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ABSTRACT

Parameter estimation using quantized observations is of im-
portance in many practical applications. Under a symmet-
ric 1-bit setup, consisting of a zero-threshold hard-limiter,
it is well known that the large sample performance loss
for low signal-to-noise ratios (SNRs) is moderate ( 2π or
−1.96dB). This makes low-complexity analog-to-digital con-
verters (ADCs) with 1-bit resolution a promising solution
for future wireless communications and signal processing
devices. However, hardware imperfections and external ef-
fects introduce the quantizer with an unknown hard-limiting
level different from zero. In this paper, the performance
loss associated with pilot-based channel estimation, subject
to an asymmetric hard limiter with unknown offset, is stud-
ied under two setups. The analysis is carried out via the
Cramér-Rao lower bound (CRLB) and an expected CRLB for
a setup with random parameter. Our findings show that the
unknown threshold leads to an additional information loss,
which vanishes for low SNR values or when the offset is close
to zero.

Index Terms— Parameter estimation, nuisance parame-
ter, 1-bit ADC, hard limiter, quantization offset

1. INTRODUCTION

Due to the fact that the complexity of a sampling device
scales exponentially O(2b) with the number of bits b which
are used for the representation of the digital amplitude values,
the analog-to-digital converter (ADC) has been identified as
a crucial part for the design of hardware and energy-efficient
signal processing systems [1]. Thus, from a hardware-aware
perspective, ADCs with 1-bit output are an attractive design
option. On the other hand, the highly nonlinear transfor-
mation associated with hard-limiting causes a substantial
information loss during the transition from the analog to the
digital domain. Fortunately, the performance loss for low
SNR is 2

π or equivalently −1.96 dB, and therefore moderate
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[2]. Also, using a higher sampling rate [3, 4] or adjustment
of the analog radio front-end [5] allows compensation for the
quantization loss. In addition, the optimization of the 1-bit
ADC itself has been studied. The work of [6] shows how to
set the hard-limiting threshold in order to maximize the Fisher
information, while [7] focuses on communication rates and
studies the Shannon information with 1-bit quantization and
asymmetric known offsets at the receiver. Another line of
works, e.g. [8, 9], investigates randomization of the quantiza-
tion level, i.e., applying dithering before the quantizer.

A problem that arises when the quantization level of a
1-bit ADC is to be adaptively controlled, is the fact that a
high resolution digital-to-analog converter (DAC) is required
in order to set an analog offset voltage source. As also the
complexity of DACs scales O(2b) with the number of bits b,
this stands in contradiction with the main motivation behind
1-bit ADC technology, which is an energy and hardware effi-
cient radio front-end. Therefore, low-complexity 1-bit ADCs
will lack the feature of an accurately adjustable quantization
level. Rather, a low-cost sampling device will be constructed
such that the hard-limiting level is fixed to a constant value.
Inevitable mismatches of the circuit parts during the produc-
tion process and external effects will lead to an unknown
quantization level of the sampler during runtime.

In this paper, the performance loss associated with 1-bit
quantization and an unknown threshold is analyzed for the
application of pilot-based channel estimation. The problem
is first studied under the assumption that the channel parame-
ter and quantization level are deterministic unknown. Then,
a hybrid setup is considered, where the channel parameter
is subject to a (known) prior distribution, while the hard-
limiting offset is deterministic. The considered ADC allows
to operate at high rates and provides binary data that can be
stored on a small amount of memory. Thus, we focus on the
asymptotic regime, where the number of samples N is large.
We characterize the optimal performance in the asymptotic
regime, which is associated with the maximum likelihood
estimator (MLE) for the deterministic setup and the joint
maximum a-posteriori probability-maximum likelihood es-
timator (JMAP-MLE) for the hybrid setup and establish the
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1-bit loss with an unknown quantization level.

2. SYSTEM MODEL

2.1. Ideal Receiver (∞-bit resolution)

For the analysis we consider the problem of pilot-based chan-
nel estimation. Therefore, the digital signal model of the ideal
receive system with infinite resolution is given by

y = ζx+ η, (1)

where x ∈ RN is a pilot signal of known structure, ζ ∈ R
characterizes the channel attenuation, and η ∈ RN is unit-
variance white Gaussian noise. Therefore, given the parame-
ter ζ, the received signal y ∈ RN follows the conditional
probability law y|ζ ∼ N (ζx, I), where 0 ∈ RN denotes the
all-zeros vector and I ∈ RN×N is the identity matrix. We as-
sume a quasi-ergodic phase-shift keying (BPSK) transmitter
and a synchronized receiver such that x ∈ {−1, 1}N where

1

N

N∑
n=1

xn = 0. (2)

2.2. Low-Complexity Receiver (1-bit resolution)

The low-complexity receiver under investigation is equipped
with a 1-bit ADC which provides the digital signal

r = sign (y − α1) = sign (ζx+ η − α1), (3)

where sign (x) is the element-wise signum function

[sign (x)]n =

{
+1 if xn ≥ 0

−1 if xn < 0
, n = 1, . . . , N, (4)

1 ∈ RN denotes the all-ones vector and α ∈ R forms the
unknown threshold level. The conditional probability density
function (PDF) of the resulting binary received signal is

pr(r; ζ, α) =

N∏
n=1

Q (rn(α− ζxn)) , (5)

with Q (x) being the Q-function

Q (x) =
1√
2π

∫ ∞
x

exp
(
− z2

2

)
dz. (6)

The task of the receivers is to calculate the estimates ζ̂y(y)

and ζ̂r(r) by using the received signal y or r, respectively.

2.3. Deterministic Approach

Under this approach the ideal receiver treats ζ as determinis-
tic unknown, such that the asymptotically optimum unbiased
estimator is the maximum likelihood estimator (MLE), given
by

ζ̂y(y) , arg max
ζ∈R

py(y; ζ)

= arg max
ζ∈R

N∑
n=1

ln pyn(yn; ζ), (7)

with the corresponding error

MSEy(ζ) = Ey;ζ

[(
ζ̂y(y)− ζ

)2]
. (8)

The 1-bit receiver considers both ζ and the threshold α as
deterministic unknown. The MLE is based on joint estimation
of both the parameter ζ and the threshold α, such that[

ζ̂r(r) α̂r(r)
]T

, arg max
ζ,α∈R

pr(r; ζ, α)

= arg max
ζ,α∈R

N∑
n=1

ln prn(rn; ζ, α), (9)

with the corresponding error

MSEr(ζ, α) , Er;ζ,α

[(
ζ̂r(r)− ζ

)2]
. (10)

2.4. Hybrid Approach

The second approach considers the parameter ζ to be mod-
eled as a random variable with a prior PDF pζ(ζ). The re-
ceived signal y and the parameter of interest ζ follow the joint
PDF py,ζ(y, ζ). The asymptotically optimum estimator is the
maximum a-posteriori probability (MAP) estimator

ζ̂y(y) , arg max
ζ∈R

py,ζ(y, ζ)

= arg max
ζ∈R

(
ln py|ζ(y|ζ) + ln pζ(ζ)

)
, (11)

where the last equality stems from Bayes law. The corre-
sponding error is defined as

MSEy , Ey,ζ

[(
ζ̂y(y)− ζ

)2]
. (12)

The 1-bit receiver treats ζ as random while the threshold α
remains deterministic unknown. The received signal r and
the parameter ζ follow the joint PDF pr,ζ(r, ζ;α). For the
1-bit receiver, the asymptotically optimum estimator [11] in
the MSE sense is the JMAP-MLE [12], given by[
ζ̂r(r) α̂r(r)

]T
, arg max

ζ,α∈R
pr,ζ(r, ζ;α)

= arg max
ζ,α∈R

(
ln pr|ζ(r|ζ;α) + ln pζ(ζ)

)
.

(13)

4354



The corresponding error is defined as

MSEr(α) , Er,ζ;α

[(
ζ̂r(r)− ζ

)2]
. (14)

3. PERFORMANCE ANALYSIS

In this section, the expressions for the MSEs in (8), (10), (12),
and (14) are evaluated. Note that due to the possibility of high
sampling rates with 1-bit ADC, the focus is on the asymptotic
regime, where the number of samples N is large. Thus, the
CRLB and its expected version utilized in the sequel are used
as valid approximations to the subjected MSEs.

3.1. Deterministic Approach - Hard-limiting Loss

With the ideal receiver and estimation by the MLE, the MSE
can be approximated asymptotically by the CRLB [13, 14]

MSEy(ζ)
a
= F−1y (ζ), (15)

where with (1) the Fisher information (FI) [15] is

Fy(ζ) = Ey;ζ

[(
∂ ln py(y; ζ)

∂ζ

)2
]

=

N∑
n=1

x2n = N. (16)

For the 1-bit receiver, the estimation of the threshold α̂r(r)
has an effect onto the inference of the attenuation parameter
ζ̂r(r). The corresponding CRLB for the estimator ζ̂r(r) is

MSEr(ζ, α)
a
=

Fr,αα(ζ, α)

Fr,ζζ(ζ, α)Fr,αα(ζ, α)− F 2
r,ζα(ζ, α)

. (17)

The required FIs are given by

Fr,ζζ(ζ, α) = Er;ζ,α

[(
∂ ln pr(r; ζ, α)

∂ζ

)2
]

=

N∑
n=1

Ern;ζ,α

[
x2n exp

(
−(α− ζxn)2

)
2πQ2 (rn(α− ζxn))

]

=

N∑
n=1

x2n exp
(
−(α− ζxn)2

)
2π
(

Q (α− ζxn)−Q2 (α− ζxn)
)

=
N

2

(
φ+(ζ, α) + φ−(ζ, α)

)
, (18)

where the third equality stems from (5), such that

Ern;ζ,α

[
1

Q2 (rn(α− ζxn))

]
=
∑
rn=±1

Q (rn(α− ζxn))

Q2 (rn(α− ζxn))

=
1

Q (α− ζxn)−Q2 (α− ζxn)
(19)

and the last equality stems from the BPSK modulation of
{xn}Nn=1 and the definition

φ±(ζ, α) =
exp

(
−(α± ζ)2

)
2π
(

Q (α± ζ)−Q2 (α± ζ)
) . (20)

In the same manner,

Fr,αα(ζ, α) = Er;ζ,α

[(
∂ ln pr(r; ζ, α)

∂α

)2
]

=

N∑
n=1

Ern;ζ,α

[
exp

(
−(α− ζxn)2

)
2πQ2 (rn(α− ζxn))

]

=
N

2

(
φ+(ζ, α) + φ−(ζ, α)

)
, (21)

Fr,ζα(ζ, α) = Er;ζ,α

[
∂ ln pr(r; ζ, α)

∂ζ

∂ ln pr(r; ζ, α)

∂α

]
= −

N∑
n=1

Ern;ζ,α

[
xn exp

(
−(α− ζxn)2

)
2πQ2 (rn(α− ζxn))

]

=
N

2

(
φ+(ζ, α)− φ−(ζ, α)

)
. (22)

Note that if the quantization level is known to the 1-bit re-
ceiver, the performance is limited to

MSE?r(ζ, α)
a
= F−1r,ζζ(ζ, α). (23)

To characterize the information loss introduced by the hard-
limiter, we define the quantization loss via two MSE ratios

χ(ζ, α) ,
MSEy(ζ)

MSEr(ζ, α)

a
=
Fr,ζζ(ζ, α)Fr,αα(ζ, α)− F 2

r,ζα(ζ, α)

Fr,αα(ζ, α)Fy,ζζ(ζ)

= 2
φ+(ζ, α)φ−(ζ, α)

)
φ+(ζ, α) + φ−(ζ, α)

, (24)

χ?(ζ, α) ,
MSEy(ζ)

MSE?r(ζ, α)

a
=
Fr,ζζ(ζ, α)

Fy,ζζ(ζ)

=
1

2

(
φ+(ζ, α) + φ−(ζ, α)

)
, (25)

which are associated with the ideal receiver and with a known
quantization level α at the 1-bit receiver, respectively. Fig. 1
shows the performance loss (24) for different SNR levels in
solid lines, where we use the convention SNR = ζ2. Note
that the loss is symmetric for negative α or ζ. The results
show that for the considered application a quantization level α
close to zero is in general preferable and that the performance
gap increases with the SNR. Additionally, with dashed lines,
Fig. 1 shows the alternative loss (25). While in the low SNR
regime the estimation of α has no effect onto the estimation of
ζ, the situation changes within the medium SNR regime. Here
the fact that the threshold is unknown can have a significant
effect, in particular when α is not close to zero.

3.2. Hybrid Approach - Hard-limiting Loss

In the case of a random channel parameter, with the ideal re-
ceiver, the asymptotic performance of the MAP estimator can
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Fig. 1. Frequentist - χ (solid) and χ? (dashed)

be characterized using the expected CRLB [18, p. 6]

MSEy
a
= Eζ

[
F−1y (ζ)

]
=

1

N
, (26)

where the last equality stems from taking the expectation of
(15) with respect to ζ. For the 1-bit receiver, according to
[16], as the number of measurements increases, the JMAP-
MLE in (13), coincides (in the sense of convergence in prob-
ability) with the MLE, given by[
ζ̂
(ML)
r (r) α̂

(ML)
r (r)

]T
= arg max

ζ,α∈R
ln pr|ζ(r|ζ;α). (27)

The sequence of MLEs as a function of the number of mea-
surements is asymptotically uniformly integrable [17]. Thus,

lim
N→∞

MSEr(α) = lim
N→∞

Er,ζ;α

[(
ζ̂(ML)
r (r)− ζ

)2]
= lim
N→∞

Eζ

{
Er|ζ;α

[(
ζ̂(ML)
r (r)− ζ

)2]}
= lim
N→∞

Eζ

[
Fr,αα(ζ, α)

Fr,ζζ(ζ, α)Fr,αα(ζ, α)− F 2
r,ζα(ζ, α)

]
,

(28)

where the last equality stems from taking the expectation of
(17). Hence, by using (18), (21), and (22), one obtains

MSEr(α)
a
= Eζ

[
Fr,αα(ζ, α)

Fr,ζζ(ζ, α)Fr,αα(ζ, α)− F 2
r,ζα(ζ, α)

]

= Eζ

[
2
N

(
φ+(ζ, α) + φ−(ζ, α)

)(
φ+(ζ, α) + φ−(ζ, α)

)2 − (φ+(ζ, α)− φ−(ζ, α)
)2
]

=
1

2N

(
Eζ

[
1

φ−(ζ, α)

]
+ Eζ

[
1

φ+(ζ, α)

])
=

1

N
ΨH ,

(29)

where due to symmetry considerations, we define

ΨH , Eζ

[
1

φ−(ζ, α)

]
= Eζ

[
1

φ+(ζ, α)

]
. (30)

The quantization losses are given by

χ(α) =
MSEy

MSEr(α)

a
= Ψ−1H , (31)

χ?(α) ,
MSEy

MSE?r(α)

a
=

Eζ
[
F−1y (ζ)

]
Eζ

[
F−1r,ζζ(ζ, α)

]
=

1

2 Eζ

[
1

φ+(ζ,α)+φ−(ζ,α)

] . (32)

Fig. 2 shows the performance loss (31) with solid lines. In
this scenario SNR = σ2

ζ as the noise ηn ∼ N (0, 1). It can be
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Fig. 2. Hybrid - χ (solid) and χ? (dashed)

observed that the quantization loss increases sharply when the
hard-limiting level α deviates from zero. Additionally, with
dashed lines, Fig. 2 shows the alternative performance loss
(32). Like in the deterministic setup, the unknown quantiza-
tion introduces an additional loss which becomes small for
low SNR and when the unknown threshold is close to zero.

4. CONCLUSION

We have analyzed the performance of a 1-bit receiver with
respect to the task of channel parameter estimation when the
quantization offset is unknown. In this situation the receiver
has to estimate the quantization level which in general has
an influence on the quality of the estimation of the channel
parameter. In the low SNR regime and when the quantization
offset is close to zero this effect vanishes. This confirms that
1-bit ADCs are an interesting option for low SNR applications
while for the medium SNR regime signal processing with 1-
bit ADCs requires careful hardware design.
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