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ABSTRACT

In this paper, parameter estimation for multi-dimensionalsinusoids
in additive impulsive noise is addressed. Our underlying idea is to
minimize theℓp-norm of the residual error tensor, where1 < p < 2,
and transform this problem to an iterativeℓ2-norm minimization. In
doing so, we can utilize the tensorial structure of the received data
and then apply iteratively reweighted tensor singular value decompo-
sition, referred to as IR-t-SVD, to recover the subspace or the signal
tensor. After the recovery step, standard subspace techniques can be
applied for parameter estimation. Based on the numerical results,
IR-t-SVD outperforms several state-of-the-art methods interms of
mean square frequency error underα-stable noise.

Index Terms— Harmonic Retrieval, Parameter Estimation, ten-
sor Singular Value Decomposition,ℓp-norm

1. INTRODUCTION

Multi-dimensional harmonic retrieval (HR) is an importantproblem
in communications and signal processing, and representative appli-
cation examples include wireless communication channel estimation
[1], nuclear magnetic resonance spectroscopy [2] as well asmultiple-
input multiple-output radar imaging [3]. In this work, we tackle the
problem of R-dimensional (R-D) HR with multiple snapshots in ad-
ditive noise. When the noise is white Gaussian distributed,the opti-
mum solution can be obtained using anℓ2-norm minimization, and
solutions include maximum likelihood (ML) [4], iterative quadrat-
ic ML (IQML) [5] and subspace approaches such as multiple signal
classification (MUSIC) [6], unitary estimation of signal parameter-
s via rotational invariance techniques (U-ESPRIT or UE) [7]and
principal-singular-vector utilization for modal analysis (PUMA) [8].

The ML-based methods are only feasible for 2-D HR due to
their extremely high computational requirement, while thesubspace
methodology involves a smaller complexity. Its underlyingprinciple
is to separate the data into signal and noise subspaces, usually vi-
a eigenvalue decomposition (EVD) or singular value decomposition
(SVD), which is optimum forℓ2-norm minimization. The parame-
ters of interest can then be extracted from the corresponding signal
or noise subspaces. Furthermore, with the development of tensor al-
gebra and higher-order SVD (HOSVD), the subspace methods have
been extended to their multi-dimensional variants such as unitary
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tensor ESPRIT (UTE) [9], tensor PUMA [10] and tensor eigenvec-
tor (TEV) approach [11].

It is worth noting that in practice the noise often has non-
Gaussian properties [12], and one frequently encountered process
is the impulsive noise, such as the symmetricα-stable (SαS) vari-
ables. Compared to Gaussian distribution, the probabilitydensity
function (PDF) of impulsive noise exhibits heavier tails, which
corresponds to outliers, therefore the perfomance of existing ℓ2-
norm minimization based techniques may be severely degraded.
To overcome this problem, techniques such as robust covariation-
based MUSIC (ROC-MUSIC) [13], sign covariance matrix MUSIC
(SCM-MUSIC) and Kendalls tau covariance matrix MUSIC (TCM-
MUSIC) [14] are proposed. Other methods include theℓ1-norm
minimization based robust iterative algorithm [15],ℓp-MUSIC [16]
with 1 < p < 2 and its tensor version [17]. These algorithms
adopt theℓp-norm of the residual fitting error data as the objective
function for subspace decomposition, and develop the iteratively
reweighted SVD (IR-SVD) or IR-HOSVD to solve theℓp-norm
minimization problem. This approach outperforms several existing
outlier-resistant HR approaches in terms of resolution capability and
estimation accuracy [16].

Recently, a new tensor decomposition method, named tensor-
SVD (t-SVD) [18], is proposed for image processing [19] and tensor
completion [20]. Like SVD of a matrix, the t-SVD gives a good
performance inℓ2-norm based3-D tensor factorization. The t-SVD
has almost the same form as the matrix based SVD except that ituses
tensor product and tensor transpose instead of matrix multiplication
and matrix transpose. In this work, we propose to combineℓp-norm
minimization and t-SVD techniques to achieve R-D HR with low
computational complexity and/or high accuracy.

The rest of this paper is organized as follows. In Section 2, the
notation and problem formulation are provided. In Section 3, we
present the3-D t-SVD HR estimators, namely, IR-t-SVD-UE and
IR-t-SVD-MUSIC, and extent it to more general situation. Numer-
ical examples are included to demonstrate the effectiveness of the
proposed algorithms in Section 4. Finally, conclusions aredrawn in
Section 5.

2. NOTATION, DATA MODEL AND T-SVD

2.1. Notation and Data Model

Scalars, vectors, matrices and tensors are denoted by italic, bold
lower-case, bold upper-case and bold calligraphic symbols, respec-
tively. The transpose and conjugate transpose of a vector ora matrix
are written asT andH , and thei × i identity matrix is symbolized
asIi. To refer to the(m1, m2, . . . ,mR) entry of a R-D tensorAAA ∈CM1×M2×···×MR , we useam1,m2,...,mR

. The element wise mul-
tiplication operator between two tensors is defined as⊙, while the
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outer product ofAAA ∈ C
M1×M2×···×MP andBBB ∈ C

N1×N2×···×NQ

is written as◦ andCCC =AAA◦BBB ∈ C
M1×M2×···×MP ×N1×N2×···×NQ

wherecm1,m2,...,mP ,n1,n2,...,nQ
= am1,m2,...,mP

· bn1,n2,...,nQ
.

The symbol⊔ represents the concatenation operator whereAAA =
AAA1 ⊔r AAA2 is obtained by stackingAAA2 to the end ofAAA1 along the
rth dimension. Furthermore, we define then3th frontal slice of a3-
D tensorAAA ∈ CM1×M2×M3 asAAA(:, :, n3) for n3 = 1, 2, · · · ,M3,
that is,AAA = A1 ⊔3 A2 ⊔3 · · · ⊔3 AM3

, and defineIIIM1M1M3
as

theM1 × M1 × M3 identity tensor whose first frontal slice is the
M1 ×M1 identity matrix while the other frontal slices are all zeros.

We consider the problem of R-D HR with multiple snapshots
in the presence of additive noise. The noise-free signal tensorXXX ∈CM1×M2×···×MR×N has entries of the form:

xm1,m2,...,mR,n =
F
∑

f=1

γf (n)
R
∏

r=1

ejωr,fmr (1)

wheren = 1, 2, . . . , N , mr = 1, 2, . . . ,Mr, r = 1, 2, . . . , R,
and f = 1, 2, . . . , F . TheMr, N andR are the data length of
the rth dimension, number of snapshots and dimension number,
respectively. Therefore the total dimension is(R + 1) togeth-
er with the snapshots. The number of frequencies is denoted by
F and is assumed knowna priori. The γf (n) denotes the un-
known complex amplitude of thef th signal at thenth snapshot
with powerE{|γf (n)|

2} = σ2
f while ωr,f ∈ (−π, π) are the R-D

frequencies. Definear,f =
[

ejωr,f ejωr,f2 · · · ejωr,fMr
]

andγf =
[

γf (1) γf (1) · · · γf (N)
]

, XXX can be written as

XXX =
∑F

f=1 a1,f ◦ a2,f ◦ · · · ◦ aR,f ◦ γf and the observed signal,

denoted byYYY ∈ CM1×M2×···×MR×N , is:

YYY = XXX +QQQ (2)

whereQQQ is the impulsive noise component.

2.2. t-SVD

Before going to the main result, we need to present the notation of
t-SVD used in this paper. We follow the notations in [18] [19][20]
and define the t-product∗ between two tensorsAAA andBBB as

CCC =AAA ∗BBB = fold(circ(AAA)MatVec(BBB)) (3)

where

circ(AAA) =











A1 AM3
AM3−1 · · · A2

A2 A1 AM3
· · · A3

...
. . .

. . .
. . .

...
AM3

AM3−1 AM3−2 · · · A1











(4)

MatVec(AAA) =
[

A
T
1 A

T
2 · · · A

T
M3

]T
(5)

and fold(·) is the inverse process ofMatVec(·). Furthermore, the
tensor conjugate transpose of a3-D tensorAAA ∈ CM1×M2×M3 is
AAAH ∈ CM2×M1×M3 , which is computed by conjugate transposing
each of the frontal slice ofAAA and then reversing the order of trans-
posed frontal slices2 throughM3. According to [18], the operation
of (3) can be computed using fast Fourier transform (FFT) andin-
verse fast Fourier transform(IFFT) as follows: Firstly, dothe FFT
along the3rd dimension ofAAA andBBB, denoted asAAAF = fft(AAA, [ ], 3)
andBBBF = fft(BBB, [ ], 3); secondly, computeCCCF with the frontal s-
licesCCCF (:, :,m3) = AAAF (:, :, m3)BBBF (:, :,m3); In the end, perform
the IFFT along the3rd dimension ofCCCF and getCCC = ifft(CCC, [ ], 3).

Analogous to the SVD of a2-D matrix, the t-SVD of a complex-
valued3-D tensorYYY ∈ CM1×M2×M3 can be written as

YYY = UUU ∗ SSS ∗ VVVH (6)

TheUUU ∈ CM1×M1×M3 is the left orthogonal singular tensor where
UUU ∗ UUUH = UUUH ∗ UUU = IIIM1M1M3

andVVV ∈ CM2×M2×M3 being
the right orthogonal singular tensor with the same properties. The
SSS ∈ CM1×M2×M3 is defined as a rectangular f-diagonal tensor, that
is, all the frontal slices ofSSS are diagonal matrices. Therefore, the
entries inSSS are named the singular values ofYYY . Table 1 [19] shows
the detailed steps of the t-SVD, which uses the FFT, IFFT and matrix
SVD to compute the tensor decomposition.

Furthermore, by definingsssk = SSS(k, k, :) ∈ C1×1×M3 , k =
1, 2, · · · ,min(M1,M2), we can decompose the tensorSSS in-
to min(M1,M2) singular value tubes. As the operation of t-
SVD contains a set of SVDs, we may say that the dominant
F < min(M1,M2) singular value tubes of a t-SVD are the same
as the dominant singular values of a SVD, although this definition is
not a straightforward one [20].

(i) YYYF = fft(YYY, [ ], 3).
form3 = 1, 2, · · · ,M3

(ii) Perform SVD ofYYYF (:, :,m3) and get
YYYF (:, :,m3) = USV

H .
(iii) AssignUUUF (:, :, m3) = U,SSSF (:, :,m3) = S

andVVVF (:, :,m3) = V.
end

(iv) ComputeUUU = ifft(UUUF , [ ], 3),SSS = ifft(SSSF , [ ], 3)
andVVV = ifft(VVVF , [ ], 3).

Table 1: t-SVD Algorithm

3. PROPOSED ESTIMATOR

3.1. 3-D Harmonic Retrieval

For3-D harmonic retrieval, the noise-free tensorXXX is reduced to

XXX =
F
∑

f=1

a1,f ◦ a2,f ◦ γf (7)

As an extension of the matrix rank, we defineF as the tensor rank
of XXX here. According to [18], we can find two3-D tensorsPPP andQQQ
that satisfy

XXX = PPP ∗QQQ (8)

where
PPP =

L
∑

f=1

uf ◦ vf ◦ k1 (9)

QQQ =
F
∑

f=1

bf ◦ a2,f ◦ γf (10)

with A1 =
[

a1,1 a1,2 · · · a1,F

]

= UE andV
H
B = E.

Theuf , vf andbf are thef th columns ofU, V andE, andk1 is
the first column ofIN . DefiningU = A1 andE = If , we can prove
thatL = F in (9), indicating that the tensorXXX has low tensor rank
property and can be decomposed into two tensorsPPP ∈ CM1×F×N

andQQQ ∈ CF×M2×N of rankF . Since the received data are always
noisy in practice, we get the approximate decomposition

YYY ≈ PPP ∗QQQ (11)

It is well known that the least squares (LS) based approach cor-
responding toℓ2-norm and is not robust to outliers. To achieve robust
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estimation in the presence of impulsive noise, one key idea [21] is
to replace the squared residuals in the LS methodology by another
function which emphasizes large samples less than the square, and
ℓp-norm with1 < p < 2 is one common choice. Theℓp-norm of a
complex-valued3-D tensor is defined as

||YYY||p = (

M1
∑

m1=1

M2
∑

m2=1

N
∑

n=1

|ym1,m2,n|
p)1/p (12)

and theℓp-norm based objective function is

J(PPP ,QQQ) = ||YYY −PPP ∗QQQ||pp (13)

We define the residual error tensor asRRR = YYY −PPP ∗QQQ, then its
ℓp-norm can be expressed as

||RRR||pp =

M1
∑

m1=1

M2
∑

m2=1

N
∑

n=1

|rm1,m2,n|
(p−2)|rm1,m2,n|

2

=||DDD ⊙YYY −DDD ⊙ (PPP ∗QQQ)||22 (14)

whereDDD is the weighting matrix withdm1,m2,n = |rm1,m2,n|
(p−2)/2.

Equation (14) indicates that theℓp-norm minimization can be con-
verted toℓ2-norm minimization, and the solution of this optimization
can be computed through the t-SVD ofDDD ⊙YYY:

DDD ⊙YYY = UUUs ∗ SSSs ∗ VVV
H
s +UUUn ∗ SSSn ∗ VVVH

n (15)

whereSSSs ∈ CF×F×M3 contains theF dominant singular value
tubes, andUUUs ∈ CM1×F×M3 andVVVs ∈ CM2×F×M3 contain the
corresponding singular vectors. TheSSSn, UUUs andVVVs are the corre-
sponding residual terms. This can be regarded as a truncatedt-SVD.
Therefore, we can define

PPP = UUUs, QQQ = SSSs ∗ VVV
H
s (16)

and solve the problem (13). Due to the reason that the weighting
tensorDDD containsPPP andQQQ, we cannot obtain the final solution im-
mediately. An iterative procedure, named as iteratively reweighted
t-SVD (IR-t-SVD), is adopted and is shown in Table 2, where the
superscript(k) denotes thekth iteration. Notice that we can also
use the idea of SCM [14] for the initialization step in Table 2, that
is, computePPP(0) andQQQ(0) from the truncated t-SVD ofZZZ where
zm1,m2,n = ym1,m2,n/|ym1,m2,n|.

After obtainingPPP andQQQ through the IR-t-SVD, we can get the
recovered signal

YYYrecover = PPP ∗QQQ (17)

and then apply the conventional multi-dimensional HR algorithms,
such as UE [7], UTE [9] and TEV [11] to compute the final esti-
mates of the harmonics. Note that automatic parameter pairing is
achieved in these algorithms. Furthermore, when there are identical
frequencies in at least one dimension, these algorithms canstill op-
erate well. However, when there are no identical frequencies along
any dimension, we can follow the idea of [17] and use the MUSIC
algorithm [16] to solve the harmonics for all the dimensionsone by
one individually.

According to (3), (16) and (17), we have

MatVec(YYYrecover) = circ(UUU(K)
s ) ∗MatVec(QQQ) (18)

Since(UUU(K))H ∗ UUU (K) = IIIFFM3
, we reach to the conclusion that

circ(UUU
(K)
s )Hcirc(UUU

(K)
s ) = IFN and have

MatVec(YYYrecover)
HMatVec(YYYrecover)

=MatVec(QQQ)Hcirc(UUU (K)
s )Hcirc(UUU (K)

s )MatVec(QQQ)

=MatVec(QQQ)HMatVec(QQQ) (19)

which is the conjugate sample covariance matrix of the second di-
mension of the recovered signal, indicating thatQQQ contains the pa-
rameter information of the second dimension, therefore theroot-
MUSIC technique [22] can be used to do the estimation. Similarly,
harmonics of the first dimension can be retrieved, and the final step
is to associate them via the pairing step [23].

(i) Initialize PPPF andQQQF with all frontal slices being random
matrices of full column rank and full row rank, and then
assignPPP(0) = ifft(PPPF , [ ], 3)) andQQQ(0) = ifft(QQQF , [ ], 3)).

for k = 0, 1, · · · ,K − 1, do
(ii) ComputeRRR(k) and thenDDD(k).
(iii) Perform truncated t-SVD onDDD(k) ⊙YYY = UUUs ∗ SSSs ∗ VVV

H
s .

(iv) AssignPPP(k+1) = UUUs andQQQ(k+1) = SSSs ∗ VVV
H
s .

end

Table 2: IR-t-SVD Algorithm

3.2. Extension to Higher Dimension

For the general multi-dimensional case, we suggest to use the idea
of general unfolding [24] to reshape the received data first.For
a tensorYYY ∈ CM1×M2×M3×N , we defineZZZ = stack(YYY) ∈CM1M3×M2×N by stacking the samples in the3rd dimension
of YYY to the end of the1st dimension. Similarly, for a tensor
YYY ∈ CM1×M2×···×MR×N , we can reshape it as

ZZZ = stack(YYY) ∈ CMr1×Mr2×N (20)

whereMr1Mr2 = M =
∏R

r=1Mr. As the operation of t-SVD
contains a set of SVDs to the frontal slices offft(ZZZ, [ ], 3), we pro-
pose to makeMr1 ≈ Mr2 to save time. Then we can substituteYYY
with ZZZ for the retrieval process.

4. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the perfor-
mance of the proposed R-D HR approach by comparing with state-
of-the-art algorithms, the IR-SVD-UE [16] and IR-HOSVD-MUSIC
[17]. As [16] is not designed for multi-dimensional HR, we modify
it as follows: firstly, unfold the mutli-dimensional data into a 2-D
matrix, and use the IR-SVD approach in [16] to recover the signal
subspace; Secondly, apply the recovered signal into UE [7] to get the
final estimates. The IR-HOSVD-MUSIC [17] method, on the other
hand, recover the signal subspace for each dimension individually,
and cannot be applied with the UE type algorithms. Furthermore,
the direct UE approach is also considered to show the advantages of
robust methods against the non-robust one. Similarly, we combine
the proposed IR-t-SVD method with both UE and MUSIC, named
as IR-t-SVD-UE and IR-t-SVD-MUSIC, in all the testes. All the re-
sults are obtained based on 1000 independent runs. The statistical
performance is evaluated in terms of average mean square frequency
error (AMSFE), which is computed by averaging over all the number
of sources and dimensions. The impulsive noise is modeled using
the SαS process. The characteristic function of the SαS distribu-
tion with zero location is determined by the characteristicexponent
0 < α < 2 and dispersionγ > 0 [25]. In our study, we setγ = 1.
Furthermore, generalized signal-to-noise ratio (GSNR) isadopted to
quantify the relative strength between signal and noise [16] since S-
NR is not applicable. Unless stated otherwise,p = 1.3 is employed
in all estimators.

In the first test, we assume that there are three frequencies in a
3-D space. The power vector of the uncorrelated sources isσ

2 =
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Fig. 1. AMSFE versus iteration number

[1 1 1], while the frequencies are[ω1,1 ω1,2 ω1,3] = [0.1 0.4 0.6]π
and [ω1,1 ω1,2 ω1,3] = [0.1 0.3 0.8]π. The size of the data set is
M1 × M2 × N = 15 × 15 × 15. Figure 1 shows the ARMSE
results versus iteration number in SαS stable noise withα = 1.3
andGSNR = 20dB. It shows that the UE-type algorithms converge
in a few iterations, while the MUSIC-type ones fail to converge to
a stable optimum point. This is due to the reason that the MUSIC
based algorithms recover the subspace of each dimension anddo
the estimation individually, therefore some useful information of the
data set is missed in the estimation process. However, in most cases,
the IR-t-SVD-MUSIC is superior to IR-t-SVD-UE, and the proposed
IR-t-SVD based approaches outperforms the others by2-3dB.
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Fig. 2. AMSFE versus GSNR

In the second test, we assume the same parameter setting as the
previous one, and shows the ARMSE results versus GSNR in Fig-
ure 2. It is observed that the MUSIC based methods suffer from
the convergence problem, while the UE based ones do not. When
the GSNR is sufficiently large, the proposed methods give thebest
performance among all the methods, and there is a gap between
the robust methods and the non-robust one. The average computa-
tion times of the UE, IR-SVD-UE, IR-HOSVD-MUSIC, IR-t-SVD-
UE and IR-t-SVD-MUSIC algorithms in a single run are measured
as0.0580s, 0.1172s, 0.1400s, 0.1101s and0.0341s, respectively,
showing the computational attractiveness of the IR-t-SVD-MUSIC
approach.

We test the estimation accuracy and computational complexity
against the size of the data in the third simulation and the results
are shown in Figures 3 and 4. The parameter settings are the same
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Fig. 3. AMSFE versus N
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Fig. 4. Computational time versus N

as that in the second test withM1 = M2 = N varying from 5
to 30 andGSNR = 20dB. This time, we find out that the IR-t-
SVD-MUSIC is the most attractive one when the data size is large.
It runs the fastest and gives the most accurate result among all the
estimators, while the IR-t-SVD-UE performs not as good as the IR-
t-SVD-MUSIC in large data size situation comparing to smalldata
size case. As the UE-type algorithms use UE in the estimationstep,
whenM1 = M2 = N , the UE method unfolds the recovered tensor
into a matrix of sizeM1M2 × N and compute the subspace using
SVD. Since this is a tall matrix, the performance might be downgrad-
ed because of the inaccurate computation of the signal subspace [9],
leading to the observed result. Furthermore, the time consumed by
the proposed IR-t-SVD-UE, which uses UE in the estimation step,
becomes close to the time consumed by UE method when data size
is large, indicating that the estimation process instead ofrecovery
process becomes dominant in large sample case.

5. CONCLUSION

A tensor structure based approach for R-D HR in the presence of
impulsive noise is devised. The main idea is to minimize theℓp-
norm of the residual error of the data samples. With the use oft-SVD
and the iteratively reweighted technique, the tensor subspace can be
estimated, leading to a recovery of the signal or signal subspace for
subspace based HR methods. Computer simulations show that the
proposed algorithms have an outstanding performance in terms of
computational complexity and/or estimation accuracy.
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