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ABSTRACT

John’s test, which is also known as the locally most invari-
ant test for sphericity of Gaussian variables, is one of the
most frequently used methods in multichannel signal detec-
tion. The application of John’s test requires closed-form and
accurate formula to set threshold according to a prescribed
false alarm rate. Asymptotic expansion is a powerful method
in deriving the threshold expressions of detectors for large
samples. However, the existing asymptotic analysis of John’s
test in the real-valued Gaussian case is not accurate, caus-
ing the obtained false alarm rate to deviate from the preset
value. This work first corrects a miscalculation in the exist-
ing results. Then this accurate approach is extended to the
complex-valued case. In this scenario our result is as accurate
as the state-of-the-art scheme but enjoys higher computation-
al efficiency.

Index Terms— John’s test, sphericity, decision threshold,
asymptotic expansion

1. INTRODUCTION

The test of sphericity has wide applications in a variety of
research areas, including source detection [1], spectrum sens-
ing [2–4] and image processing [5]. In [6], the author de-
rived the generalized likelihood ratio test (GLRT) for this test.
This problem was revisited by [7] and [8], where the local-
ly most powerful invariant test (LMPIT) for sphericity, i.e.,
the John’s test, was derived. As inherently designed for de-
tecting small deviations from the null hypothesi, John’s test
shows good performance in the low signal-to-noise ratio (S-
NR) regime, thereby being a preference in many practical ap-
plications. However, despite its detection power, the practical
implementation of this detector requires accurate and closed-
form formula of the decision threshold. Due to the difficulties
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in deriving the exact null distribution, Nagao [9] derived an
asymptotic distribution in the real Gaussian case up to order
O(n−2), with n being the sample size, which could result in
a simple and closed-form threshold formula. Unfortunately,
this null distribution includes some errors. Consequently, the
authors of [4] found that this null distribution is not as accu-
rate as predicted by the remnant’s order, therefore they turned
to the Beta-approximation method to evaluate null distribu-
tion and threshold in the complex Gaussian case. However,
although the approximated Beta distribution is very accurate,
the threshold formula is not of closed-form and can only be
calculated by numerically inversing the Beta cumulative den-
sity function (CDF). The calculation of Beta CDF could be a
highly complicated procedure, thereby leading to difficulties
in real-time processing.

One advantage of asymptotic expansion over Beta ap-
proximation is that the resulted threshold expression is of
closed-form and offers computational efficiency. In this
work, a correction is given to result in [9], which turns out
to be more accurate. Then this result was generalized to the
complex Gaussian case. The resulted threshold expression
requires only one Chi-square table for each p, which is more
easily implemented comparing to that in [4].

2. JOHN’S TEST

Suppose we collect n samples X = [x(1), . . . ,x(n)] from a
p− variate Gaussian population N (0,Σ). Our aim is to test
the sphericity hypothesis:

H0 : Σ = σ2Ip (1)

against the alternative:

H1 : Σ ̸= σ2Ip (2)

with σ2 being an unspecified value and Ip being p×p identity
matrix.

The John’s test, derived in [7, 8] is given as

TJ =
tr(R2)

tr2(R)
(3)
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where

R =
1

n

n∑
i=1

x(i)xH(i) (4)

is the sample covariance matrix (SCM).
To utilize the asymptotic expansion method, the test s-

tatistic needs to be modified to a monotonic form that follows
asymptotic Chi-square distribution. Let S = nR, then one
proper form is,

T =
np2

2
tr(S/tr(S)− p−1Ip)

2. (5)

3. CORRECTIONS TO PREVIOUS RESULT

Due to the difficulties in deriving the exact distribution of T ,
[9] uses a transformation Y =

√
n/2 log(S/n) to expand the

characteristic function of T .
The asymptotic distribution of Y under large n could be

approximated by:

fY (Y) = c× etr

[
n− p+ 1

2

√
2

n
Y −

√
n

2
e
√

2
nY

]

×
[
1 +

p− 1

2

√
n

2
tr(Y) +

3p2 − 6p+ 2

12n
tr2(Y)

+ptr(Y2) +O(n− 3
2 )
]

(6)

where

c =
(n/2)p(2n−p−1)/4π−p(p−1)/4∏p

i=1 Γ(
1
2 (n+ 1− i))

(7)

As stated in [9], the characteristic function of T , after
some calculations, can be expressed as:

C(t)= c1ϕ
− f

2 E
[
1 +

1

n

{
p

12
tr(Y2)− 1

12
tr(Y)2− 6it

p3
tr4(Y)

+
14it− 1

12
tr(Y4)− 14it

3p
tr(Y)tr(Y3)− 5it

2p
tr2(Y2)

+
12it

p2
tr2(Y)tr(Y2) +

(
(it− 1

6
)tr(Y2) +

2it

p2
tr3(Y)

−3it

p
tr(Y)tr(Y2)

)2
}]

(8)

where f = 1
2p(p+ 2)− 1, ϕ = (1− 2it)−1 and constant

c1 could be replaced by its Stirling’s approximation [10]:

c1 =c× (2π)
1
4p(p+1)2−

1
4p(p−1) exp

[
−1

2
pn

]
=1− p

24
(2p2 + 3p− 1) +O(n−2) (9)

The expectation in (8) is taken under a normal distribution
with mean zero and covariance matrix R, which is described
as

COV(Yi,j ,Yk,l)=
ϕ(δikδjl+δilδjk)

2
+
(1−ϕ)δijδkl

p
(10)

where δij is the Kronecker delta function.
Furthermore, the moments in (8) are listed as follows,

E[tr(Y2)] = ϕ(
p2

2
+

p

2
− 1) + 1

E[tr2(Y)] = p

E[tr(Y4)] = ϕ2(
p3

2
+
5p2

4
− 7p

4
−3 +

3

p
)+ϕ(3p+3− 6

p
)+

3

p

E[tr(Y3)tr(Y)] = ϕ(
3

2
p2 +

3

2
p− 3) + 3

E[tr2(Y2)] = ϕ2(
1

4
p4+

1

2
p3+

1

4
p2 − 1)+ϕ(p2 + p− 2)+3

E[tr(Y2)tr2(Y)] = ϕ(
1

2
p3 +

1

2
p2 − p) + 3p

E[tr4(Y)] = 3p2

E[tr2(Y3)] = ϕ3(
3

4
p3 +

9

4
p2 − 6p− 9 + 12/p) +ϕ2(

9

4
p3

+
9

2
p2+

9

4
p− 9

p
)+ϕ(9p+ 9− 18

p
)+

15

p

E[(tr(Y2)tr(Y))2] = ϕ2(
1

4
p5 +

1

2
p4 +

1

4
p3 − p)

+ ϕ(3p3 + 3p2 − 6p) + 15p

E[tr6(Y)] = 15p3

E[tr(Y3)tr(Y2)tr(Y)] = ϕ2(
3

4
p4 +

3

2
p3 +

3

4
p2 − 3)

+ ϕ(6p2 + 6p− 12) + 15

E[tr(Y3)tr3(Y)] = ϕ(
9

2
p3 +

9

2
p2 − 9p) + 15p

E[tr(Y2)tr4(Y)] = ϕ(
3

2
p4 +

3

2
p3 − 3p2) + 15p2 (11)

Substituting (9) and (11) into (8) yields

C(t) = ϕ
f
2

[
3∑

i=0

hiϕ
i +O

(
n−2

)]
(12)

where

h0 = 1 +
1

24n
(−2p3 − 3p2 + p+

4

p
)

h1 =
1

4n
(p3 + 2p2 − p− 2)

h2 =
1

8n
(−2p3 − 5p2 + 7p+ 12− 12

p
)

h3 =
1

12n
(p3 + 3p2 − 8p− 12 +

16

p
) (13)
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This in turn signifies the result calculated in [9] is in error
(p−1 terms in h0 − h3). Consequently, Theorem 5.1 in [9]
should be corrected as follows:

The null distribution of T can be approximated asymptot-
ically up to order O(n−2) by

Pr(T 6γ)=
3∑

i=0

hiPr(χ2
f+2i 6 γ)+O(n−2) (14)

where χ2
f denotes a Chi-square distributed random variable

with f degrees-of-freedom.

4. GENERALIZATION TO COMPLEX CASE

In the complex case, it follows from [11] that

T ′ = np2tr(S/tr(S)− p−1Ip)
2 (15)

is asymptotically Chi-square distributed. On the other hand,
the transformation should be Y =

√
n log(S/n), whose

asymptotic distribution under large n is

fY(Y) = c∗ × etr
(
n− p+ 1√

n
Y − ne

1√
n
Y

)
×
[
1 +

p− 1√
n

tr(Y) +
6p2 − 12p+ 5

12n
tr2(Y)

+
p

12n
tr(Y2) +O(n− 3

2 )
]

(16)

where

c∗ =
Np(N− p

2 )π− p(p−1)
2∏p

k=1(Γ(n+ 1− k))
(17)

The complete proof can be found in [12]. Similarly, the
asymptotic expansion of T ′ can be expressed as:

C ′(t)= c∗1ϕ
− f′

2 E
[
1 +

1

n

{
p

12
tr(Y2)− 1

12
tr(Y)2− 3it

p3
tr4(Y)

+
14it− 1

24
tr(Y4)− 7it

3p
tr(Y)tr(Y3)− 5it

4p
tr2(Y2)

+
6it

p2
tr2(Y)tr(Y2) +

(
(
6it− 1

12
)tr(Y3) +

it

p2
tr3(Y)

−3it

2p
tr(Y)tr(Y2)

)2
}]

(18)

with f ′ = p2 − 1, and

c∗1 = c∗(2π)
p2

2 2−
m(m−1)

2 = 1− 2p3 − p

12n
+O

(
n−2

)
. (19)

The expectation in (18) is taken under a complex circular
Gaussian distribution with mean zero and covariance matrix
R′, which is described as

COV (Yi,jYk,l) = δilδjkϕ+ p−1(1− ϕ)δijδkl (20)

with the moments in (18) calculated as,

E[tr(Y2)] = ϕ(p2 − 1) + 1

E[tr2(Y)] = p

E[tr(Y4)] = ϕ2(2p3 − 5p+
3

p
) + ϕ(6p− 6

p
) +

3

p

E[tr(Y3)tr(Y)] = ϕ(3p2 − 3) + 3

E[tr2(Y2)] = ϕ2(p4 − 1)+ϕ(2p2 − 2)+3

E[tr(Y2)tr2(Y)] = ϕ(p3 − p) + 3p

E[tr4(Y)] = 3p2

E[tr2(Y3)] = ϕ3(3p3 − 15p+
12

p
) +ϕ2(9p3 − 9

p
)

+ϕ(18p− 18

p
)+

15

p

E[(tr(Y2)tr(Y))2] = ϕ2(p5 − p) + ϕ(6p3 − 6p) + 15p

E[tr6(Y)] = 15p3

E[tr(Y3)tr(Y2)tr(Y)] = ϕ2(3p4 − 3) + ϕ(12p2 − 12) + 15

E[tr(Y3)tr3(Y)] = ϕ(9p3 − 9p) + 15p

E[tr(Y2)tr4(Y)] = ϕ(3p4 − 3p2) + 15p2 (21)

Utilizing these moment expressions the asymptotic ex-
pansion of the null distribution of T ′ are calculated as

Pr(T ′6γ)=

3∑
i=0

giPr(χ2
f+2i 6 γ)+O(n−2) (22)

with

g0 = 1 +
1

12n
(−2p3 + p+

1

p
) g1 =

1

2n
(p3 − p)

g2 =
1

4n
(−2p3 + 5p+ 12− 3

p
) g3 =

1

6n
(p3 − 5p+

4

p
)

(23)

It follows from [13] that for the asymptotic distribution of
T ′ given in (22) and a prescribed false alarm probability, the
decision threshold can be approximated by

γ(Pfa) = u+
2g6u

f(f + 2)(f + 4)

[
u2 + (f + 4)u

+(f + 2)(f + 4)] +
2g4u

f(f+2)
(u+f+2) +

2g2u

f

+O
(
n−2

)
. (24)

where Pr(χ2
f 6 u) = 1− Pfa.

It is manifested that the threshold can be easily evaluated
by looking up Chi-square tables. And only one Chi-square
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table for each p needs to be established at the receiver, there-
fore the resulting additional storage could be small. As a
result, our expression is more suitable for applications with
strict real-time requirements comparing with [4].

5. SIMULATION

We present simulation results to confirm our theoretical cal-
culations, including the accuracy of the derived null distribu-
tions as well as threshold formulas. Each result represents an
average of 106 independent Monte Carlo trials.

First we compare the accuracy of Nagao’s result and our
corrected expression (14) by examining their goodness of fit
to the simulated results. Fig 1 plots the false alarm probabil-
ity as a function of decision threshold, where the numbers of
antennas and snapshots are 2 and 20, respectively. It is seen
from Fig. 1 that our result surpasses previous result in terms
of fitting the simulated one. This in turn confirms confirmed
that the previous result is in error. Furthermore, this error is
particularly large in the low false alarm rate regime, which is
usually more interested in practical applications. Therefore
our correction can sharply reduce the threshold error compar-
ing to the previous result.
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Fig. 1. False alarm probability versus threshold at p = 2,
n = 20

In the complex Gaussian case, we consider both the accu-
racy and processing time of threshold selection. More specif-
ically, we plot actual Pfa versus prescribed Pfa for the con-
dition of p = 4 and n = 50 . For comparison, the Beta ap-
proximation approach provided in [4] is also included. When
calculating the Beta CDF, we take Q points in the interval
[1/p, 1]. Although this Beta CDF is very accurate, there will
be an error introduced by the numerical inverse, therefore we
need to set Q large enough. However, this will result in addi-
tional processing time. It is seen in Fig. 2 that (24) can yield
false alarm rates that align very well with the prescribed val-
ue. In contrast, Beta approximation is accurate only when Q
is large.

Table 1 lists the elapsing times for both methods in a num-
ber of settings. It is seen the time consumed by Beta approxi-
mation increases dramatically with Q and p, and is much larg-

Table 1. Elapsing time comparison (second)
(p, n) (4,50) (4,80) (7,80)

Beta(Q = 103) 1.50 1.51 6.60
Beta(Q = 104) 14.87 15.29 67.89

Proposed 4.21×10−5 4.21×10−5 4.37×10−5

er than our method. This thereby signifies our closed-form
threshold expression is comparable to Beta approximation in
accuracy but requires much less computation load.
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(a) p = 4, n = 50, Q = 104
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(b) p = 4, n = 50, Q = 103

Fig. 2. Actual Pfa versus prescribed Pfa at p = 4, n = 50

6. CONCLUSION

The asymptotic expansion is a conventional approach to de-
termine the distributions and decision threshold of test statis-
tics. In this work, we have obtained accurate null distribu-
tion and decision threshold for John’s test in both real and
complex Gaussian cases. For the real case, we correct error
parameters in previous work regarding the asymptotic expan-
sion of its null distribution. Then we extend our development
to the complex scenario and obtain a threshold formula which
is different from the existing result. The new expression re-
quires much less computation load therefore better meets the
requirements of real-time applications.
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