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ABSTRACT

In this paper, parameter estimation for multi-dimensigialisoids
in additive impulsive noise is addressed. Our underlyirgnic to
minimize thel,-norm of the residual error tensor, where< p < 2,
and transform this problem to an iteratiésenorm minimization. In
doing so, we can utilize the tensorial structure of the remkidata
and then apply iteratively reweighted tensor singularealecompo-
sition, referred to as IR-t-SVD, to recover the subspacéestignal
tensor. After the recovery step, standard subspace tagsizpn be
applied for parameter estimation. Based on the numerisailtsg
IR-t-SVD outperforms several state-of-the-art methodseims of
mean square frequency error undestable noise.

tensor ESPRIT (UTE) [9], tensor PUMA [10] and tensor eigeave
tor (TEV) approach [11].

It is worth noting that in practice the noise often has non-
Gaussian properties [12], and one frequently encountereceps
is the impulsive noise, such as the symmetristable (SS) vari-
ables. Compared to Gaussian distribution, the probahiiéysity
function (PDF) of impulsive noise exhibits heavier tailshigh
corresponds to outliers, therefore the perfomance of ingigt-
norm minimization based techniques may be severely dedrade
To overcome this problem, techniques such as robust coiceria
based MUSIC (ROC-MUSIC) [13], sign covariance matrix MUSIC
(SCM-MUSIC) and Kendalls tau covariance matrix MUSIC (TCM-
MUSIC) [14] are proposed. Other methods include thenorm

Index Terms— Harmonic Retrieval, Parameter Estimation, ten- Minimization based robust iterative algorithm [18};MUSIC [16]

sor Singular Value Decompositiof,-norm

1. INTRODUCTION

Multi-dimensional harmonic retrieval (HR) is an importgmbblem
in communications and signal processing, and represeatapipli-
cation examples include wireless communication chanrighaton
[1], nuclear magnetic resonance spectroscopy [2] as welldisple-
input multiple-output radar imaging [3]. In this work, wecide the
problem of R-dimensional (R-D) HR with multiple snapshotsd-
ditive noise. When the noise is white Gaussian distributesl ppti-
mum solution can be obtained using @Anorm minimization, and
solutions include maximum likelihood (ML) [4], iterativeugdrat-

with 1 < p < 2 and its tensor version [17]. These algorithms
adopt thel,-norm of the residual fitting error data as the objective
function for subspace decomposition, and develop thetitein
reweighted SVD (IR-SVD) or IR-HOSVD to solve th&-norm
minimization problem. This approach outperforms sevexatimg
outlier-resistant HR approaches in terms of resolutiorabaiy and
estimation accuracy [16].

Recently, a new tensor decomposition method, named tensor-
SVD (t-SVD) [18], is proposed for image processing [19] agaisior
completion [20]. Like SVD of a matrix, the t-SVD gives a good
performance if2-norm based-D tensor factorization. The t-SVD
has almost the same form as the matrix based SVD except thsist
tensor product and tensor transpose instead of matrix plicétion
and matrix transpose. In this work, we propose to comBjaeorm

ic ML (IQML) [5] and subspace approaches such as multiple@ig minimization and t-SVD techniques to achieve R-D HR with low

classification (MUSIC) [6], unitary estimation of signalrpeneter-
s via rotational invariance techniques (U-ESPRIT or UE) dif
principal-singular-vector utilization for modal analggPUMA) [8].

computational complexity and/or high accuracy.
The rest of this paper is organized as follows. In Sectiom@, t
notation and problem formulation are provided. In Sectiprw8d

The ML-based methods are only feasible for 2-D HR due topresent the3-D t-SVD HR estimators, namely, IR-t-SVD-UE and

their extremely high computational requirement, whileshbspace
methodology involves a smaller complexity. Its underlypriciple
is to separate the data into signal and noise subspacedlyugua
a eigenvalue decomposition (EVD) or singular value deccsition

(SVD), which is optimum forz-norm minimization. The parame-

ters of interest can then be extracted from the correspgreignal
or noise subspaces. Furthermore, with the developmenhsbtel-

gebra and higher-order SVD (HOSVD), the subspace methods ha

been extended to their multi-dimensional variants suchrétsny

IR-t-SVD-MUSIC, and extent it to more general situation. mér-
ical examples are included to demonstrate the effectigenéshe
proposed algorithms in Section 4. Finally, conclusionsdaesvn in
Section 5.

2. NOTATION, DATA MODEL AND T-SVD

2.1. Notation and Data Model

Scalars, vectors, matrices and tensors are denoted by, itedid
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tional Natural Science Foundation of China under Grants. (89501300,
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tablishment Foundation under Grants (No. ZDSYS20150728263 and
KC2015ZDYF0023A), and by the Shenzhen University garnt.(N&86-
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tively. The transpose and conjugate transpose of a vectonmatrix
are written as’ and”, and thei x i identity matrix is symbolized
asI;. To refer to the(m1, ma, ..., mg) entry of a R-D tensoA €
CM1XMzxXMR \ye US€am, ms,...,mp. The element wise mul-
tiplication operator between two tensors is defined>asvhile the
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outer product ofA € CMi*MaxXxMp gngB ¢ CN1 X Nax%xNg Analogous to the SVD of 8D matrix, the t-SVD of a complex-
is written aso andC = Ao B € CM1xMzx--xMpxNixNax-xNg  yglued3-D tensory € CM1*M2XMs can pe written as
Wherecml mo,...,Mp,N1,N2,...,NQ Amy,mg,....,mp * bnl ng,...,nQ- H

M2, M PN, N, Mgy BT — 6
The symbolLl represents the concatenation operator whére= Y=Ux5+V ©)

A1 Ur A; is obtained by stackingl to the end otA, along the .74 € CM1*MixMs ig the left orthogonal singular tensor where
rth dimension. Furthermore, we define theh frontal slice of a3- UsUT = U" U = Tap,asar. andy € CM2xMaxMs being
- - 1M1 M3

My X Mo X M. .. —
D ter_lsorA € CHIHET asA(, ¢, ma) for ns =12, Ms, the right orthogonal singular tensor with the same progsrtiThe
thatis, A = Ai Us Az Us - Us Anr,, and definelas, ar, s, @ g M1 xM2xMs g defined as a rectangular f-diagonal tensor, that
the M, > My x Ms identity tensor whose first frontal slice is the g )| the frontal slices of are diagonal matrices. Therefore, the
M x M identity matrix while the other frontal slices are all zeros o triag inS are named the singular values)f Table 1 [19] shows

We consider the problem of R-D HR with multiple snapshotsye getajled steps of the t-SVD, which uses the FFT, IFFT aaiixn
in the presence of additive noise. The noise-free signaloled €  gy/p g compute the tensor decomposition.

CMLxMax X MrXN hag entries of the form: Furthermore, by defining. — S(k, k,:) € C**Ms j —
F R 1,2,--- ,min(M1, M2), we can decompose the tensér in-
Ty, may.mp,n = Zw(n) Hejw"‘fmr (1) to min(M;, M») singular value tubes. As the operation of t-
f=1 r=1 SVD contains a set of SVDs, we may say that the dominant

F < min(M;, M) singular value tubes of a t-SVD are the same

wheren = 1,2,...,N,m, = 1,2,..., M., r = 1,2,...,R : : R
L L P SRS as the dominant singular values of a SVD, although this defimis
andf = 1,2,...,F. The M,, N and R are the data length of not a straightforward one [20].

the rth dimension, number of snapshots and dimension number,
respectively. Therefore the total dimension (8 + 1) togeth- .
er with the snapshots. The number of frequencies is dengted b ) Yr =it [],3).

F and is assumed knowa priori. The vs(n) denotes the un- forms =1,2,---, M

known complex amplitude of thgth signal at thenth snapshot (ii) Perform SVD OfyF(;; :;ms) and get
with powerE{|v¢(n)[*} = o} while w,. s € (—m, ) are the R-D Yr(:,:5,ms) =USVT.

frequencies. Define,.; = [e?rs ¥rs? ... edonsMr] (iii;':jf;ig?.ufg :)’ Ta\);: U.Sr(yms) =8
andy, = [vs(1) ~s(1) --- ~7(N)], X can be written as end o) =
X = Zle aj;oagyo---oag;y o~ and the observed signal, (iv) Computeld = ifftUr,[],3), S = ifft(SF,[], 3)
denoted byy € CM1xMzxxMrxN g andy = ifft(Vr,[], 3).
y=X+Q 2 Table 1: t-SVD Algorithm
where@ is the impulsive noise component. 3. PROPOSED ESTIMATOR
2.2 t-SVD 3.1. 3-D Harmonic Retrieval
Before going to the main result, we need to present the ootati ~ For3-D harmonic retrieval, the noise-free tengbiis reduced to
t-SVD used in this paper. We follow the notations in [18] [120] L
and define the t-produetbetween two tensotd andB as X = Z aij,foagfoyy )
f=1
C = A« B = fold(circ(A)MatVec(B)) 3)
As an extension of the matrix rank, we defifeas the tensor rank
where of X here. According to [18], we can find twa&D tensorsP andQ
that satis
A1 Ay Adg-r oo As Y X=P=xQ (8)
4 A, A, Ay, - As h o,
circ = . . 4 where
Anvg, Arz1 Ang2 -0 Ay f=1
F
Q= bsoas oy, (10)
MatVec(A4) = [AT AT .- AL ]" (5) f;
andfold(-) is the inverse process ®flatVec(-). Furthermore, the with A; = [a11 a1 -+ a;r] = UEandVPB = E.

tensor conjugate transpose oB8d tensord € CM1*M2*Ms is Theuy, v; andb; are thefth columns ofU, V andE, andk; is
A e oM2xMixMs which is computed by conjugate transposing the first column ofly. DefiningU = A, andE = I;, we can prove
each of the frontal slice ol and then reversing the order of trans- that L. = F in (9), indicating that the tensd¥ has low tensor rank
posed frontal sliceg throughM;. According to [18], the operation property and can be decomposed into two ten®oks CM1*FxN

of (3) can be computed using fast Fourier transform (FFT)iand andQ e CF*M2XN of rank F. Since the received data are always
verse fast Fourier transform(IFFT) as follows: Firstly, the FFT  noisy in practice, we get the approximate decomposition

along the3rd dimension of4 andB, denoted asAr = fit(A, [], 3) Y=PxQ (11)
andBr = fIt(B, [ ],3); secondly, comput€ » with the frontal s-

licesCr(:,:,ms) = Ar(:,:, m3)Br(:,:,m3); In the end, perform It is well known that the least squares (LS) based approach co
the IFFT along th&rd dimension o€ » and geC = ifft(C, [ ], 3). responding td>-norm and is not robust to outliers. To achieve robust
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estimation in the presence of impulsive noise, one key i@é&if
to replace the squared residuals in the LS methodology btheno
function which emphasizes large samples less than the escased
£p-norm with1 < p < 2 is one common choice. Thg-norm of a
complex-valued-D tensor is defined as

M; My N
Pl = (D> D0 D lymamanl)? (12
m1=1mg=1n=1
and the/,-norm based objective function is
JP,Q) =¥y -P=Ql (13)

We define the residual error tensorfds= Y — P = Q, then its
¢,-norm can be expressed as
M; My N

HRHZ = Z Z Z‘rmlamzaﬂ‘(p_m‘rmhmz,"‘z

m1=1mo=1n=1
=IPoY-Do(PxQ)S

whereD is the weighting matrix Witlln, ms,n = |Fmy ma,n| 27272
Equation (14) indicates that thg-norm minimization can be con-
verted to/2-norm minimization, and the solution of this optimization
can be computed through the t-SVDBfo Y:

DOY=U+S:+* VI + U, +S, VI

(14)

(15)

whereS, € CF*F*Ms contains theF’ dominant singular value
tubes, andf, € CM1*F*Ms gndy, € CM2XF*Ms contain the
corresponding singular vectors. T8e, U, andV, are the corre-
sponding residual terms. This can be regarded as a trurnc&t¢n.
Therefore, we can define

P=U,, Q=8,+V! (16)

and solve the problem (13). Due to the reason that the weighti
tensorD containsP andQ, we cannot obtain the final solution im-
mediately. An iterative procedure, named as iterativelyeighted
t-SVD (IR-t-SVD), is adopted and is shown in Table 2, where th
superscript® denotes thekth iteration. Notice that we can also
use the idea of SCM [14] for the initialization step in Tabletf2at
is, computeP(® and Q(*) from the truncated t-SVD of where
Zmy,mo,n — ymhmg,n”yml,mg,n‘-

After obtainingP and @ through the IR-t-SVD, we can get the
recovered signal

yrecover =P x Q (17)

and then apply the conventional multi-dimensional HR &tbars,
such as UE [7], UTE [9] and TEV [11] to compute the final esti-
mates of the harmonics. Note that automatic parametemgaisi
achieved in these algorithms. Furthermore, when theredargical
frequencies in at least one dimension, these algorithmstilhop-
erate well. However, when there are no identical frequenaieng

which is the conjugate sample covariance matrix of the sgcin
mension of the recovered signal, indicating t@atontains the pa-
rameter information of the second dimension, thereforertiue-
MUSIC technique [22] can be used to do the estimation. Siigjla
harmonics of the first dimension can be retrieved, and thé¢ diep
is to associate them via the pairing step [23].

(i) Initialize P » andQ  with all frontal slices being random
matrices of full column rank and full row rank, and then
assignP©) = ifft(Pr,[],3)) andQ® = ifft(Qr, [],3)).

fork=0,1,--- ,K —1,do

(i) ComputeR ™ and therD®.

(iii) Perform truncated t-SVD o®™®) 0 Y = U, * S, * VE.

(iv) AssignP*+D) =Y, andQ*+D) = 8§, « VI,

end

Table 2: IR-t-SVD Algorithm
3.2. Extension to Higher Dimension

For the general multi-dimensional case, we suggest to Es&léa
of general unfolding [24] to reshape the received data filstr
atensory € CMixMzxMsxN e defineZ = stack(y) €
CMiMsxMzxN phy stacking the samples in thgrd dimension
of Y to the end of thelst dimension. Similarly, for a tensor
Y € CMixM2xxMrxN '\we can reshape it as

Z = stack(Y) € QM xMraxN (20)
where M, M,» = M = [, M,. As the operation of t-SVD
contains a set of SVDs to the frontal slicesfit{ Z, [ ], 3), we pro-

pose to makell,; ~ M,s to save time. Then we can substitgfe
with Z for the retrieval process.

4. SIMULATION RESULTS

Computer simulations have been carried out to evaluateetferp
mance of the proposed R-D HR approach by comparing with-state
of-the-art algorithms, the IR-SVD-UE [16] and IR-HOSVD-NBUC
[17]. As [16] is not designed for multi-dimensional HR, we diify

it as follows: firstly, unfold the mutli-dimensional dataténa 2-D
matrix, and use the IR-SVD approach in [16] to recover thealig
subspace; Secondly, apply the recovered signal into UB[gét the
final estimates. The IR-HOSVD-MUSIC [17] method, on the othe
hand, recover the signal subspace for each dimension dhdilly,
and cannot be applied with the UE type algorithms. Furtheemo
the direct UE approach is also considered to show the adyesitaf
robust methods against the non-robust one. Similarly, webdoe

the proposed IR-t-SVD method with both UE and MUSIC, named
as IR-t-SVD-UE and IR-t-SVD-MUSIC, in all the testes. Alktie-

any dimension, we can follow the idea of [17] and use the MUSICgyjts are obtained based on 1000 independent runs. Thetistti

algorithm [16] to solve the harmonics for all the dimensiong by
one individually.
According to (3), (16) and (17), we have

MatVec(Vrecover) = circU)) x MatVec(Q) (18)
SinceU N1 « U = Trra,, we reach to the conclusion that
circ(ugK))Hcirc(UgK)) = Iry and have
MatVec(Vrecover ) Mat Vec(Vrecover )
=MatVec(Q) circ@ ") cire @) )Mat Vec(Q)
(

=MatVec(Q)" MatVec(Q) (19)
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performance is evaluated in terms of average mean squaggefiey
error (AMSFE), which is computed by averaging over all thenber
of sources and dimensions. The impulsive noise is modelid) us
the SxS process. The characteristic function of theSSdistribu-
tion with zero location is determined by the characteristiponent
0 < a < 2 and dispersiony > 0 [25]. In our study, we sey = 1.
Furthermore, generalized signal-to-noise ratio (GSNR}Jlzpted to
guantify the relative strength between signal and noisgditge S-
NR is not applicable. Unless stated otherwjses 1.3 is employed
in all estimators.

In the first test, we assume that there are three frequenci@s i
3-D space. The power vector of the uncorrelated sources is-
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Fig. 1. AMSFE versus iteration number

[1 1 1], while the frequencies afe1,1 w1,2 w1,3] = [0.1 0.4 0.6]7
and w11 w12 wi,3] = [0.1 0.3 0.8]7. The size of the data set is
My x Mz x N = 15 x 15 x 15. Figure 1 shows the ARMSE

AMSFE (dB)

|| —&— IR-svD-UE

—+—UE

— % — IR-HOSVD-MUSIC
—6— IR-SVD-UE
— & — IRt-SVD-MUSIC

10 20 25

Fig. 3. AMSFE versus N

——UE "
—&— IR-SVD-UE
— % — IR-HOSVD-MUSIC /
—&— IRtSVD-UE /
— & — IR-tS-VD-MUSIC /

results versus iteration number imS stable noise witlwh = 1.3
andGSNR = 20dB. It shows that the UE-type algorithms converge
in a few iterations, while the MUSIC-type ones fail to coryetto

a stable optimum point. This is due to the reason that the NOUSI
based algorithms recover the subspace of each dimensiodand
the estimation individually, therefore some useful infatian of the
data set is missed in the estimation process. However, ihcasss,
the IR-t-SVD-MUSIC is superior to IR-t-SVD-UE, and the poged
IR-t-SVD based approaches outperforms the others8gB. 5

seconds

10

Fig. 4. Computational time versus N

as that in the second test withl; = M, = N varying from5
to 30 and GSNR = 20dB. This time, we find out that the IR-t-
SVD-MUSIC is the most attractive one when the data size gelar
It runs the fastest and gives the most accurate result ambtigea
estimators, while the IR-t-SVD-UE performs not as good aslRr
t-SVD-MUSIC in large data size situation comparing to snoaifa
size case. As the UE-type algorithms use UE in the estimatiem,
whenM; = M2, = N, the UE method unfolds the recovered tensor
into a matrix of sizeM; M2 x N and compute the subspace using
SVD. Since this is a tall matrix, the performance might be dgrad-
ed because of the inaccurate computation of the signal aubgg],
leading to the observed result. Furthermore, the time coediby
the proposed IR-t-SVD-UE, which uses UE in the estimatiep st

In the second test, we assume the same parameter settirgy as becomes close to the time consumed by UE method when data size
previous one, and shows the ARMSE results versus GSNR in Figs large, indicating that the estimation process insteacttcbvery
ure 2. It is observed that the MUSIC based methods suffer fronprocess becomes dominant in large sample case.
the convergence problem, while the UE based ones do not. When
the GSNR is sufficiently large, the proposed methods givebtst
performance among all the methods, and there is a gap between
the robust methods and the non-robust one. The average tampu
tion times of the UE, IR-SVD-UE, IR-HOSVD-MUSIC, IR-t-SVD- A tensor structure based approach for R-D HR in the presefice o
UE and IR-t-SVD-MUSIC algorithms in a single run are meadure impulsive noise is devised. The main idea is to minimize the
as0.0580s, 0.1172s, 0.1400s, 0.1101s and0.0341s, respectively, norm of the residual error of the data samples. With the us&yD
showing the computational attractiveness of the IR-t-SMDSIC ~ and the iteratively reweighted technique, the tensor saadespan be
approach. estimated, leading to a recovery of the signal or signal sauses for

We test the estimation accuracy and computational contplexi subspace based HR methods. Computer simulations showhthat t
against the size of the data in the third simulation and tlselte  proposed algorithms have an outstanding performance instef
are shown in Figures 3 and 4. The parameter settings arente sa computational complexity and/or estimation accuracy.

AMSFE (dB)

3

—8—IR-SVD-UE
— % —IR-HOSVD-MUSIC
—6&— IRt-SVD-UE

— & — IR-t-SVD-MUSIC

10 15
GSNR (dB)

-10 5 0 5

Fig. 2. AMSFE versus GSNR

5. CONCLUSION

4321



(1]

(2]

[3

-

[4

fla.}

5

[t}

(6]
(7]

(8]

E]

[10]

[11]

[12]

[13]

[14]

6. REFERENCES

X. Liu, N. D. Sidiropoulos and T. Jiang, “Multidimensiah
harmonic retrieval with applications in MIMO wireless chan
nel sounding,” inSpace-Time Processing for MIMO Commu-
nications A.B. Gershman and N.D. Sidiropoulos, Eds., Wiley,
2005.

Y. Li, J. Razavilar and K. J. R. Liu, “A high-resolutiondh-
nigue for multidimensional NMR spectroscopyEEE Trans-
actions on Biomedical Engineeringol.45, pp.78-86, Jan.
1998.

D. Nion and N. D. Sidiropoulos, “Tensor algebra and nuiki

mensional harmonic retrieval in signal processing for MIMO (18]

radar,”IEEE Transactions on Signal Processingl.58, no.11,
pp.5693-5705, Nov. 2010.

P. Stoica and K. Sharman, “Maximum likelihood methods fo (19]

direction-of-arrival estimation,JEEE Transactions on Acous-
tics, Speech, and Signal Processimgl. 38, no. 7, pp.1132-
1143, Jul. 1990.

M.P. Clark and L.L. Scharf, “Two-dimensional modal ayss

based on maximum likelihood/EEE Transactions on Signal (20]

Processingvol.42, no.6, pp.1443-1452, Jun. 1994

H. L. Van Trees,Optimum Array Processinglohn Wiley&
Sons, Mar. 2002.

M. Haardt and J. A. Nossek, “Simultaneous Schur decompolzz]

sition of several nonsymmetric matrices to achieve automat
ic pairing in multidimensional harmonic retrieval probleih
IEEE Transactions on Signal Processingl.46, no.1, pp.161-
169, Jan. 1998.

H. C. So, F. K. W. Chan, W. H. Lau, and C.-F. Chan, “An effi- [23]

cient approach for two-dimensional parameter estimatfan o
single-tone,"lEEE Transactions on Signal Processigl. 58,
no. 4, pp.1999-2009, Apr. 2010.

M. Haardt, F. Roemer and G. Del Galdo, “Higher-order SVD-
based subspace estimation to improve the parameter estima-
tion accuracy in multidimensional harmonic retrieval prob
lems,” IEEE Transactions on Signal Processingl.56, no.7,
pp.3198-3213, Jul. 2008.

W. Sun and H. C. So, “Accurate and computationally effiti
tensor-based subspace approach for multidimensionaldmarm
ic retrieval,” IEEE Transactions on Signal Processingl. 60,
no. 10, pp.5077-5088, Oct. 2012.

W. Sun, H. C. So, F. K. W. Chan, and L. Huang, “Tensor ap-
proach for eigenvector-based multi-dimensional harmogic
trieval,” IEEE Transactions on Signal Processingl. 61, no.
13, pp.3378-3388, Jul. 2013.

A. Zoubir, V. Koivunen, Y. Chakhchoukh, and M. Muma, “Ro
bust estimation in signal processing: A tutorial-styletreent
of fundamental concepts/EEE Signal Processing Magazine
vol. 29, no. 4, pp.61-80, Jul. 2012.

P. Tsakalides and C. L. Nikias, “The robust covariatimsed
MUSIC (ROC-MUSIC) algorithm for bearing estimation in
impulsive noise environments/EEE Transactions on Signal
Processingvol. 44, no. 7, pp.1623-1633, Jul. 1996.

S. Visuri, H. Oja, and V. Koivunen, “Subspace-baseeédion-
of-arrival estimation using nonparametric statisticéZEE
Transactions on Signal Processingl. 49, no. 9, pp.2060-
2073, Sep. 2001.

4322

(16]

(17]

[21]

(24]

(25]

[15] S. Vorobyov, Y. Rong, N. Sidiropoulos, and A. Gershman,

“Robust iterative fitting of multilinear models[EEE Transac-
tions on Signal Processingol. 53, no. 8, pp.2678-2689, Aug.
2005.

W. -J. Zeng, H. C. So, and L. Huang/,*MUSIC: Ro-
bust direction-ofarrival estimator for impulsive noisevean-
ments,” IEEE Transactions on Signal Processingl. 61, no.
17, pp.4296-4308, Sep. 2013.

F. Wen, and H. C. So, “Robust multi-dimensional harngoni
retrieval using iteratively reweighted HOSVDtd appear in
IEEE Signal Processing Letters

M. Kilmer and C. Martin, “Factorization strategies ftiird-
order tensors,Linear Algebra and its Applicationsol. 435,
no. 3, pp.641-658, Aug. 2010.

M. Kilmer, K. Braman, N. Hao and R. Hoover, “Third-order
tensors as operators on matrices: A theoretical and computa
tional framework with applications in imagingSIAM Journal

on Matrix Analysis and Applications/ol. 34, no. 1, pp.148-
172, Jan. 2013.

Z. Zhang and S. Aeron, “Exact tensor completion using t-
SVD,” arXiv preprint arXiv: 1502.04689yFeb. 2015

P. J. Huber and E. M. RonchetRobust Statistic2nd edition,
NY: Wiley, 2009.

A. Barabell, “Improving the resolution performance of
eigenstructure-based direction-finding algorithmBfoceed-
ings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSR)p.336-339, Apr. 1983,
Boston, MA, USA.

F. Wen and H. C. So, “Tensor-MODE for multi-dimensional
harmonic retrieval with coherent source§fgnal Processing
vol. 108, pp.530-534, Mar. 2015.

K. Liu, H. C. Soand L. Huang, “A multi-dimensional modst

der selection criterion with improved identifiabilityProceed-
ings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSRp.2441-2444, Mar. 2012,
Kyoto, Japan.

C. L. Nikias and M. ShacdSignal Processing with Alpha-stable
Distributions and Applications\Y: Wiley-Interscience, 1995.



