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ABSTRACT

We propose two minimum-mean-square-error (MMSE) esti-
mation methods for denoising non-Gaussian first-order au-
toregressive (AR(1)) processes. The first one is based on
the message passing framework and gives the exact theoretic
MMSE estimator. The second is an iterative algorithm that
combines standard wavelet-based thresholding with an opti-
mized non-linearity and cycle-spinning. This method is more
computationally efficient than the former and appears to pro-
vide the same optimal denoising results in practice. We il-
lustrate the superior performance of both methods through
numerical simulations by comparing them with other well-
known denoising schemes.

Index Terms— Auto-regressive, Non-Gaussian, De-
noising, Minimum Mean Square Error, Message Passing,
Operator-Like Wavelets, Consistent Cycle Spinning

1. INTRODUCTION

Gaussian as well as non-Gaussian auto-regressive (AR) pro-
cesses are widely studied in the theory of stochastic processes
and commonly used in different fields of signal processing
[1, 2, 3]. Thus, the problem of finding the optimal denoising
method has a special importance for these processes (opti-
mality in the sense of mean square error (MSE)). A further
motivation is to come up with a MMSE goldstandard against
which to test existing denoising methods. However, this prob-
lem remains unsolved for the general non-Gaussian case until
now.

In [4], the authors considered the problem of denoising
Lévy processes [5], which may be interpreted as the (unsta-
ble) limit of a first order auto-regressive (AR(1)) process (i.e.,
with pole at the origin) [6]. Based on the property that Lévy
processes have independent increments, the authors proposed
a message-passing estimation method to denoise such pro-
cesses. Since the corresponding graphical model is cycle-
free, the obtained estimator is the exact theoretical MMSE
estimator. However, the algorithm is very slow for signals of
practical length.

On the other hand, continuous-time Lévy processes are
self-similar and whitened by the derivative operator [6, 7].

This suggests that their coefficients in a standard wavelet ba-
sis are nearly decoupled. Exploiting this point, Kazerouni et
al. derived an optimized wavelet-based denoiser for this class
of processes and demonstrated empirically that it provides
the MMSE solution [8]. Their algorithm combines standard
wavelet-domain thresholding [9], [10] and an idea called con-
sistent cycle-spinning. It also relies on Haar wavelets which
are ideally matched to Lévy processes. This method is much
faster than the one based on message passing and can be used
for longer signal lengths.

In this paper, we consider the denoising problem of AR(1)
processes in the general non-Gaussian setting. These pro-
cesses are not whitened by the derivative operator anymore
(except for the case of Lévy processes). This implies that
the decomposition in a standard wavelet basis is no longer
appropriate. Also, the lack of independence of their incre-
ments makes the message-passing scheme proposed in [4] in-
adequate.

The contribution of this work is to extend the optimal
denoising methods available for Lévy processes to the richer
class of non-Gaussian AR(1) processes. The non-obvious
aspect is that the previous solutions take advantage of the
very specific properties of Lévy processes; in particular, the
independence of their increments. The leading idea of our ap-
proach is to replace finite differences by linear-prediction
residuals and the Haar wavelets of [8] by an alternative
operator-like basis that is matched to the processes [11]. The
justification for this latter choice is that these operator-like
wavelets have been shown recently to provide an independent
component analysis for the sub-class of α-stable AR(1) pro-
cesses [12]. A remarkable outcome is that the performance
of our new wavelet-based denoiser matches that of our gener-
alized message-passing-based algorithm which is guaranteed
to be MMSE-optimal for the general AR(1) processes (since
the factor graph has no loops).

The paper is organized as follows: In Section 2, we dis-
cuss the continuous-time and discrete-time AR(1) processes
and give the exact mathematical model that we consider in
this paper. In Section 3, we describe our extended message-
passing-based MMSE estimator. In Section 4, we introduce
our corresponding wavelet-based denoiser. Section 5 is dedi-
cated to the experimental results and contains graphs in which
the performances of our estimators are compared with some
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other widely used denoising methods. At the end, we summa-
rize the results and shortly discuss the possible future studies.

2. PRELIMINARIES
AND MATHEMATICAL MODEL

In this section, we first present our extended class of non-
Gaussian (or sparse) continuous-time AR(1) processes using
the innovation model proposed in [13] and [14]. The model
boils down to the linear filtering of a non-Gaussian white
noise (innovation) by using a suitable (1st order) shaping fil-
ter. Then, we move on to the discrete-time AR(1) process and
we give the exact model that we consider for our problem.

A continuous-time AR(1) process is whitened by operator
D +κI where D and I stand for the derivative and the identity
operators, respectively, and κ ≥ 0 is the AR(1) parameter;
i.e., s is an AR(1) process if

(D + κI){s} = w (1)

where w is a continuous-time white Lévy noise [13]. The
crucial extension here is that the continuous-time innovation
w is not necessarily Gaussian. Equivalently, for the case of
κ > 0, we can write

s = h ∗ w (2)

in which ∗ is the convolution operator and

h(t) = e−κt1+(t) (3)

is the Green’s function of D + κI where 1+(t) is the unit
step function. However, in the case that κ = 0 which leads
to the generation of Lévy processes, there are some subtle
theoretical points that need to be taken care of [13].

As it is shown in [12], if we sample the process s(t) ide-
ally and uniformly with period T , the obtained discrete pro-
cess is also a discrete AR(1) process. Precisely, if we define

s[k] = s(kT ), (4)

for k ∈ Z, then we have the linear prediction formula

s[k] = ρs[k − 1] + w[k] (5)

in which ρ = e−κT and

w[k] =

∫ kT

(k−1)T
e−κ(τ−kT )w(τ)dτ. (6)

According to (6), the linear prediction errorw[k] is a sequence
of (non-Gaussian) i.i.d. random variables whose distribution
depends on the underlying innovation w, the parameter of
AR(1) process κ and the sampling period T . Thus, the im-
pulse response of the whitening operator of the discrete-time
signal is

h[n] =


1 n = 0

−ρ n = 1

0 otherwise
. (7)

Define the vector of N samples of s as

s =
[
s[0] s[1] · · · s[N − 1]

]
. (8)

Now, the problem considered here is that we are given

y = s + n (9)

where n is anN -dimensional Gaussian noise vector with i.i.d.
entries with zero mean and variance σ2 and we want to find
the MMSE estimator of s.

3. MMSE ESTIMATOR BASED ON
MESSAGE PASSING

Our message passing algorithm is derived from a factor graph
that summarizes the statistical dependencies of the discrete
process. Since for any value of κ there is a Markov depen-
dency between entries of s, we notice that the structure of
the factor-graph is exactly the same as that of Lévy processes
(κ = 0) described in [4]. This implies that the network
through which the messages are passed remains the same.
Therefore, the pseudo-code of the algorithm can be written
as in Algorithm 1. The crucial extension here is that the
messages now depend on κ which somewhat complicates the
implementation due to the scaling by ρ 6= 1.

Algorithm 1 Message Passing MMSE Denoising for AR(1)
Processes

1: µ−s[0](x)← pw(x)

2: µ+
s[N−1](x)← 1

3: for i = 1 to N − 1 do
4: Compute µ−s[i](x) from µ−s[i−1](x)

5: Compute µ+
s[N−1−i](x) from µ+

s[N−i](x)
6: end
7: for k = 0 to N − 1 do
8: ps[k]|y(x|y) ∝ µ−s[k](x) py[k]|s(yk|s) µ+

s[k](x)

9: ŝMMSE[k] =
∫
R xps[k]|y(x|y)dx

10: end
11: ŝMMSE ←

[
ŝMMSE[0] · · · ŝMMSE[N − 1]

]
return ŝMMSE

The expression for computing forward messages is

µ−s[i](x) ∝
∫
R
µ−s[i−1](z)py|s(yi|z)pw(x− ρz)dz (10)

and for the backward messages is

µ+
s[N−1−i](x) ∝

∫
R
µ+
s[N−i](z)py|s(yN−i+1|z)pw(z−ρx)dz

(11)
in which yi is the ith entry of y, p denotes the probability den-
sity function of the random variable in the subscript and the
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symbol ∝ indicates equality after normalization that forces
the µ-functions to integrate to 1.

In the case of the Lévy processed considered in [4] where
κ = 0 and ρ = 1, the authors could evaluate (10) and (11)
simply by saving all messages and probability density func-
tions over a fine enough grid and using a Riemann sum ap-
proximation of the integrals (notice that when ρ = 1 the in-
tegrals are simple convolutions). In the more general AR(1)
scenario for which κ > 0 and ρ < 1, if we start with a certain
grid on x for storing the values of the µ functions, the grid
will expand in the case of µ− and shrink in the case of µ+ by
a factor of ρ after each iteration of the algorithm. Thus, after a
few iterations, the numerical approximation of the underlying
integrals becomes meaningless.

We overcome this problem by switching to the Fourier
domain to evaluate the convolution-like integrals as multipli-
cations. Our algorithm is justified as follows. First, we define

q(x) = pw(ρx). (12)

For the µ− functions, we have

µ−s[i](x) ∝
∫
R
µ−s[i−1](z)py|s(yi−1|z)︸ ︷︷ ︸

fi−1(z)

pw(x− ρz)dz (13)

=

∫
R
fi−1(z)q

(x
ρ
− z
)
dz (14)

which can be summarized in a convolution form

µ−s[i](x) ∝ {fi−1 ∗ q}(
x

ρ
) (15)

In the Fourier domain, this translates into

µ−s[i](x) ∝ F−1{F{fn−1} × F{q}}(
x

ρ
) (16)

where F and F−1 are the Fourier transform and its inverse,
respectively. F

Similarly, for the µ+ functions, we obtain

µ+
s[i](x) ∝

∫
R
µ+
s[i+1](z)pyi+1|s(yi+1|z)︸ ︷︷ ︸

gi+1(z)

pw(z − ρx)dz (17)

and finally end up with

µ+
s[i](x) ∝ F−1 {F{gi+1} × F{pw}} (ρx) (18)

Hence, by implementing the steps 4 and 5 in the algorithm
according to calculations (16) and (18), we are able to imple-
ment the MMSE estimator for general non-Gaussian AR(1)
processes.

4. WAVELET-BASED ESTIMATION USING
CONSISTENT CYCLE SPINNING

We now describe our new iterative wavelet-based algorithm
for the estimation of s. The key idea here is to decouple the

AR(1) process (i.e., rendering its independent components).
According to [12], the wavelet-like basis that best approxi-
mates an independent component analysis (ICA) for AR(1)
processes is the operator-like wavelet that matches the opera-
tor D + κI. We thus use the operator-like wavelet basis and
construct a wavelet frame that is tight and shift-invariant. We
then solve the following optimization problem:

v̂ = arg min
v

(
1

2
‖u− v‖22 + Φ(v) : H>Hv = v

)
. (19)

Let us look at (19) in more details. The operator H corre-
sponds to the operator-like wavelet transform and u = Hy ∈
RM with M > N . The constraint in (19) that H>Hv = v
makes the solution consistent in the sense that the wavelet
transform of the final solution ŝ = H>v̂ is necessarily equal
to v̂ that is the solution of (19). Note that—since H is
redundant—there exist some v such that H>Hv 6= v, which
are excluded by our formulation. As for the regularization of
the solution, we choose

Φ(v) =

N∑
i=1

φMMSE(vid), (20)

where vid denotes the detail coefficient at location i, and
φMMSE is a scalar-valued potential function whose proximal
operator corresponds to the MMSE shrinkage (see Stein’s
formula [15]):

ŵi = νMMSE(ui) = E(v|ui)

= ui + σ2
i

d

dui
log pui(ui), (21)

where σ2
i is the noise variance and pui is the pdf of the wavelet

coefficient of the noisy signal at location i. The latter is given
by the convolution

pui(t) = pvi(t) ∗
1√

2πσ2
i

e
− t2

2σ2
i (22)

with pvi being the pdf of the detail coefficient of the original
signal. Note that pvi is determined by the pdf of the samples
of the innovation process. There is also the theoretical guaran-
tee that the corresponding MMSE potential function φMMSE

exists [16]. From a computational point of view, (21) can be
pre-computed and stored as a look-up table (LUT). In par-
ticular, when the process is Gaussian, the solution is a simple
linear (Wiener) estimator; otherwise it is a generalized thresh-
old. For the resolution of (19), one can rely on the augmented
Lagrangian approach, which results in an iterative framework.
Otherwise, the algorithmic steps are the same as those of the
method in [8].

5. NUMERICAL RESULTS

Based on our developments, we consider the problem of de-
noising AR(1) processes. We choose κ = 0.4 and generate
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signals of length N = 128. We consider the cases of Gaus-
sian, Laplace and Cauchy distributed innovation processes.
The AR(1) signal is degraded by additive white Gaussian
noise (AWGN) with various variance values.

We then compare the denoising performance of the fol-
lowing methods:
1) MP: The method refers to the message-passing algorithm
derived in Section 3.
2) CCS-MMSE: The method refers to the estimate ŝ = H>v̂
where v̂ is the solution of (19).
3) TV: The method refers to the total variation denoising
algorithm.
4) CCS-MAP: The method is similar to CCS-MMSE. The
MMSE shrinkage operator is replaced with the MAP shrink-
age function1.
5) ST: The method refers to soft thresholding denoising in the
orthogonal wavelet domain where we used the operator-like
wavelets for the signal expansion.
6) W-MMSE: The method is similar to ST. The soft threshold-
ing operator is replaced with the MMSE shrinkage function.
7) W-MAP: The method is similar to ST. The soft threshold-
ing operator is replaced with the MAP shrinkage function.

The algorithms are compared in terms of SNR improve-
ment, which simply refers to the SNR difference between the
denoised and the noisy signals. For iterative denoising al-
gorithms —i.e., CCS-MMSE, CCS-MAP, and TV—, we per-
form 250 iterations, where TV denoising is implemented by
following the FISTA framework [17]. For the deterministic
methods, the parameters (namely, the threshold value for ST
and the regularization parameter for TV) is optimized for the
best-possible SNR performance using an oracle. The exper-
iment is repeated 300 times and the results are given in Fig-
ure 1.

By looking at the results, we see that the SNR improve-
ment curves of the MP and CCS-MMSE are indistinguishable
from each other and outperform the rest of the algorithms.
Also, it is seen that this behaviour is consistent and indepen-
dent of the underlying innovation process. This shows that the
experimentally CCS-MMSE achieves the exact MMSE esti-
mation performance of MP. We also see that the performance
of TV is better than CCS-MAP. This reflects the importance
of choosing appropriate shrinkage functions. Finally, we note
that the non-iterative algorithms—W-MMSE, W-MAP and
ST—are not competitive compared to the iterative denoising
algorithms considered in the experiments.

6. CONCLUSION

We intoduced two algorithms for computing the MMSE es-
timator of an AR(1) processes contaminated with additive
white Gaussian noise. To the best of our knowledge, these

1Note that for the Gaussian innovation case, MMSE and MAP shrinkage
functions are the same.

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

0.5

1

1.5

2

2.5

3

3.5

4
MP CCS-MMSE TV CCS-MAP W-MMSE ST W-MAP Red-MMSE

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

1

2

3

4

5

6

7

8

9

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

1

2

3

4

5

6

7

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Gaussian innovation

Laplace innovation

Cauchy innovation

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

0.5

1

1.5

2

2.5

3

3.5

4

AWGN variance
10-1 100 101

SN
R

 im
pr

ov
em

en
t (

dB
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 1. SNR improvement versus noise variance for differ-
ent estimation schemes for denoising AR(1) processes with
different distributions.

are the first practical solutions for the optimal denoising of
non-Gaussian stationary processes. The first method is based
on the message passing framework and is guaranteed to yield
the theoretical MMSE estimate. The second is a wavelet-
based method that is computationally more efficient, and its
results are found to be indistiguishable from the MMSE so-
lution. However, we have not yet been able to establish its
optimality theoretically. The results for AR(1) processes with
different input distributions are also plotted and compared to
some of the well-known denoising schemes, confirming the
superiority of our approaches.
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