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ABSTRACT
We address the problem of compressed sensing with mul-

tiple measurement vectors associated with prior information
in order to better reconstruct an original sparse signal. This
problem is modeled via convex optimization with `2,1 − `2,1
minimization. We establish bounds on the number of mea-
surements required for successful recovery. Our bounds and
geometrical interpretations reveal that if the prior information
can decrease the statistical dimension and make it lower than
that under the case without prior information, `2,1− `2,1 min-
imization improves the recovery performance dramatically.
All our findings are further verified via simulations.

Index Terms— Convex optimization, Multiple measure-
ment vectors, Sparsity, Statistical dimension

1. INTRODUCTION

1.1. Background and Problem Definition

Compressive sensing (CS) [1, 2, 3] of sparse signals in achiev-
ing simultaneous data acquisition and compression has been
extensively studied in the past few years. In this paper, we fo-
cus on multiple measurement vectors (MMVs) that are sens-
ing results with respect to observed signals. MMVs gradu-
ally exhibit the applicability especially in the areas of wireless
sensor networks and wearable sensors [4, 5, 6].

Let S = [s1, s2, ..., sl] ∈ Rn×l be the matrix of l (>
1) original signals to be sensed by a sensing matrix Φ ∈
Rm×n(m < n) and let the matrix of measurement vectors be
Y = [y1, y2, ..., yl] ∈ Rm×l, where yi = Φsi, i = 1, 2, ..., l.
We also let si = Ψxi and let X0 = [x1, x2, ..., xl] ∈ Rn×l
be k-joint sparse, where all xi’s share the common support.
Given A = ΦΨ, recovery from MMVs can be efficiently
solved via convex optimization as:

(Mconvex) min
X

f(X) s.t. Y = AX,

where f(·) denotes a convex function. We call the problem
(Mconvex) succeeds if it has a unique optimal solution and is
ground truth X0. Traditionally, we usually set convex func-
tion f(X) = ‖X‖2,1 to enhance the joint-sparsity of X:

(ML1) min
X
‖X‖2,1 s.t. Y = AX.

So far, there is very limited literature about MMVs with
prior information via convex optimization. In fact, we can
have some prior knowledge about the ground truth X0 in, for
example, the problem of distributed compressive video sens-
ing (DCVS) [7]. In DCVS, we usually adopt higher/lower
measurement rates to sample and transmit key/non-key
frames at encoder, and then we treat these reconstructed
key frames as the prior information for better recovery of
the non-key frames at decoder. Mota et al. [8] first propose
the analysis of single measurement vector (SMV) with prior
information via convex optimization. They show that the
performance can be improved provided good prior informa-
tion can be available. In [9], we characterize when problem
(ML1) succeeds and derive the phase transition of success
rate inspired by the framework of conic geometry [10].

In this paper, we further extend the problem (ML1) to
(ML1) plus prior information as:

(ML1P) min
X
‖X‖2,1 + λ‖X −W‖2,1 s.t. Y = AX,

where W is prior information associated with ground truth
X0. The goal here is to provide theoretical but practical bound
of the probability of successful recovery and analyze the rela-
tionship between prior information and performance.

1.2. Contributions of This Paper

• Based on conic geometry, the phase transition of suc-
cess rate in (ML1P) is derived and is consistent with
the empirical results. This study indeed provides the
useful insights into how to solve the problem of MMVs
with prior information.

• What prior information is “good” can be concluded by
our theoretical analysis. For example, instead of giving
the rough conclusion such as ‖X0−W‖2,1 being close
to 0, we clearly show how the supports of X −W and
the signs of X −W affect the performance.

1.3. Notations

For a matrix H , we denote its transpose by HT ; its ith row
by hi; its jth column by hj ; and the ith entry of jth column by
hij . ΛH := {i : ‖hi‖2 6= 0} for a matrix H is a support set
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that collects the indices of nonzero rows of H . ‖·‖p and ‖·‖F
denote the `p-norm and Frobenius norm, respectively. The
`p,q-norm of a matrix is defined as ‖X‖p,q = ‖(‖xi‖p)n×1‖q.
The null space of matrixA ∈ Rm×n is defined as null(A, l) ={
Z ∈ Rn×l : AZ = 0m×l

}
. Let E denote the expected value

and let B = {x : ‖x‖2 ≤ 1, x ∈ Rn} denote closed unit ball.
The dot product of two matrices is 〈X,Y 〉 = tr

(
XTY

)
.

2. CONIC GEOMETRY

We briefly introduce how a convex function can be specified
in terms of conic geometry to make this paper self-contained.

Definition 2.1. (Descent cone [10])
The descent coneD(f, x) of a function f : Rn → R at a point
x ∈ Rn, defined as:

D(f, x) :=
⋃
τ>0

{u ∈ Rn : f(x+ τu) ≤ f(x)},

is the conical hull of the perturbations that do not increase f
near x.

By the definition of descent cone, the necessary and suffi-
cient condition of the success of problem (ML1) is described
and proved in our earlier work [9]. But in this paper, the main
problem we are studying is not related to a norm function, so
we need to modify the proof slightly to fit the problem (Mcon-
vex) with general convex function.

Lemma 2.2. (Optimality condition for MMVs recovery with
general convex function)
The matrix X0 is the unique optimal solution to problem
(Mconvex) if and only if D(f,X0) ∩ null(A, l) = {0n×l}.

Since linear subspace is also a cone, Lemma 2.2 connects
the optimal conditions to the relation that the intersection be-
tween the descent cone at X0 and matrix null space is single-
ton (i.e., problem (Mconvex) succeeds).

For a random sensing matrix A, the probability of success
for problem (Mconvex) can be related to the “sizes” of two
cones in Lemma 2.2. Amelunxen et al. [10] give a way to
measure the size of a cone, as described in the following.

Definition 2.3. (Statistical Dimension [10])
The statistical dimension (S.D.) δ(C) of a closed convex cone
C ⊂ Rn is defined as:

δ(C) := E
[∥∥∥∏(g, C)

∥∥∥2
2

]
,

where g ∈ Rn is a standard normal vector and
∏

(·, C),
denoting the Euclidean projection onto C, is defined as:∏

(x, C) := arg min{‖x− y‖2 : y ∈ C}.

According to the definition of S.D. of a cone, Amelunxen
et al. [10] derive the probability that two cones with a random
rotation are separated as follows.

Theorem 2.4. (Approximate kinematic formula [10])
Fix a tolerance η ∈ (0, 1). Suppose that C1, C2 ⊂ RN are
closed convex cones, but one of them is not a subspace. Draw
an orthogonal matrix Q ∈ Rn×n uniformly at random. Then

δ(C1)+δ(C2) ≤ n−aη
√
n ⇒ P{C1∩QC2 = {0}} ≥ 1−η,

δ(C1) + δ(C2) ≥ n+ aη
√
n ⇒ P{C1 ∩QC2 = {0}} ≤ η.

The quantity aη := 8
√

log(4/η).

Let C1 = D (f,X0) and let QC2 = null(A, l) with a ran-
dom matrix A = ΦΨ [11]. The probability of intersection
given in Theorem 2.4 can be reformulated as the probability
of existence of unique optimal solution by Lemma 2.2, i.e.,

P(C1 ∩QC2 = {0}) = P(D(f,X0) ∩ null(A, l) = {0n×l})
= P((Mconvex) succeeds).

Since the nullity of A is n −m almost surely, the dimension
of C2 is δ (null(A, l)) = dim (null(A, l)) = (n−m)l. Then,
the probability that (Mconvex) succeeds can be estimated by
Theorem 2.5, which was derived in our earlier work [9].

Theorem 2.5. (Phase transitions in MMVs recovery)
Fix a tolerance η ∈ (0, 1). Let X0 ∈ Rn×l be a fixed matrix.
SupposeA ∈ Rm×n has independent standard normal entries
and Y = AX0. Then

m ≥ δ(D(f,X0))
l +

aη
√
nl
l ⇒ P ((Mconvex) succeeds) ≥ 1− η;

m ≤ δ(D(f,X0))
l − aη

√
nl
l ⇒ P ((Mconvex) succeeds) ≤ η,

where the quantity aη := 8
√

log(4/η).

3. ESTIMATION OF S.D. IN (ML1P)

In Theorem 2.5, δ(D(f,X0)) plays an important role to esti-
mate the probability that (Mconvex) succeeds. However, cal-
culating the exact value of S.D. of a cone is still open. In
this section, we provide the bounds of S.D. of descent cone
at the point X0 associated with convex function ζW (X) =
‖X‖2,1+λ ‖X −W‖2,1 in problem (ML1P), where function
ζW is called `2,1-norm with prior information.

Theorem 3.1. (Error bound of S.D. in (ML1P))
Let ∂ζW be subdifferential of ζW . Suppose ∂ζW (X) is
nonempty and compact, and does not contain the origin.
Then, we have

inf
τ≥0

F (τ)− ξ(X) ≤ δ (D (ζW , X)) ≤ inf
τ≥0

F (τ), 1

where ξ(X) =
2‖X‖F ·sup{‖S‖F :S∈∂ζW (X)}

〈∂ζW (X),X〉 ,

F (τ) := F (τ,X) = E
[
dist2 (G, τ · ∂ζW (X))

]
for τ ≥ 0,

1The upper bound of S.D. (right inequality) follows Proposition 4.1 [10].

4369



and G ∈ Rn×l is a Gaussian random matrix.
Moreover, for k-joint sparse matrix X0 ∈ Rn×l, we have

inf
τ≥0

F (τ)− 2(1 + λ)
√
n

(1− λ)
√
k
≤ δ (D (ζW , X0)) ≤ inf

τ≥0
F (τ).

Please refer to the full version [12] for detailed proof.
To calculate the function F (τ) in Theorem 3.1, we first

compute the subdifferential of both `2,1-norm and ζW (X).

Lemma 3.2. (Subdifferential of `2,1-norm [13])
For any X,U ∈ Rn×l, we have

U ∈ ∂‖X‖2,1 ⇔ ui ∈ ∂‖xi‖2, 1 ≤ i ≤ n,

where

ui ∈ ∂‖xi‖2 ⇔

{
ui = xi/‖xi‖2 if xi 6= 0,

‖ui‖2 ≤ 1 if xi = 0.

The subgradient of `2,1-norm at X is calculated by row-
by-row subgradient of Euclidean norm ‖·‖2, whereas ∂

∥∥xi∥∥
2

consists of the gradient whenever xi 6= 0, and ∂
∥∥xi∥∥

2
= B if

xi = 0. That is, the computation of subgradient of `2,1-norm
at X depends on if a row of X is zero or not.

Moreover, since the subdifferential of ζW (X) can be
calculated separately as ∂(‖X‖2,1 + λ‖X − W‖2,1) =
∂‖X‖2,1 + λ∂‖X − W‖2,1, we calculate the subgradient
of ζW (X) according to the indices sets of zero and nonzero
rows with respect to X and X −W . We separate the domain
of ζW (X) into four cases, where E1 = ΛX ∩ ΛX−W , E2 =
ΛX ∩ ΛcX−W , E3 = ΛcX ∩ ΛX−W , and E4 = ΛcX ∩ ΛcX−W .
Then, we have the following Lemma.

Lemma 3.3. (Subdifferential of `2,1-norm with prior infor-
mation)
For any X,U ∈ Rn×l, we have

U ∈ ∂ζW (X)⇔ ui ∈ ∂(‖xi‖2 + λ‖xi − wi‖2), 1 ≤ i ≤ n,

where

ui ∈ ∂(‖xi‖2 + λ‖xi − wi‖2)⇔
ui = xi

‖xi‖2 + λ( xi−wi
‖xi−wi‖2 ), if i ∈ E1,

ui = xi

‖xi‖2 + λβi, ‖βi‖2 ≤ 1, if i ∈ E2,

ui = αi + λ( xi−wi
‖xi−wi‖2 ), ‖αi‖2 ≤ 1, if i ∈ E3,

ui = αi + λβi, ‖αi‖2 ≤ 1, ‖βi‖2 ≤ 1, if i ∈ E4.

According to Lemma 3.3, Theorem 3.1 can be rewritten
as follows.

Theorem 3.4. (Statistical dimension of descent cone of `2,1-
norm with prior information)
With the same notations and assumptions as in Theorem 3.1,
the S.D. of the descent cone of ζW at the point X0 satisfies
the inequality

ψp −
2(1 + λ)

√
n

(1− λ)
√
k
≤ δ(D(ζW , X0)) ≤ ψp. (1)

The function ψp is defined as ψp(E) := infτ≥0 {Rp(τ,E)},
where E = (|E1| , |E2| , |E3| , |E4|) andRp = T1+T2+T3+
T4 with

T1 = |E1| (l + τ2 + τ2λ2) + 2τ2λ
∑
i∈E1

cos(∠Oxi0w
i),

T2 = |E2|
∫ ∞
τλ

(t− τλ)2 · τt
le−

t2+τ2

2

(τt)l/2
Il/2−1(τt)dt,

T3 = |E3|
∫ ∞
τ

(t− τ)2 · τλt
le−

t2+τ2λ2

2

(τλt)l/2
Il/2−1(τλt)dt,

T4 = |E4|
21−L/2

Γ(l/2)

∫ ∞
τ(1+λ)

(t− τ(1 + λ))2tl−1e−t
2/2dt,

where Γ is gamma function and

Iv(z) =

∞∑
k=0

1

Γ(k + 1)Γ(v + k + 1)

(z
2

)2k+v
is modified

Bessel functions of the first kind.

Please refer to the full version [12] for detailed proof.
Following Theorem 3.4, since Rp is strictly convex, the

infimum value can be computed by finding the root of deriva-
tive of Rp. Moreover, if we divide the inequality in Eq. (1)
by n, we can see that the error term 2(1+λ)

(1−λ)
√
nk

is inversely
proportional to n. That is, the error term is negligible as n is
large enough. We verify Theorem 3.4 in the next section.

4. VERIFICATION

The verification was conducted using the CVX package [14].
Based on Theorem 3.4, it’s clear to see that S.D. is highly re-
lated toψp, which is dominated by E and

∑
i∈E1

cos(∠Oxiwi)
called the cosine term. Hence, our simulations are divided
into three categories: (1) Examine how prior information,
controlled by |E2|, improve the performance, (2) Verify how
prior information with correct supports but imprecise values,
controlled by |E1| and cosine term, affect the performance,
and (3) Examine how prior information with wrong supports,
controlled by |E3|, affect the performance (Please refer to our
full version [12] for the 3rd category.).

4.1. Parameter Setting

The signal dimension was fixed at n = 100 and sparsity was
set to k = 16. Since there are no changes with performance
when the length of a measurement vector m is larger than n

2
in all simulations, m was set to range from 1 to n

2 to focus
on the phase transition of performance. In our simulations,
we construct a signal matrix X0 ∈ Rn×l with k nonzero rows
and generate prior information W with kW nonzero rows to
satisfy wi = xi, ∀i ∈ ΛW ⊂ ΛX .
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4.2. Prior Information Controlled by |E2|
The following procedure (Step 1∼ 3) was repeated 100 times
for each set of parameters, composed of l and kW .

Step 1 Draw a standard normal matrix A ∈ Rm×n and gen-
erate Y = AX0.

Step 2 Solve problem (ML1P) by CVX to obtain an optimal
solution X∗.

Step 3 Declare success if ‖X∗ −X0‖F ≤ 10−5.

In Fig. 1, the theoretical curve (in black), indicating
δ(D(ζW ,X0))

l derived in Theorem 2.5, is located at the vague
region (of separating success and failure) of practical recov-
ery results (in blue). We can observe that the theoretical
results (in black) and the practical results (in blue) in Fig.1(b)
are more close to the origin than those in Fig. 1(a) because
more correct supports (i.e., larger kW ) are available. Similar
results can also be observed in Figs. 1(c) and (d) when l be-
comes larger. In addition, they show that both the theoretical
and practical results will be more close to the origin than
those in Figs.1(a) and (b) due to a larger l is used.
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(d) kW = 8, l = 5

Fig. 1. The empirical probability that problem (ML1P) recov-
ers a sparse signal matrix with the help of prior information
W : (a) kW = 4 and l = 2; (b) kW = 8 and l = 4; (c) kW = 4
and l = 5; (d) kW = 8 and l = 5.

4.3. Prior Information with Correct Supports but Impre-
cise Values

We discuss how much influence of cosine term on S.D. and
performance. This is equivalent to exploring the similarity
betweenX0 andW . The parameters were l = 5 and kW = 8.
We repeat the procedure (Step 1∼ 3) 100 times for four types
of prior information, described as follows.

Type 1. wi ∼ N(0, I5×5), ∀i ∈ ΛW .

Type 2. wi = sign(xi), ∀i ∈ ΛW .

Type 3. wi = (µ+ 3σ) · sign(xi), ∀i ∈ ΛW , where µ and
σ are mean and standard deviation of xi, respectively.

Type 4. wi = xi, ∀i ∈ ΛW ⊂ ΛX .

The results are shown in Fig. 2 and are summarized as
follows: (1) As shown in Fig. 2 (a), Type 1 makes the co-
sine term cos(∠Oxiwi) unpredictable but is expected to be
the highest one among the four types and cause the worst per-
formance. (2) In Fig. 2 (b), W only has correct signs, so
it cannot ensure if cos(∠Oxiwi) is greater than or less than
0. However, correct direction still improves the performance.
(3) In Fig. 2 (c), W has correct signs with the original signal
and satisfies |xij | < |wij | for i ∈ ΛW and 1 ≤ j ≤ l with
probability as high as 99%. These make the cosine term less
than 0 and lead to better performance. (4) Since Type 4 car-
ries the best prior information, Fig. 2 (d) exhibits the upper
bound of performance.
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(a) Type 1

Fig. 2. The empirical probability that problem (ML1P) iden-
tifies a sparse matrix with l measurement vectors under prior
information W : (a) Type 1; (b) Type 2; (c) Type 3; (d) Type
4.

5. CONCLUSION
In view of the fact that the phase transition analysis in joint-
sparse signal recovery with prior information of compressive
sensing is relatively unexplored, we have presented a new
phase transition analysis based on conic geometry to figure
out the effect of prior information for MMVs in this paper.
Our studies indeed provide useful insights into the critical
problem of selecting prior information to guarantee improve-
ment of signal recovery in the context of compressive sensing.

6. ACKNOWLEDGMENT

This work was supported by Ministry of Science and Tech-
nology, Taiwan, ROC, under grants MOST 104-2221-E-001-
019-MY3 and 104-2221-E-001-030-MY3.

4371



7. REFERENCES

[1] R. Baraniuk, “Compressive sensing,” IEEE Signal Pro-
cessing Magazine, vol. 24, no. 4, pp. 118–121, 2007.

[2] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty
principles: Exact signal reconstruction from highly in-
complete frequency information,” Information Theory,
IEEE Transactions on, vol. 52, no. 2, pp. 489–509,
2006.

[3] D. L. Donoho, “Compressed sensing,” Information The-
ory, IEEE Transactions on, vol. 52, no. 4, pp. 1289–
1306, 2006.

[4] Weiwei Li, Ting Jiang, and Ning Wang, “Compressed
sensing based on the characteristic correlation of ecg in
hybrid wireless sensor network,” International Journal
of Distributed Sensor Networks, vol. 501, pp. 325103,
2015.

[5] Zhilin Zhang, “Photoplethysmography-based heart rate
monitoring in physical activities via joint sparse spec-
trum reconstruction,” Biomedical Engineering, IEEE
Transactions on, vol. 62, no. 8, pp. 1902–1910, Aug
2015.

[6] Ling Xiao, Renfa Li, Juan Luo, and Mengqin Duan,
“Activity recognition via distributed random projec-
tion and joint sparse representation in body sensor net-
works,” in Advances in Wireless Sensor Networks,
Limin Sun, Huadong Ma, and Feng Hong, Eds., vol.
418 of Communications in Computer and Information
Science, pp. 51–60. Springer Berlin Heidelberg, 2014.

[7] Li-Wei Kang and Chun-Shien Lu, “Distributed com-
pressive video sensing,” in Acoustics, Speech and Signal
Processing (ICASSP), 2009 IEEE International Confer-
ence on, April 2009, pp. 1169–1172.

[8] João F. C. Mota, Nikos Deligiannis, and Miguel R. D.
Rodrigues, “Compressed sensing with prior informa-
tion: Optimal strategies, geometry, and bounds,” CoRR,
vol. abs/1408.5250, 2014.

[9] Shih-Wei Hu, Gang-Xuan Lin, Sung-Hsien Hsieh, and
Chun-Shien Lu, “Phase transition of joint-sparse re-
covery from multiple measurements via convex opti-
mization,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2015 IEEE International Conference on,
April 2015, pp. 3576–3580.

[10] D. Amelunxen, M. Lotz, M. B. McCoy, and J. A. Tropp,
“Living on the edge: phase transitions in convex pro-
grams with random data,” Information and Inference,
vol. 3, no. 3, pp. 224–294, 2014.

[11] T. T. Do, G. Lu, N. H. Nguyen, and T. D. Tran, “Fast
and efficient compressive sensing using structurally ran-
dom matrices,” Signal Processing, IEEE Transactions
on, vol. 60, no. 1, pp. 139–154, Jan 2012.

[12] S.-W. Hu, G.-X. Lin, S.-H. Hsieh, W.-J. Liang,
and C.-S. Lu, “Performance analysis of joint-
sparse recovery from multiple measurement vec-
tors with prior information via convex optimization,”
http://arxiv.org/abs/1509.06655, 2015.

[13] M. Haltmeier, “Block-sparse analysis regularization of
ill-posed problems via `2,1-minimization,” in Methods
and Models in Automation and Robotics (MMAR), In-
ternational Conference on, Aug 2013, pp. 520–523.

[14] M. G. Grant and S. P. Boyd, The CVX user’s guide,
release 2.0(beta), cvxr.com/cvx/doc, 2013.

4372


