)T( 1

λi
Aii0 +Ai1

)†( bgi
λi

+ b1i
))

=

lim
λi→∞

λi
(
c1i − bT1i(Ai1)†b1i

)
(12)

where we have used the fact that the singular values of the pseudoin-
verse are continuous in λi. Considering the case in which Ai1 � 0,
we can express hi(xi) in the following form:

hi(xi) =
∥∥(Ai1)1/2xi + bsq

1i

∥∥2 − csq1
= xTi A

i
1xi + 2bT1ixi + c1i ≤ 0

(13)

with Ai1 = (Ai1)T/2(Ai1)1/2, bT1i = (bsq
1i)

T (Ai1)1/2, c1i =
(bsq

1i)
T bsq

1i − csq1 , and, because Slater’s condition is satisfied, we
necessarily have csq1 > 0. We calculate the previous relation:

c1i − bT1i(Ai1)†b1i = (bsq
1i)

T bsq
1i − c

sq
1

−(bsq
1i)

T (Ai1)1/2(Ai1)†/2(Ai1)†T/2(Ai1)T/2(bsq
1i) = −csq1 < 0

(14)

and conclude that limλi→∞ gi(λi, x−i) = −∞.
The second part (existence of solution) is immediate if we ap-

ply Weierstrass’ Theorem [15, Prop.3.2.1]. By strong duality [10,
Appx.B1], a solution of the primal also exists.

Proof of Theorem 2. The strong duality case presented in [10,
Appx.B.1] does not apply to problem (7), since in our case we
have multiple quadratic constraints, rather than a single one. We can
however resort to [11, Th.3.1] which states that if the S-Property is
satisfied on the constraints (as defined in [11, Def.2.2]), then a fea-
sible point of any quadratic problem (QP) is globally optimal if and
only if it satisfies the KKT conditions, plus the added requirement

A0 +

Q∑
i=1

λiÃ
i
1 � 0 (15)

whereQ is the total number of constraints and Ãi1 is the correspond-
ing Hessian matrix of constraint i, in our case given by equation (17).
Then, in our problem, solving the KKT constraints of problem (7)
plus condition (15) is equivalent to solving the dual problem (8), un-
der the assumption that strong duality holds. And thereby, to com-
plete the proof it is only required that (7) satisfies the S-Property.

For lack of space we cannot give a complete description of how
this property is satisfied, but we will include it in a future extension
of the paper. However, we enunciate the steps to achieve such result,
since the procedure is similar to the one presented in [10, Appx.B.2
and B.4]. We introduce new notation:

b̃0i = [0Tn×1, . . . , b
T
1i, . . . , 0

T
n×1]T (16)

Ãi1 = diag[0n×n, . . . , A
i
1, . . . , 0n×n] (17)

where the previous expressions have nonzero elements in positions i.
Because Slater’s condition is satisfied (Assumption 1), matrices

Ai =

[
Ãi1 b̃0i
b̃T0i c1i

]
, ∀i ∈ Q (18)

have at least one negative eigenvalue and, therefore,

τi ≥ 0 ∀i,
∑
i

τiAi � 0 =⇒ τi = 0 ∀i =⇒
∑
i

τiAi = 0. (19)

Expression (19) is fulfilled in our problem because of the sparsity
of matrices Ai, due to the no-overlap between the constraints. In
general, the above implication does not hold and this is why for QP
with more than a single quadratic constraint, strong duality is not
met. With expression (19) being fulfilled, we can use the theorem of
alternatives presented in [10, Example 5.14], with a slight modifica-
tion due to λi ≥ 0. Then, following similar steps to those described
in [10, Appx.B.4], the property can be proven to be satisfied.

Proof of Theorem 3. We need to show that if ‖λ‖ → ∞, then
q(λ) → −∞. Let’s indicate M = {i ∈ Q |λi → ∞} and
M = {i ∈ Q |λi 9∞}, and require M is nonempty. We define

DM = diag[λM ]⊗ In×n (20)
DM = diag[λM ]⊗ In×n (21)

where λM is a column vector of size Q, which has value entry λi
in the i’th position if i ∈ M , and zero entry if i /∈ M . Likewise,
λM has λi value in the i’th position if i ∈ M , and zero entry if
i /∈ M . We have omitted the dependence of λ in DM and DM to
save space. Also notice that DM + DM = D(λ) and DMDM =
DMD

†
M

= DMD
†
M = 0. We can distinguish two cases: i) if there

∃i ∈ M |Ai1 � 0, then q(λ) → −∞; and ii), if ∀i ∈ M, Ai1 � 0,
then we can establish the following limit:

lim
‖λ‖→∞

(A0 +D(λ)A1)† = lim
‖λ‖→∞

D†M (D†MA0D
†
MDM +A1)†

+D†
M

(D†
M
A0D

†
M
DM +A1)† =

lim
‖λ‖→∞

D†MA
†
1 +D†

M
(D†

M
A0D

†
M
DM +A1)†

and combine the previous intermediate result with

lim
‖λ‖→∞

q(λ) = lim
‖λ‖→∞

DMc1 +DMc1

−(b0 + (DM +DM )b1)T (A0 +D(λ)A1)†(b0 + (DM +DM )b1)

= lim
‖λ‖→∞

DM (c1 − bT1 A†1b1) + Ψ(DM ) = −∞

where, as shown in proof of Theorem 1 in (14), c1 − bT1 A†1b1 < 0;
and Ψ(DM ) combines all terms that do not affect the limit.
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