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ABSTRACT

In this paper, a novel approach has been proposed for es-
timating the parameters of symmetric alpha-stable distribu-
tion with 1 ≤ α ≤ 2. Alpha-stable distribution can model
the statistical behavior of non-Gaussian heavy tailed signals
and noises with impulsive components. There are some seri-
ous consideration in parameter estimation with stable random
variable due to the lack of expression in analytic form for its
distribution. In this method, the closed-form expression for
parameter estimators is achieved by means of the values of
characteristic function (CF) in two different points. We also
establish a framework to determine these points in the general
case. Performance comparison between the proposed method
and the other methods is performed through several simula-
tions and numerical results confirm that our method is effi-
cient and has better performance even with a few number of
samples.

Index Terms— symmetric alpha-stable distribution, pa-
rameter estimation, characteristic exponent, dispersion, char-
acteristic function

1. INTRODUCTION

In recent years, stable distributions have obtained an impor-
tant position in the signal processing community as a general-
ization of the Gaussian distribution, such as SAR return sig-
nals, biomedical, underwater and atmospheric environment
signal processing [1]. Several works are addressed in the lit-
erature to prevail the problem of estimating the parameters
of symmetric α-stable (SαS) distributions [2]. Classical pa-
rameter estimation techniques for SαS random variables can
be categorized into six main categories [3]; 1- Characteris-
tic function method (CFM), 2- Quantile method (QM), 3-
Maximum likelihood method (ML), 4- Extreme value method
(EVM), 5- Fractional lower order moment (FLOM) method
[4], 6- Method of log-cumulant (MoLC) [5]. Although some
proposed methods of matrix log-cumulants may lead to non-
invertible equations and cause precarious performance. In or-
der to overcome such difficulty, a Bayesian-based method to
re-estimate the log-cumulants was proposed. However, the
burden of these methods is too expensive in terms of time and
number of computations or the variances of their estimates

are high [6].

1.1. Relation to Prior Works

From all known techniques for estimating the characteristics
exponent and dispersion parameter, only FLOM, MoLC and
QM yield to a closed form expression for parameter estima-
tors [3, 7]. Also, it is important to note that the QM needs look
up tables and linear interpolation which are computationally
expensive [8]. For moment based methods like FLOM and
MoLC, the selection of proper moment order is a critical bot-
tleneck [9]. Furthermore, the higher order moments greater
than α for α-stable distribution are infinite [10]. Through this
paper, the general problem of zero mean SαS parameter es-
timation is done analytically. We develop a new approach to
estimate two important parameters of SαS distribution, i.e.
α, γ, based on CF. Furthermore, our technique has signifi-
cantly more accuracy than the aforementioned methods.

The rest of this paper is organized as follows. In Section
2, we state some necessary preliminaries on α-stable distri-
bution and related parameter estimation methods. In Section
3, we present our CF based proposed method for parameter
estimation. Section 4 includes the performance evaluation
and numerically comparison of proposed approach with other
methods. Finally, the paper is concluded in Section 5.

2. PARAMETER ESTIMATION OF SYMMETRIC
ALPHA-STABLE DISTRIBUTION

2.1. SαS Distribution

Probability density function (PDF) for α-stable random vari-
ate is provided by taking the inverse Fourier transform from
its CF [3]. Suppose −∞ < x < ∞ and x ∼ S(α, γ, β, δ),
then its PDF is completely determined by four parameters;
however, a closed-form formula does not exist for its PDF. α
is the characteristic exponent and it determines the shape of
the distribution, (0 < α ≤ 2), γ is the dispersion or scale
parameter of the distribution and plays a similar role to the
variance of the Gaussian distribution, (γ > 0), β is the index
of skewness (−1 ≤ β ≤ 1) and δ is the location parameter,
(δ ∈ R). The case of β = 0 corresponds to the symmetric
α-stable distribution. In this study, we focus on zero mean
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(δ = 0) SαS distribution with 1 ≤ α ≤ 2, which is defined
in terms of its CF, as the following,

ϕα,γ(ω) = exp {−γ|ω|α}. (1)

Analytical formula for PDF expression only exists for two
special value of α. The case α = 2, fG(x) = f(x|α =

2, γ) = 1
2
√
πγ exp(−x

2

4γ ), which is basically the classical
Gaussian distribution. The other special case is α = 1,
fC(x) = f(x|α = 1, γ) = γ

π(x2+γ2) , corresponds to the
Cauchy distribution.

2.2. FLOM

For p > α, the pth order moment of α-stable distribution is
infinite, therefore classical estimation methods based on in-
teger moments order are unenforceable [9]. Expression for
the FLOMs of SαS distributions has previously been given
by Ma and Nikias [11]. Kuruoglu [12] developed the the-
ory of FLOM to general α-stable distributions. Based on this
method, the characteristic exponent estimation is given as the
solution to the following equation,

sinc(
p

α̂
) =

tan q

qApA−p
, q =

pπ

2
, (2)

where sinc(·) is the sinc function and Ap is defined as Ap =
E{|x|p}. Although, the argument of sinc function in [12] is
wrong and π must be omitted. For N independent observed
samples, 1

N

∑N
i=1 |xi|p may be utilized to estimate Ap. Fur-

thermore, an estimate of γ is given as

γ̂ =
{Γ(1− p) cos q

Γ(1− p/α̂)
Ap

}α̂/p
. (3)

2.3. MoLC

Second kind cumulants are constructed according to the
same rules as traditional cumulants and the relation be-
tween log-moments and log-cumulants is identical to the
relation existing between moments and cumulants [13].
The log-cumulants of SαS distribution are given as k̃1 =
ψ0(1 − 1

α ) + 1
α ln γ, k̃2 = ψ1( 1

2 + 1
α2 ) [14], where

ψ0 = −0.57721566 and ψ1 = π2/6 are the values of the

Polygamma function, ψn−1 = dn

dxn ln Γ(x)

∣∣∣∣
x=1

. Using em-

pirical log-cumulants, estimate for α and γ can be obtained
as the following,

α̂ =
( ˆ̃
k2
ψ1
− 1

2

)−1/2
, γ̂ = exp

(
(
ˆ̃
k1 − ψ0)α̂+ ψ0

)
. (4)

2.4. QM

The main feature of quantile is that it discovers α, γ and
can be expressed by a function of να and νβ , where να =

(q0.95 − q0.05)/(q0.75 − q0.25) and νβ = (q0.95 + q0.05 −
2q0.5)/(q0.95 − q0.05). The estimate of parameters α and γ is
now established consistently by means of look-up tables and
linear interpolation [3]. If the distribution is symmetric then
the quantiles are symmetric too.

3. PROPOSED CF BASED APPROACH

In this section, we derive closed-form expression for param-
eter estimators of SαS distribution which is basically based
on CF. The estimation framework we utilize here has a hierar-
chical rather than a simultaneous structure. First, an approach
is proposed for estimating the dispersion of SαS PDF, which
does not involve knowledge or simultaneous estimation of the
characteristic exponent. In the next step, an algorithm is used
for characteristic exponent estimation. In this new scheme,
two different points of CF are considered to establish the re-
quired framework. One of these points is ω = 1, which is an
appropriate choice, because all of SαS CFs have equal values
in this point, in other words, e−γ|ω|

α |ω=1 = e−γ and its value
is independent from α. Additionally, we are able to estimate
γ with no need to know about α which is a considerable ad-
vantage. The other point is ω0 which we will discuss about
the mathematically calculation of it.

3.1. Estimation of Dispersion, γ

We first consider the problem of estimating γ from a set of
observed samples. CF of a SαS distribution as illustrated in
(1) is inherently an even function versus ω. Since the empir-
ical CF (ECF) used in parameter estimation methods is not
necessarily real and even, we take the absolute value of (1) as
the following,

|ϕα,γ(ω)| = |E{ejωx}| = exp {−γ|ω|α}. (5)

Note that the right side of (1) contains a real and positive func-
tion. In the next step, the natural logarithm is taken from both
sides of the above equation,

lnE{ejωx} = −γ|ω|α, (6)

then the value of (6) is appraised at ω = 1. So we have,

γ = − ln |E{ejx}|, (7)

γ estimation now is obtained and can be empirically achieved
as the following

γ̂ = − ln
1

N

∣∣∣∣ N∑
i=1

exp(jxi)

∣∣∣∣. (8)

3.2. Estimation of Characteristic Exponent, α

In addition to ω = 1, another point of CF is needed to estimate
α. Fig. 1 shows the behaviour of CF for SαS distribution for
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Fig. 1. CF of SαS distribution; α = 1, 1.2, 1.4, 1.6, 1.8, 2.

six different values of α ∈ [1, 2]. We propose to calculate ω0

by determining the point that the maximum distance between
e−γω and e−γω

2

occurs; i.e. d
dω (e−γω

2 − e−γω) = 0. After
simplification, we may write,

2ωe−γω
2

= e−γω. (9)

To solve (9), which is an exponential equation, one solution
is to rewrite the equation in the logarithmic form and solve it
for the variable ω.

ln 2ω − γω2 = −γω. (10)

Assume an estimate of γ is achievable, by isolating γ, the
value of ω0 can straightforwardly obtained as one of the solu-
tions of the following equation which is nonlinear.

ln 2ω

ω2 − ω

∣∣∣∣
ω0

= γ̂. (11)

It is of great importance to note that for α ∈ [1, 2] and γ > 0,
ω0 takes the only values between 0 to 0.5 . Since ω0 > 0,
substituting it into (6) and dividing the resultant by (7), the
following equation is achieved.

ωα0 =
ln |E{ejω0x}|
ln |E{ejx}|

. (12)

All we need to do now is finding the solution of the above
equation to get an estimate of α. After this, the characteristic
exponent estimate is expressed as the following,

α̂ =
ln ln |E{ejω0x}|

ln |E{ejx}|

lnω0

=
ln ln |E{ejω0x}| − ln ln |E{ejx}|

lnω0

= logω0
ln |E{ejω0x}| − logω0

ln |E{ejx}|. (13)
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Fig. 2. (a) MSE for characteristic exponent estimation versus
α ∈ [1, 2], γ = 1, p = 0.25, N=10000. (b) MSE for dis-
persion estimation versus γ ∈ [0.2, 2], α = 1.55, p = 0.25,
N=10000.

4. SIMULATION RESULTS

In this section, we assess the performance of our proposed
parameter estimation scheme with other methods used for pa-
rameter estimation of SαS distribution. We call M as the
number of times an experiment is repeated and in all the sim-
ulations and M is set to be 100. Furthermore, moment or-
der selection plays an important role in FLOM technique.
In [12] the choice p = α/4 and the choice p = 0.2 have
been suggested for this purpose. Through several simulations,
p = 0.25 was determined as the best choice for order of mo-
ment. In the next section, we verify the mean squared error
(MSE) of different estimators as a comparison criterion.

4.1. MSE of Parameter Estimators

We first evaluate the performance of our proposed character-
istic exponent estimator with three other methods which have
closed-form expression for their estimates, i.e. FLOM, MoLC
and QM. We generate N = 10, 000 i.i.d samples of the SαS
random variables with γ = 1. Fig. 2(a) illustrates MSE as
a function of 1 ≤ α ≤ 2. The performance of our method
for 1 ≤ α ≤ 1.2 in not very good, because the nature of
samples are very impulsive and 10,000 samples are not suffi-
cient to have a good result. Increasing the number of samples
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Fig. 3. Lm-Norm versus m; α = 1.75, γ = 2, p = 0.25.
(a)Lm-Norm of α estimate. (b)Lm-Norm of γ estimate.

or the number of times an experiment is repeated we may
have a better output. Our approach has better performance
for α ≥ 1.3 specifically for α ≥ 1.5. Fig. 2(b) displays
MSE as a function of different values of γ. In a similar way,
in this case N = 10, 000 samples with α = 1.55 are em-
ployed. Since the behaviour of samples is very heavy-tailed,
our proposed method performance is a little better rather than
QM. For higher values of α the difference between these two
methods increases and our estimator has better performance.

4.2. Lm-Norm

The validity of the MSE criterion has been investigated
through the Lm-Norm. We carry out simulations to mea-
sure the Lm-Norm between α, γ and their estimates. For a
real number m ≥ 1, Lm-Norm is defined by,

||θ − θ̂||m =

(
1

M

M∑
k=1

(θ − θ̂k)m

) 1
m

. (14)

In Fig. 3 the simulation results for four different techniques
are given for N = 10, 000 i.i.d samples of SαS distribution
with α = 1.75, γ = 2. Numerical results depicted in Fig. 3
confirm that the proposed method has better consistency with
different distances criterion defined as Lm-Norm. Also, com-
paring Fig. 3(a) and Fig. 3(b), it can be realized that the α
estimate has lower MSE regarding to γ estimate. In the same
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Fig. 4. MSE versus number of samples (N ); α = 1.6, γ =
1.5, p = 0.25. (a) MSE of α estimate. (b) MSE of γ estimate.

manner with previous results, developed method has the best
and the FLOM method has the worst performance for estimat-
ing the characteristic exponent and dispersion parameters.

4.3. Performance Evaluation as a Function ofN

In order to demonstrate the effectiveness of our approach, we
establish a scenario with different number of available sam-
ples. For this purpose, MSE for different sample size, N ,
generated from a SαS distribution with α = 1.6, γ = 1.5,
is plotted in Fig. 4. This figure shows that the corresponding
estimation MSE of the proposed approach remains smaller
than the other methods. Moreover, the values of α and γ es-
timated by the FLOM and MoLC diverges greatly in the case
of N < 2000.

5. CONCLUSION

We developed a new approach based on the SαS CF for
parameter estimation. The main feature of our proposed
method is its simplicity and efficiency. Performance of the
proposed characteristic exponent estimator and dispersion
estimator through several simulations was compared with
FLOM method, MoLC and QM. Numerical results verify
that even with a few number of samples our proposed method
is more accurate and has better efficiency.
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