
PERFORMANCE ADVANTAGE OF QUATERNION WIDELY LINEAR ESTIMATION:
AN APPROXIMATE UNCORRELATING TRANSFORM APPROACH

Min Xiang1, Sithan Kanna1, Scott C. Douglas2 and Danilo P. Mandic1

1Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, U.K.
2Department of Electrical Engineering, Southern Methodist University, Dallas, Texas 75275, USA

Emails: {m.xiang13, ssk08, d.mandic}@ic.ac.uk, douglas@lyle.smu.edu

ABSTRACT
Widely linear processing has been shown to be superior to the tradi-
tional strictly linear processing in quaternion minimum mean square
error (MMSE) estimation. However, a quantifiable performance dif-
ference between strictly and widely linear processing and the rela-
tionship between the performance and quaternion impropriety are
still lacking. To this end, we present a proof for the performance
advantage of widely linear estimation and relate the performance
bounds to signal properties by exploiting the approximate joint di-
agonalisation of quaternion covariance matrices. In that sense, this
work can be seen as a generalisation of complex-valued MMSE es-
timation, and can thus also be applied to the complex-valued case.
Simulations on synthetic signals support the analysis.

Index Terms— Quaternion estimation, widely linear modelling,
minimum mean square error (MMSE), impropriety

1. INTRODUCTION

Quaternions have traditionally been used in aerospace and computer
graphics in order to model 3-D rotations and orientations as their
algebra avoids numerical problems associated with vector algebras,
such as gimbal lock [1]. In recent years, with the introduction of
the HR calculus [2, 3] and augmented quaternion statistics [4, 5],
quaternion-valued signals have experienced a resurgence as they ac-
count for mutual information between data channels, provide com-
pact representations, and offer physically meaningful interpretations
for a number of 3-D and 4-D applications, such as wind prediction
[6] and frequency estimation in smart grid [7]. The minimum mean
square error (MMSE) estimation framework has also been extended
to handle quaternion-valued signals [8, 9].

Conventional strictly linear quaternion MMSE estimators utilise
standard covariance matrices and are optimal only for estimating
second-order circular quaternion signals. Advances in quaternion
statistics have established that in order to capture complete second-
order statistics of quaternion signals, widely linear MMSE estima-
tors that exploit three complementary covariances matrices in addi-
tion to the standard covariance matrix are needed [4, 5].

Due to the non-trivial nature of quaternion algebra, a closed-
form performance comparison between strictly and widely linear
MMSE estimators has not yet been presented. The only available
result was achieved in an indirect fashion via the semi-widely lin-
ear estimator [10–12], which is a generalisation of the analysis for
complex estimation [13]. In addition, the extent to which the per-
formance bounds of these estimators are affected by impropriety of
signals remains unclear.

This paper provides an analytical understanding and second-
order performance comparison between strictly and widely linear

estimators. This is achieved by examining the structure of the co-
variance and complementary covariance matrices of the input sig-
nal, and by employing the approximate uncorrelating transform, a
tool to jointly decompose the covariance and complementary covari-
ance matrices [14, 15]. In this way, the relationship between the
MMSE and second-order statistics of the input signal is established,
and the effect of signal properties on the performance is quantified.
The analysis is supported by illustrative simulations.

Throughout the paper, we use lowercase letters to denote scalars,
boldface lowercase letters for vectors, and boldface uppercase letters
for matrices. Superscripts (·)T , (·)∗, and (·)H denote the trans-
pose, conjugate, and Hermitian (i.e., transpose and conjugate), re-
spectively. E {·} denotes the statistical expectation operator.

2. BACKGROUND

2.1. Quaternion algebra

The quaternion domain H is a 4-D vector space over the real field,
spanned by the basis {1, ı, , κ}. A quaternion vector x comprises
of a scalar part R{·} and a vector part I{·} which consists of three
imaginary components, so that

x = R{x}+ I{x} = xa + ıxb + xc + κxd (1)

where ı, , κ are orthogonal imaginary units with the properties

ı = −ı = κ κ = −κ = ı κı = −ıκ = 

ı2 = 2 = κ2 = ıκ = −1
(2)

The l2-norm of a quaternion random vector x ∈ H is defined as

||x||2 = (||xa||22 + ||xb||22 + ||xc||22 + ||xd||22)
1
2

while the product of two quaternions x and y is given by

xy = <[x]<[y]−=[x] ·=[y]+<[x]=[y]+<[y]=[x]+=[x]×=[y]

where the symbol ’·’ denotes the scalar product, and ’×’ denotes
the vector product. The presence of the vector product causes non-
commutativity of the quaternion product, that is, xy 6= yx.

Another important notion is that of the quaternion involution
[16], which defines a self-inverse quaternion mapping. The general
involution of the quaternion vector x is defined as xα = −αxα,
where α is a unit pure quaternion, while the special cases of involu-
tions about the ı,  and κ imaginary axes are given by

xı = −ıxı = xa + ıxb − xc − κxd

x = −x = xa − ıxb + xc − κxd

xκ = −κxκ = xa − ıxb − xc + κxd

(3)
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Note that an involution represents a rotation along a single unit axis,
while the quaternion conjugate operator (·)∗ rotates the quaternion
variable along all three imaginary axes, and is given by

x∗ = R{x} − I{x} = xa − ıxb − xc − κxd (4)

2.2. Second-order statistics

The notion of impropriety or second-order noncircularity, which
refers to second-order moments being rotation dependent, is unique
to division algebras. In the quaternion domain, impropriety is
characterised by the degree of correlation and/or power imbalance
between the imaginary components relative to the real component.
The impropriety coefficients of the zero-mean quaternion random
variable x can be defined as [17, 18]

rα =

∣∣∣∣E {xxα∗}E {xx∗}

∣∣∣∣ ∈ [0, 1] α ∈ {ı, , κ} (5)

which reflect the correlation and between x and each of its involu-
tions.

Definition 1. A random quaternion variable x is H-proper iff its im-
propriety coefficients all vanish, that is, rı = r = rκ = 0. A
random quaternion variable x is maximally improper iff its impro-
priety coefficients are maximal, that is, rı = r = rκ = 1.

For a random quaternion vector x with zero mean, the Hermitian
standard covariance Cxx = E{xxH} is insufficient to exploit com-
plete second-order statistical information about x, and to that end it
is a prerequisite to also exploit information conveyed by quaternion
involutions represented by the ı-, -, and κ-covariances, which are
referred to as the complementary covariances and are given by [5]

Cxα = E{xxαH} α ∈ {ı, , κ} (6)

The α−covariance matrices are α−Hermitian, that is, Cxα =
(Cxα)

αH .

Definition 2. A random quaternion vector x is H-proper iff it is
uncorrelated with its involutions xı, x and xκ, so that all comple-
mentary covariances vanish, that is, Cxı = Cx = Cxκ = 0.

2.3. Augmented quaternion statistics

The set of involutions in (3), together with the original quaternion
vector x, forms the most frequently used basis for augmented quater-
nion statistics [4, 5]. The complete second-order information of ran-
dom quaternion vectors can only be obtained by examining the aug-
mented random vector xa =

[
xT ,xıT ,xT ,xκT

]T
and its corre-

sponding augmented covariance matrix Cxaxa = E{xaxaH}. For
notational simplicity, we denote xb =

[
xıT ,xT ,xκT

]T
which only

includes the involutions of x. The augmented covariance matrix can
then be examined through the following four blocks

Cxaxa =


Cxx Cxı Cx Cxκ

Cı
xı Cı

xx Cı
xκ Cı

x

C
x C

xκ C
xx C

xı

Cκ
xκ Cκ

x Cκ
xı Cκ

xx


=

[
Cxx Cxxb

Cxbx Cxbxb

] (7)

where

Cxxb = E
{

xxbH
}
=
[

Cxı Cx Cxκ

]
(8)

Cxbx = E
{

xbxH
}
=
[

Cı
xı C

x Cκ
xκ

]T (9)

Cxbxb = E
{

xbxbH
}
=

 Cı
xx Cı

xκ Cı
x

CıH
xκ C

xx C
xı

CıH
x CH

xı Cκ
xx

 (10)

These covariance matrices are Hermitian symmetrical, that is,

Cxaxa = CH
xaxa Cxbxb = CH

xbxb Cxbx = CH
xxb

2.4. Quaternion MMSE estimation

The goal of MMSE estimation is to find the optimal estimate ŷ =
E [y |x ] of a desired signal y ∈ H in terms of the input signal vector
x ∈ HL×1 by minimising MSE = E

{
|y − ŷ|2

}
. The estimation

mechanism, ŷ = f (x), which represents the prior knowledge about
the relation between y and x, is crucial for estimation performance.
Traditionally, the strictly linear (SL) model has been used, which has
the form [8]

ŷ = ĥHx (11)

where h ∈ HL×1 is the weight vector. This model achieves opti-
mal estimation for circular quaternion signals but is suboptimal for
general quaternion signals. To address this issue, involutions of x
can be incorporated to capture complete second-order statistical in-
formation, leading to the widely linear (WL) model given by [9]

ŷ = ĥHx + ĝHxı + ûHx + v̂Hxκ

= ĥHx + ŵbHxb

= ŵaHxa
(12)

where ĥ, ĝ, û, v̂ ∈ HL×1 are the estimated weight vectors which
can be compactly represented in the augmented form as ŵa =[
ĥT , ĝT , ûT , v̂T

]T
. For notational simplicity, we shall also use

ŵb =
[
ĝT , ûT , v̂T

]T
to denote the complementary weight vector

that is present in the WL model but not in the SL model.

3. PERFORMANCE ADVANTAGE OF WIDELY LINEAR
ESTIMATION

3.1. Desired signal model

Consider the desired signal, y, which is generated by a WL system
driven by noise, υ, to give

y = hHx + gHxı + uHx + vHxκ + υ
= hHx + wbHxb + υ
= waHxa + υ

(13)

where wa =
[
hT ,gT ,uT ,vT

]T
denotes the true augmented

weight vector of the WL system, while wb =
[
gT ,uT ,vT

]T
des-

ignates the true complementary weight vector of the WL system,
and υ quaternion white Gaussian noise with variance σ2

υ that is
statistically independent of x.
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3.2. MMSE in SL estimation

It has been proved that the optimal weight of the SL estimator in (11)
is provided by the Wiener solution [11], given by

ĥo = E
{

xxH
}−1

E {xy∗}

= E
{

xxH
}−1

E
{

x
(
hHx + wbHxb + υ

)∗}
= h + C−1

xxCxxbw
b (14)

Note that ĥo 6= h if C−1
xxCxxbw

b 6= 0, which occurs when the
system is WL (wb 6= 0) and x is not H-proper (Cxxb 6= 0). The SL
estimator yields the steady-state error

esl = y − ĥHo x = wbHxb −wbHCH
xxbC

−1
xxx + υ

and the corresponding error power (MMSE) is given by

E
{
|esl|2

}
= σ2

υ + wbHMwb (15)

where M = Cxbxb −CH
xxbC

−1
xxCxxb is the Schur complement of

the augmented covariance matrix Cxaxa in (7).

3.3. MMSE in WL estimation

The optimal weight vector of the WL estimator in (12) is given by the
Wiener solution ŵa

o = E
{
xaxaH

}−1
E {xay∗} = wa, resulting in

the steady-state error ewl = υ, and the corresponding MMSE

E
{
|ewl|2

}
= σ2

υ (16)

3.4. MMSE comparison between SL and WL models

The difference between the MMSEs of the above two estimators is
obtained from (15) and (16) to yield

δe2 = E
{
|esl|2

}
− E

{
|ewl|2

}
= wbHMwb (17)

Since Cxaxa is positive semi-definite, its Schur complement,
M, is also positive semi-definite [19], and thus δe2 ≥ 0, indicating
that the WL estimator has a smaller or equal MMSE compared to its
SL counterpart. However, their MMSEs are equal, that is, δe2 = 0,
if at least one of the following three conditions is satisfied:

1. The system being modelled is strictly linear, that is, wb = 0.

2. The complementary weight vector wb falls within the nullspace
of M, that is, Mwb = 0.

3. The input signal x is maximally improper, that is, x = αxı =
βx = γxκ with probability 1 for constant α,β and γ. In this
case, M = 0.

Remark 1. WL processing has a lower MMSE than SL processing
when estimating singals generated by WL systems, unless the second
or third condition holds. Otherwise, their MMSEs are equal.

4. PERFORMANCE ANALYSIS WITH THE
APPROXIMATE UNCORRELATING TRANSFORM

Recent advances in quaternion linear algebra include the approxi-
mate uncorrelating transform (AUT) which allows for a joint diag-
onalisation of the standard covariance matrix, Cxx, and the com-
plementary covariance matrices, Cxı,Cx,Cxκ, from (7), using the
same unitary matrix [14, 15]. The AUT will next be used to under-
stand the effect of the matrix M on δe2 in (17).

Formally, the AUT in the quaternion domain states that there
exists a unitary matrix Q and diagonal matrices Λx,Λı,Λ,Λκ with
singular values of Cxx,Cxı,Cx,Cxκ on the diagonal such that

Cxx ≈ QΛxQH Cxı ≈ QΛıQ
ıH

Cx ≈ QΛQ
H Cxκ ≈ QΛκQ

κH (18)

From (18), the block partitioned matrices from (8) and (10) can be
expressed as

Cxxb ≈ Q
[

Λı Λ Λκ

]
UH (19)

Cxbxb ≈ U

 Λx Λı
κ Λı



Λ
κ Λx Λ

ı

Λκ
 Λκ

ı Λx

UH (20)

where U = bdiag{Qı,Q,Qκ} is a unitary block diagonal matrix
with the involutions of the matrix Q as the block diagonal entries.
Therefore, the Schur complement matrix M in (17) is factorised as
M = USUH where

S =

Λx−Λ−1
x Λ∗

ıΛı Λı
κ−Λ−1

x Λ∗
ıΛ Λı

−Λ−1
x Λ∗

ıΛκ

Λ
κ−Λ−1

x Λ∗
Λı Λx−Λ−1

x Λ∗
Λ Λ

ı−Λ−1
x Λ∗

Λκ

Λκ
 −Λ−1

x Λ∗
κΛı Λκ

ı −Λ−1
x Λ∗

κΛ Λx−Λ−1
x Λ∗

κΛκ


and (17) turns into δe2 = wbHUSUHwb.

4.1. Impact of impropriety of the input signal

In order to clarify the relationship between the performance advan-
tage of WL estimation and impropriety of x, it is useful to discuss
the following two special cases prior to the general case.

4.1.1. H-proper signal

The performance difference (17) obeys

δe2 = wbH
(
Cxbxb −CH

xxbC
−1
xxCxxb

)
wb ≤ wbHCxbxbw

b

The second equality holds if Cxxb = 0, that is, x is H-proper, in
which case Cxbxb is diagonal, and the maximum of δe2 becomes

wbHCxbxbw
b

= gHQıΛxQıHg + uHQΛxQHu + vHQκΛxQκHv

If Λx = λI, where I is the L× L identity matrix, then we have

δe2 = λ
(
‖g‖22 + ‖u‖

2
2 + ‖v‖

2
2

)
= λ‖wb‖22 (21)

Remark 2. Without loss in generality, the performance difference
between WL and SL estimation increases as the l2-norm of the com-
plementary weight vector, ‖wb‖2, increases. This statement is true
regardless of the impropriety of the input signal since the comple-
mentary weight of the WL system cannot be modelled by the SL
estimator.

4.1.2. Uncorrelated improper signal

For an improper random quaternion vector x for which the elements
are uncorrelated and have equal power, the covariance and comple-
mentary covariance matrices are Cxx = cxI, Cxı = cıI, Cx =
cI, Cxκ = cκI, where cx, cı, c, cκ are constants. The performance
difference (17) therefore becomes

δe2=wbH

cx−c−1
x |cı|2 cıκ−c−1

x c∗ı c cı−c−1
x c∗ı cκ

cκ−c−1
x c∗ cı cx−c−1

x |c|2 cı−c−1
x c∗ cκ

cκ −c−1
x c∗κcı cκı −c−1

x c∗κc cx−c−1
x |cκ|2

⊗I

wb

(22)
where the symbol ⊗ denotes the Kronecker product.
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4.1.3. General improper signal

To examine the effect of the matrix M has on the performance dif-
ference δe2, we shall next inspect its trace. Since U is unitary, the
trace of M is

Tr [M] = Tr
[
Λx−Λ−1

x Λ∗
ıΛı+Λx−Λ−1

x Λ∗
Λ+Λx−Λ−1

x Λ∗
κΛκ

]
=

L∑
n=1

λn

(
3−

∣∣∣∣λı,nλn
∣∣∣∣2 − ∣∣∣∣λ,nλn

∣∣∣∣2 − ∣∣∣∣λκ,nλn
∣∣∣∣2
)

(23)

where λn, λı,n, λ,n, λκ,n are singular values of Cxx, Cxı, Cx,
Cxκ. As the degree of signal impropriety, which is reflected in∣∣∣λı,nλn ∣∣∣, ∣∣∣λ,nλn ∣∣∣ and

∣∣∣λκ,nλn

∣∣∣, increases, Tr [M] decreases, so do eigen-

values of M, and hence the performance difference δe2 decreases.

Remark 3. An H-proper quaternion vector x and its involutions are
uncorrelated, and the Wiener solution of SL estimation is equal to h,
the system weight of x in (13). In contrast, an H-improper quater-
nion vector x and its involutions are correlated, therefore some infor-
mation about the involutions that is embedded in x can be exploited
using the SL model, in which case the low performance of SL esti-
mation is compensated for by the additional term C−1

xxCxxbw
b in

(14). This could explain why WL estimation shows only a slight
improvement in MSE performance over SL estimation for highly
improper signals, such as the 4-D wind data in [6].

Furthermore, the relative performance advantage of WL estima-
tion can be defined as

ε =
E
{
|esl|2

}
− E

{
|ewl|2

}
E
{
|esl|2

} =
δe2

δe2 + σ2
υ

Remark 4. As δe2 is related to power of the input signal, x, accord-
ing to (23), the relative performance advantage ε increases with the
signal-to-noise ratio of x to υ.

4.2. MMSE analysis for complex MMSE estimation

The above analysis reduces to the complex case when the quater-
nion signal reduces to the complex one, that is, x=x1+ıx2, where
x1,x2 ∈ RL×1. It follows that Cxı=Cxx, Cx=Cxκ=E{xxT }.
Define the pseudo-covariance of x as Pxx =E{xxT }. The differ-
ence between the MMSEs of SL and WL complex estimators [20]
can now be obtained through a degeneration of (17), and is given by

δe2=E
{
|esl|2

}
−E

{
|ewl|2

}
=gH

(
C∗

xx−P∗
xxC−1

xx Pxx

)
g (24)

which conforms with the previous work [21], while (23) reduces to

Tr [M] = Tr
[
Λx −Λ−1

x Λ∗
pΛp

]
=

L∑
n=1

λn

(
1−

∣∣∣∣λp,nλn
∣∣∣∣2
)

(25)

where Λp is the diagonal matrix for which the diagonal element,
λp,n, is the singular value of Pxx, and

∣∣∣λp,nλn

∣∣∣ reflects the impropri-

ety of the complex input signal x. The performance advantage δe2

of complex WL estimation increases with the widely linear nature
of the system, propriety of x, or power of x; the relative advantage
increases with the first two factors and the signal-to-noise ratio of x
to υ. A higher degree of impropriety of x indicates higher correla-
tion between x and its conjugate x∗, meaning that some information
about x∗ that is embedded in x can be exploited via the SL model,
which compensates for the performance loss of SL estimation.

5. SIMULATIONS

The analysis was conducted by averaging the steady state error
power from 100 independent trials. A quaternion input signal x
with a varying degree of impropriety was generated and the WL
system in (13) was constructed, where the length of x was 4, and the
complementary weights of the system were set as g = u = v = βh
with β ∈ R a varying coefficient reflecting the widely linear nature
of the system. To avoid the excess MSE, the noise υ was neglected.
For simplicity, elements of x were generated to be uncorrelated
and with equal power, so the theoretical performance advantage
of WL estimation could be calculated from (22). The impropri-
ety coefficients rı, r, rκ of x were equalised to a unique r. The
quaternion least mean square (LMS) algorithms based on the SL and
WL models were employed to estimate y. As shown in Figure 1,
the theoretical and simulated performance advantage of the widely
linear LMS over the strictly linear LMS were in agreement, and
they both increased with the norm of the complementary weight
vector of the WL system, ‖wb‖2, and decreased as the impropriety
coefficient of x, r, increased. The curves in Fig. 1 (a) and (b) are
parabolas, conforming with the quadratic forms in (17) and (23),
thus supporting the analysis in Section 3 and Section 4.
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Fig. 1. Effects of (a) widely linear nature of the system and (b) im-
propriety of the input signal on the MMSE advantage of the quater-
nion widely linear LMS estimator.

6. CONCLUSION

We have examined the performance relationship between the SL and
and WL models for MMSE estimation of quaternion signals. The
WL model has been proved to achieve a lower or equal MSE com-
pared with the SL model, and this performance advantage has been
found to be dependent on the degree of widely linear nature of the
system, impropriety and power of the input signal. Simulations on
synthetic signals support the analysis. The excess MSE is out of
scope of this paper, and is an interesting topic in further research.
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