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ABSTRACT
The problem of blind separation of underdetermined instanta-
neous mixtures of independent signals is addressed through a
method relying on nonstationarity of the original signals. The
signals are assumed to be piecewise stationary with varying
variances in different epochs. In comparison with previous
works, in this paper it is assumed that the signals are not i.i.d.
in each epoch, but obey a first-order autoregressive model.
This model was shown to be more appropriate for blind sepa-
ration of natural speech signals. A separation method is pro-
posed that is nearly statistically efficient (approaching the cor-
responding Cramér-Rao lower bound), if the separated signals
obey the assumed model. In the case of natural speech sig-
nals, the method is shown to have separation accuracy better
than the state-of-the-art methods.

Index Terms— Autoregressive Processes, Cramér-Rao
Bound, Blind Source Separation

1. INTRODUCTION

Blind separation of underdetermined instantaneous mixtures
of independent signals is a challenging task - it is a non-
trivial extension of independent component analysis (ICA) to
the case when the number of sources exceeds the number of
the available mixtures. In EEG signal processing, ICA was
proven to be useful to separate parasitic signals (artifact) from
the true physiological signals, and separate some physiolog-
ical signals from the other [1]. However, it is unclear what
the number of the components should be, and one can always
expect that this number is greater than the number of the elec-
trodes. In acoustics, the number of signals to be separated
can also exceed that of microphones. Therefore the underde-
termined mixtures are of great importance.

First methods to separate underdetermined mixtures were
proposed by Comon and co-workers [2] [3] [4]. They are
based on canonical polyadic (CP) decompositions of sample
high-order cumulants of the mixed signals. Another impor-
tant step in this direction was the SOBIUM algorithm (Second
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Order Blind Identification of Underdetermined Mixtures) [5],
which performs the CP decomposition, through an approxi-
mate joint diagonalization (AJD) of lagged covariance matri-
ces. The AJD is a well studied problem and several efficient
algorithms exist [6]. Another algorithm for separating un-
derdetermined mixtures is UDSEP (Under-Determined SEP-
aration), which is sometimes called WASOBIUM (Weight-
Adjusted SOBIUM)[7]. This algorithm is based on a mod-
ified CP decomposition of a tensor composed of covariance
matrices of the partitioned mixture, using asymptotically op-
timum weights derived for the case that the signals are Gaus-
sian i.i.d. in each epoch. The algorithm proposed in this paper
can be seen as an extension of UDSEP.

For sake of completeness, the NAP-ACDC algorithm [8]
should be mentioned, which is designed for blind separation
of underdetermined mixtures. This algorithm is conceptually
different than the previous two algorithms, because it relies
on the assumption that the original signals are sparse in time.
We include this algorithm in our simulation study.

The rest of the paper is organized as follows. Section 2
summarizes the signal model, Section 3 presents the proposed
algorithm, Section 4 includes derivation of the Cramer-Rao
lower bound for the separation problem, Section 5 contains
simulation results and Section 6 concludes the paper.

2. SIGNAL MODEL

Consider an underdetermined instantaneous mixtures of
quasi-stationary independent sources, i.e. the data follow
an equation

xt = Azt, t = 1 . . . N, (1)

where xt denotes the vector of the observed mixture at time t
and zt stands for the vector of the original signals at the given
time. The matrix A ∈ Rd×r is called the mixing matrix.
We will denote its elements by aij . In the underdetermined
case, the number of mixtures d is smaller than the number
of sources r. From now on, we assume that the mixing ma-
trix has full row rank. Let X ∈ Rd×N and Z ∈ Rd×N be
matrices whose columns are the time samples of the vector
of mixtures and original signals, respectively. Then we can
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write the model equation in a matrix form

X = AZ. (2)

Our task is to estimate the mixing matrix and the source sig-
nals from the knowledge of the mixture matrix X only. We
assume that each original signal {zj,t} can be partitioned into
M blocks (indexed by m) of the same length T . In addition,
we assume that in each block original signals are order one
autoregressive processes with fixed variances and autoregres-
sive coefficients, i.e.

zj,t = qjmzj,t−1 + σjmwj,t (3)

for
t = (m− 1)T + 1, (m− 1)T + 2, . . .mT.

Here qjm denotes the autoregressive coefficient and σjm is a
square root of the variance of the innovation sequence. The
sequencewj,t is a zero mean and unit variance Gaussian white
noise. We assume that different source signals are mutually
independent and are independent in different blocks.

A covariance of the mixture within them-th block is given
by

Rm = Adiag(D:,m)A>, (4)

where A> denotes a transpose of A. The covariance with lag
one Sm = E

[
xtx
>
t−1
]

takes the form

Sm = Adiag(D:,m) diag(Q:,m)A>. (5)

The matrices D ∈ Rr×M and Q ∈ Rr×M are composed of
the sources variances and autoregressive coefficients, respec-
tively. Note that the variance djm of the j-th source in the m-
th block is different from the variance σjm of the innovation
sequence and depends both on σjm and on qjm. Throughout
the paper, the vector of the parameters to-be estimated will be
denoted by θ, which contains all elements of A, D and Q.

3. APPROXIMATE MLE

3.1. Weighted least squares criterion

In the following we describe a method of estimating the mix-
ing matrix A using only the sample lag zero and lag one co-
variances, respectively, computed as

R̂m =
1

T

mT∑
t=(m−1)T+1

xtx
>
t , (6)

Ŝm =
1

T − 1

mT∑
t=(m−1)T+2

xtx
>
t−1, (7)

only. These estimates are statistically unbiased. Since the
sample zero lag covariance matrices are symmetric, we can

limit ourselves to use only the elements of their lower triangu-
lar parts without loosing any information about the estimated
parameters. Similarly, we can use only the lower triangular
parts of the symmetric part of the sample lag one covariances.
By the symmetric parts we understand matrices Ssm given by
Ŝsm = 1/2(Ŝm+ Ŝ>m). 1 Let L denote a linear transformation
vectorising the lower triangular part of a matrix argument, i.e.

L(R) = [r11, r21 . . . rd1, r22, r32 . . . rd2, r33 . . . ]
> (8)

and let

v̂m =

[
L(R̂m)

L(Ŝsm)

]
. (9)

Thanks to the central limit theorem, we can approximate the
probability density of the statistics v̂m by a Gaussian distri-
bution with a corresponding mean and covariance resulting in
the density

p(v̂1 . . . v̂M ) =

M∏
m=1

(2π)−d(d+1)/2|Cm|−1/2

· exp
[
−1

2

(
v̂m − vm(θ)

)>
C−1m

(
v̂m − vm(θ)

)]
,

(10)
where the mean vm(θ) = E [v̂m] takes the form

vm(θ) =

[
L(Adiag(D:,m)A>)

L(Adiag(D:,m) diag(Q:,m)A>)

]
. (11)

Cm denotes the covariance matrix of v̂m. Cm is composed of
the crosscovariances of the elements of the sample covariance
matrices, i.e. of the terms

Cov
[
R̂ijm, R̂uvm

]
= 1

T

r∑
α,β=1

dαmdβm(aiαauαajβavβ

+aiαavαajβauβ) ·QRR
αβm,

(12a)

Cov
[
R̂ijm, Ŝuvm

]
= 1

T

r∑
α,β=1

dαmdβm(aiαauαajβavβ

+aiαavαajβauβ) ·QRS
αβm,

(12b)

Cov
[
Ŝijm, Ŝuvm

]
= 1

T

r∑
α,β=1

dαmdβmaiαauαajβavβ

·QRR
αβm + dαmdβmaiαavαajβauβ

·QSS
αβm,

(12c)
1The sample lag one covariance matrices can be written as a sum of

their symmetric and asymmetric parts, Ŝm = Ŝa
m + Ŝs

m, where Ŝs
m =

1/2(Ŝm + Ŝ>m) and Ŝa
m = 1/2(Ŝm − Ŝ>m). Note that E

[
Ŝa
m

]
= 0.

Therefore Ŝa
m approaches zero matrix as the length parameter T goes to in-

finity and the information content of the asymmetric part diminishes. As a re-
sult, the information about estimated parameters is contained predominantly
in the lower triangular parts of the symmetric matrix Ŝs

m.
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where R̂ijm denotes the i, j-th element of the zero lag sample
covariance matrix R̂m; the same holds for Ŝijm. The auxil-
iary terms QRR

αβm, QRS
αβm and QSS

αβm are given by

QRR
αβm =

1 + qαmqβm
1− qαmqβm

, (13a)

QRS
αβm =

qαm + qβm
1− qαmqβm

, (13b)

QSS
αβm = qαmqβm +

q2αm + q2βm
1− qαmqβm

. (13c)

They were derived by neglecting the terms of order smaller
than O(T−1).

A, D and Q are estimated by minimizing the negative
of the log-likelihood function corresponding to the PDF (10).
This is done using Levenberg-Marquardt iteration method. To
simplify the computations, we exclude the covariance matri-
ces Cm from the minimization and only re-evaluate them in
every tenth iteration. In this way we obtain a weighted least
squares criterion

Q1(θ) = 1
2

M∑
m=1

(
v̂m − vm(θ)

)>
Wm(

v̂m − vm(θ)
)
.

(14)

where Wm = (Cm + εI)−1. The scalar parameter ε is grad-
ually decreased to zero as the algorithm proceeds.

3.2. Nonnegativity and stationarity constraints

To prevent the optimization method stepping out of the feasi-
ble area given by inequalities djm > 0, −1 < qjm < 1 for
any j = 1 . . . r and m = 1 . . .M , we add a barrier function
to the criterion resulting in the final cost function

Q2(θ) = Q1(θ)− α
r∑
j=1

M∑
m=1

[
log djm

+ log(1 + qjm) + log(1− qjm)
]
.

(15)

The scalar parameter α is gradually decreased to zero.

3.3. Optimization details

The algorithm is initialized by the output of the UDSEP algo-
rithm [7]. Then it proceeds with iterations of the Levenberg-
Marquardt method [9].

In short, the update step of the method is θ ← θ − (H +
µI)−1g, where g is the gradient of the criterion (15) and H
is its approximate hessian. In every tenth iteration, we update
the covariance matrices Cm, barrier function parameter α and
the regularization parameter ε. Pseudocode of the algorithm
is summarized in Algorithm 1.

Algorithm 1 Optimization method
Initialize A, D, Q and parameters α, ε;
Compute weight matrices Wm = (Cm + εI)−1;
it = 0;
while it ≤ itmax do

Perform the Levenberg-Marquardt update of A, D and Q;
it = it+ 1;
if it mod 10 = 0 then

α = α/2, ε = ε/2;
Update covariance matrices Cm;
Re-compute Wm = (Cm + εI)−1;

end if
end while

4. ACCURACY OF THE ESTIMATE AND ITS
CRAMÉR-RAO LOWER BOUND

The accuracy of the estimate Â is assessed by the sum of
square angular errors of the estimates of its columns. Let ωj
denote the angle between the j-th column of the true mixing
matrix and its estimate, i.e.

cosωj =
A>:,jÂ:,j

‖A:,j‖‖Â:,j‖
. (16)

Before computing (16), the columns of Â must be re-
ordered to match the corresponding columns of the true
mixing matrix. Then, we measure the accuracy by the sum

MSAE =
r∑
j=1

ω2
j .

The Cramér-Rao lower bound for MSAE was derived in
[7]. Its computation requires the knowledge of the Fisher in-
formation matrix for the unknown parameter (mixing matrix
A). There are three different Fisher information matrices to
be considered corresponding to different statistics used to es-
timate model parameters. This topic was discussed in [10].
First, the density of the whole data sample X has the form

p(X) =
M∏
m=1

(2π)−dT/2|C̃m|−1/2

· exp
[
− 1

2x
(m)>C̃−1m x(m)

]
.

(17)

Here x(m) denotes vectorised m-th block of the mixtures and
C̃m is its covariance matrix given by the formula

C̃m = bstoeplitz(Adiag(D:,m)A>,
Adiag(D:,m) diag(Q:,m)A>, . . .
Adiag(D:,m) diag(Q:,m)(T−1)A>).

(18)

Second, we can use the approximate density of the statis-
tics v̂m given by (10). The third option is using similar
approximation for the lower triangular parts of the sample
covariances with lag zero. Corresponding Fisher information
matrices will be denoted by FX , FRS , FR and Cramér-Rao
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induced bounds (for MSAE) by CRIBX , CRIBRS and
CRIBR respectively. The estimation accuracy of the al-
gorithms which use only the lag zero covariance matrices
and those using both lag zero and one should roughly match
CRIBR and CRIBRS , respectively.

As all considered densities are Gaussian, we can use the
formula for Fisher information matrix of a Gaussian distri-
bution with a differentiable mean e(θ) and covariance matrix
C(θ),

Fθiθj =
∂e

∂θi

>
C−1

∂e

∂θj
+

1

2
tr

[
C−1

∂C

∂θi
C−1

∂C

∂θj

]
. (19)

Note that in the case of FX , the first term in (19) is zero. In the
other two cases, FRS and FR, the second term is neglectable
assuming large T , and only the first term is used.

5. SIMULATIONS

5.1. Artificial data obeying the given model

In the first experiment, four artificial signals of the length
N = 6000 samples partitioned into M = 6 blocks of T =
1000 samples were generated in twenty independent trials
as AR(1) processes with block-wise constant variances and
AR coefficients. The mixing matrix has columns A:,j =
[1 cosφj sinφj ]

>, where φ = [0, π/4, π/2, 3π/4]. The
AR coefficients follow the equation Q = q · Q0, where Q0

is a fixed matrix and q is a magnitude parameter varying from
zero to one. To demonstrate the effectiveness of the algorithm
in the case of the AR coefficients close to ±1, all the entries
of Q0 are chosen relatively close to ±1,

Q0 =


1 0.8 1 0.5 0.99 0.88

0.99 −0.9 0.9 −0.95 1 −1
1 1 −1 −1 1 0.7
1 1 1 −1 −1 −1

 .
The results are displayed in Fig. 1a. Accuracy of the pro-
posed method (denoted as AR1SEP) increases with the mag-
nitude of the AR coefficients, while the accuracy of the com-
peting algorithms decreases in agreement with increase of the
CRIBR. Different CRIBs for the same setting are com-
pared in Fig. 1b.

5.2. Speech data separation

In each of the one hundred trials, we select four speech utter-
ances of the length 8.375 s sampled at 16kHz from a set of 16
speech samples (the same dataset as in [7]) and mix them us-
ing the same mixing matrix as in the previous experiment.The
algorithm was for thirteen different choices of the time length
of a block ranging from 30 to 150 ms. The results are shown
in Figures 1c and 1d. The accuracy is measured by a sample
mean and a sample median of the summed square angular er-
rors. The proposed algorithm yields better estimation results
than the other three algorithms used in comparison.
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Fig. 1: (a) Application on artificial data following the given
model. Dependency of MSAE of the estimate on the AR
coefficients magnitude parameter q and its comparison with
CRIB. (b) Comparison of CRIBs corresponding to differ-
ent densities used. (c,d) Speech data separation. Dependency
of MSAE of the estimate on the chosen length of the blocks.

6. CONCLUSION

We have proposed a novel algorithm for the blind separa-
tion of undetermined mixtures of nonstationary sources using
lag zero and lag one covariances. The presented algorithm
achieves better estimation of the mixing matrix for data fol-
lowing the assumed model when autoregressive parameters
of the sources aproach one or minus one. The performance
of the algorithms using only lag zero covariances decreases
in this case, which is in accordance with the increase of the
corresponding Cramér-Rao lower bound. In speech separa-
tion, our method achieves better estimation accuracy than the
compared algorithms.

In future we plan to develop an on-line variant of the
method. The code of the presented algorithm is available for
download on the website of the second author.
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separation of mixtures of piecewise AR(1) processes
and model mismatch, ” Proc. Int. Conf. on Latent Vari-
able Analysis and Signal Separation LVA/ICA 2015,
Liberec, Czech Republic, LNCS 9237, Springer 2015,
pp. 304–311.
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