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ABSTRACT

In [1], Lomb developed a nonlinear regression approach to estimat-
ing the frequency of a noisy sinusoid when the measurement times
were not equispaced, and a method for correcting the times so that
the resulting regression sum of squares appeared very similar to the
usual periodogram. Scargle [2] suggested that the usual periodogram
be discarded, and replaced by the new version, which has become
known as the Lomb-Scargle periodogram. In this paper, we extend
Lomb’s development to include a ‘DC’ term. We show why it is im-
portant to include this term, especially when the times are irregular
or the frequency low.

Index Terms— Lomb-Scargle, periodogram, sinusoids, DC ter-
m

1. INTRODUCTION

The most general model for a noisy single sinusoid measured at non-
equidistant timest1, t2, . . . , tN is

Xn = µ+ α cos (ωtn) + β sin (ωtn) + εn. (1)

In the seminal article [1], Lomb rejected the periodogram ap-
proach to estimating frequency, which depended on the times being
equispaced, and developed a nonlinear regression approach, togeth-
er with an ingenious method of correcting the timestn so that the
resulting regression sum of squares appeared very similar to the usu-
al periodogram. His approach, and the formula stated in [2], have
become known as the Lomb-Scargle periodogram, and are in stan-
dard use in astronomy. There have also been numerous articles (e.g.
[3]) in the engineering literature, extending the approach to damped
sinusoids and investigating applications.

In this paper, we revisit [1], and extend his development to in-
cludeµ, the ‘DC’ term. We develop the regression sum of squares
for (1) , and re-examine the equidistant times case. Finally, we show
why it is important to incorporateµ, especially when the times are
irregular or the frequency low. It has been known for some time
[4] that the usual periodogram is not applicable when estimating a
frequency that is low, and that a regression approach should be used.

Note that the frequencyω = 2πf is measured in radians per unit
time, and sof is measured in cycles per unit time, rather than Hz.

2. NONLINEAR REGRESSION

The least squares estimators ofµ, α, β andω are found by minimiz-
ing

S (µ, α, β, ω) =
N∑

n=1

{Xn − µ− α cos (ωtn)− β sin (ωtn)}2 .

(2)
For fixedω, this is just a linear regression, and the least squares
estimators are given by




µ̂
α̂

β̂


 = D−1C,

whereD is symmetric,

D = N−1




N
∑N

n=1 cos (ωtn)
∑N

n=1 sin (ωtn)∑N

n=1 cos
2 (ωtn)

∑N

n=1 sin (ωtn) cos (ωtn)∑N

n=1 sin
2 (ωtn)




C = N−1




∑N

n=1 Xn∑N

n=1 Xn cos (ωtn)∑N

n=1 Xn sin (ωtn)


 .

The residual sum of squares is then given by

N∑

n=1

X2
n −N

(
µ̂X + α̂C2 + β̂C3

)
,

whereCi denotes theith element ofC, and the regression sum of
squares is then

N∑

n=1

X2
n −NX

2 −
{

N∑

n=1

X2
n −N

(
µ̂X + α̂C2 + β̂C3

)}

= N
(
µ̂X + α̂C2 + β̂C3

)
−NX

2
.

There is a trick used in any first course in statistics that reduces the
above problem to a2-dimensional rather than3-dimensional prob-
lem. We write(2) as

N∑

n=1

{Xn − ν − α {cos (ωtn)−D12} − β {sin (ωtn)−D13}}2 ,
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whereν = µ+ αD12 + βD13 andDij denotes the(i, j)th element
of D, and the residual sum of squares is then

N∑

n=1

(
Xn −X

)2 −N
(
α̂C̃1 + β̂C̃2

)
,

where [
α̂

β̂

]
= D̃−1C̃,

D̃ = N−1

[
D22 −ND2

12 D23 −ND12D13

D23 −ND12D13 D33 −ND2
13

]
(3)

C̃ = N−1

[ ∑N

n=1

(
Xn −X

)
cos (ωtn)∑N

n=1

(
Xn −X

)
sin (ωtn)

]

= N−1

[
C2 −NXD12

C3 −NXD12

]
.

The regression sum of squares, as a function ofω, is then

P (ω) = N
(
α̂C̃1 + β̂C̃2

)
(4)

= NC̃′D̃−1C̃,

and it is this function that is maximized so as to estimateω.

3. THE REGRESSION SUM OF SQUARES AND
PERIODOGRAM FOR EQUISPACED DATA

Whentn = n− 1, much of the above is simplified, for thenD is

N−1




N
∑N−1

n=0 cos (ωn)
∑N−1

n=0 sin (ωn)∑N−1
n=0 cos2 (ωn)

∑N−1
n=0 sin (ωn) cos (ωn)∑N−1

n=0 sin2 (ωn)




= N−1




N Re g (ω) Im g (ω)
{N +Re g (2ω)} /2 1

2
Im g (2ω)

{N − Re g (2ω)} /2


 ,

where

g (ω) =

N−1∑

n=0

ejωn =
ejωN − 1

ejω − 1
.

The regression sum of squares is then given by(4). Now, if ω is one
of the so-calledcanonical or Fourier frequencies

{2πk/N ; 0 ≤ k ≤ ⌊(N − 1) /2⌋} ,

there is considerable simplification, for thenD is diagonal, and

P (ω) =
2

N



{

N−1∑

n=0

(
Xn −X

)
cos (ωn)

}2

+

{
N−1∑

n=0

(
Xn −X

)
sin (ωn)

}2



=
2

N

∣∣∣∣∣

N−1∑

n=0

(
Xn −X

)
e−jωn

∣∣∣∣∣

2

(5)

which further reduces whenk ≥ 1 to

2

N

∣∣∣∣∣

N−1∑

n=0

Xne
−jωn

∣∣∣∣∣

2

. (6)

Moreover, whenω is not a Fourier frequency,

D =




1 0 0
0 1/2 0
0 0 1/2


+O

(
N−1) ,

which has led to the use of(5) or (6) as the statistics used to estimate
a ‘hidden’ frequency. There are several things wrong with doing this,
however. Firstly, the periodogram is routinely used whenN is small,
and, secondly, when the true frequencyω is ‘small’, neither approx-
imation, and especially(6) , is accurate enough at low frequency to
produce consistent estimators ofω, sinceg (2ω) may be quite large.

4. LOMB-STYLE SIMPLIFICATION OF THE
REGRESSION SUM OF SQUARES

When the timetn are equidistant, the forms of the periodogram in
(5) and(6) are appealing because of their simplicity and the ability
to be computed using fast FFT-based methods. The motivation be-
hind [1, 2] was, for the general case, to obtain a periodogram-like
form for the regression sum of squares. However, it appears that
Lomb and others believed that the termµ (the ‘DC’ term), could be
eliminated by mean-correction of{Xn} at the outset. This can lead
to large errors in certain cases, for example whenN is small,ω is
small, or the time-sampling unusual. Indeed even ifω is not small,
exclusion of the times at which the sinusoidal component is negative
could lead to biases. This is illustrated in section 6.

We start by examining the obvious diagonalization method,
which is not the one that Lomb used. WritẽD in Jordan form as

D̃ = QΛQ′

Q =

[
cosφ sinφ
− sinφ cosφ

]

Λ =

[
λ1 0
0 λ2

]
,

where, without loss of generality, we assume thatλ1 > λ2. Then it
is easily shown that, with̃D defined by(3) ,

cos (2φ) =
D̃11 − D̃22

λ1 − λ2
(7)

sin (2φ) =
2D̃12

λ1 − λ2
(8)

and so

tan (2φ) =
2D̃12

D̃11 − D̃22

.

In solving for φ, care should be taken to ensure that the solution
conforms with the signs of(7) and(8) . HenceP (ω) in (4) becomes

N
(
Q′C̃

)
′

[
λ−1
1 0
0 λ−1

2

]
Q′C̃,

where

Q′C̃ =

[
cosφ − sinφ
sinφ cosφ

]
N−1

[ ∑N

n=1

(
Xn −X

)
cos (ωtn)∑N

j=1

(
Xn −X

)
sin (ωtn)

]

= N−1

[ ∑N

n=1

(
Xn −X

)
cos (ωtn + φ)∑N

n=1

(
Xn −X

)
sin (ωtn + φ)

]
.

Thus

P (ω) =
{∑N

n=1(Xn−X) cos(ωtn+φ)}2

Nλ1
+
{∑N

n=1(Xn−X) sin(ωtn+φ)}2

Nλ2
,
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which has a simpler form than(4). However, even though the nu-
merators may be computed using existing algorithms, the forms of
the denominators are quite complicated, since

λ1 =
D̃11 + D̃22 +

√
∆

2

λ2 =
D̃11 + D̃22 −

√
∆

2
,

where

∆ =
(
D̃11 − D̃22

)2

+ 4D̃2
12.

We adopt Lomb’s approach, instead. The reason that(4) is com-
plicated is that̃D12 6= 0. Indeed, ifD̃12 = 0, thenP (ω) would be

{∑N

n=1(Xn−X) cos(ωtn)}2

ND̃11

+
{∑N

n=1(Xn−X) sin(ωtn)}2

ND̃22

.

We thus write(1) as

Xn = µ+A cos (ωtn − φ) +B sin (ωtn − φ) + εn,

with φ = ωτ yet to be determined. The same method as in section 2
will be used to eliminate the DC term. We minimize
N∑

n=1

[Xn − ν −A {cos (ωtn − φ)− E1} −B {sin (ωtn)− E2}]2 ,

where

E1 = N−1
N∑

n=1

cos (ωtn − φ)

E2 = N−1
N∑

n=1

sin (ωtn − φ) ,

with respect toν,A andB, for fixed ω, choosingφ so as to make
the columns of the design matrix orthogonal, i.e. so that the analog
of D̃12 is 0. Note thatE1 andE2 depend onφ. Now

N∑

n=1

{sin (ωtn − φ)− E2} {cos (ωtn − φ)− E1}

=
1

2

N∑

n=1

sin (2 (ωtn − φ))−NE1E2

=
1

2

N∑

n=1

sin (2ωtn) cos (2φ)−
N∑

n=1

cos (2ωtn) sin (2φ)

−N−1

{
N∑

n=1

cos (ωtn) cosφ+
N∑

n=1

sin (ωtn) sinφ

}

×
{

N∑

n=1

sin (ωtn) cosφ−
N∑

n=1

cos (ωtn) sinφ

}

= −B sin (2φ− ξ) ,

where

2B sin ξ =
N∑

n=1

sin (2ωtn)− 2N−1
N∑

n=1

sin (ωtn)
N∑

n=1

cos (ωtn)

2B cos ξ =
N∑

n=1

cos (2ωtn)−N−1

{
N∑

n=1

sin (ωtn)

}2

+N−1

{
N∑

n=1

cos (ωtn)

}2

,

and so the columns becomes orthogonal whenφ = ξ/2, i.e. when

tan (2φ) =
∑

N

n=1
sin(2ωtn)−2ND12D13∑

N

n=1
cos(2ωtn)+ND2

12
−ND2

13

. (9)

The regression sum of squares is then

P (ω) =
{∑N

n=1(Xn−X) cos(ωtn−φ)}2

∑
N

n=1
cos2(ωtn−φ)−NE2

1

+
{∑N

n=1(Xn−X) sin(ωtn−φ)}2

∑
N

n=1
sin2(ωtn−φ)−NE2

2

(10)
or

{∑N

n=1
Xn cos(ωtn−φ)−NXE1}2

∑
N

n=1
cos2(ωtn−φ)−NE2

1

+
{∑N

n=1
Xn sin(ωtn−φ)−NXE2}2

∑
N

n=1
sin2(ωtn−φ)−NE2

2

.

(11)
These formulae should be compared with Lomb’s

{∑N

n=1
Xn cos(ωtn−φ)}2

∑
N

n=1
cos2(ωtn−φ)

+
{∑N

n=1
Xn sin(ωtn−φ)}2

∑
N

n=1
sin2(ωtn−φ)

, (12)

or what has been suggested to be used, the mean-corrected form

{∑N

n=1(Xn−X) cos(ωtn−φ)}2

∑
N

n=1
cos2(ωtn−φ)

+
{∑N

n=1(Xn−X) sin(ωtn−φ)}2

∑
N

n=1
sin2(ωtn−φ)

.

(13)
The differences are in the definition ofφ and the denominator

terms, but these may be quite substantial ifE1 orE2 are significant.
Finally, we note that [3] has raised the question about computational
problems in computingφ. For these reasons, although the expres-
sions forP (ω) are elegant, it might be better from the computation-
al point of view just to use the regressions sum of squares given by
(4) .

5. SPECIAL CASE: EQUISPACED DATA

Whentn = n− 1,

D12 = N−1 Re g (ω) , D13 = N−1 Im g (ω)

N∑

n=1

cos (2ωtn) = Re g (2ω) ,

N∑

n=1

sin (2ωtn) = Im g (2ω)

E1 = D12 cosφ+D13 sinφ,

E2 = D13 cosφ−D12 sinφ

N∑

n=1

cos {2 (ωtn − φ)} = Re
{
e−jφg (2ω)

}
.

Thus(10) is easily computed exactly. The numerator terms in(11)
are most likely best computed using

N∑

n=1

Xne
j(ωtn−φ) = e−jφ

N∑

n=1

Xne
jωtn .

6. NUMERICAL EXPLORATION

In the following examples, we have simulated{Xn} according to
(1) with µ = 1, α = 1, β = 0, ω = 2πf. In all cases, theεn were
simulated normally distributed with mean0 and variance0.2. In the
figures, we showP (ω) given by (4) and (10) , which is termed
‘Regression’ in the legend, the mean-corrected Lomb-Scargle peri-
odogram given by(13) , termed ‘LS Mean corrected’, and the raw
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version given by(12) , termed ‘LS Raw’. In Figure 1, wheref =
0.256, andN = 100, time-spacings were generated that were inde-
pendent and uniformly distributed on(0, 1) , and the Regression and
Lomb-Scargle mean-corrected versions are nearly indistinguishable,
but very different from the raw version. In Figure 2, we show the
actual differences between the Regression and Lomb-Scargle mean-
corrected versions in this case. Noticeable are the differences nearf
and 0. For the other two cases, we show only the difference between
the Regression and Lomb-Scargle mean-corrected versions, as they
are similar, and very different from the uncorrected version. Figure3
repeats the first experiment, but with ‘low frequency’,f = 0.035. It
is seen there that the mean-corrected Lomb-Scargle periodogram is
quite different from the Regression periodogram. Figure 4 is for the
case whereN = 1024 andf = 0.1238, but with integer spacings
for which all of the times wherecos (ωt) < 0 have been excluded.
It appears that only the values very near the true frequency differ.
However, this difference is quite large and could lead to discrepan-
cies, especially if the periodogram is used for detection.
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Fig. 2 Differences between regression and mean-corrected LS
periodograms
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Fig. 3 Differences between regression and mean-corrected LS
periodograms, low frequency
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7. CONCLUSION

The Lomb-Scargle periodogram has been extended to include an un-
known DC term. Rather than mean-correcting the data, the DC off-
set has been included as a parameter to be estimated, and a simple
formula derived. The development may be readily extended to the
complex data case. What has not been done is an asymptotic anal-
ysis of the maximizer of the extended Lomb-Scargle periodogram,
in the style of [5]. This may be difficult to do unless it is assumed
that {εn} is white. However, the more realistic assumption is that
εn = etn , where{et} is a continuous-time stochastic process with
some unknown continuous spectral density. To the author’s knowl-
edge, a rigorous central limit theorem has not been developed for the
Lomb-Scargle periodogram maximizer, even whenµ = 0 and{εn}
is Gaussian and white.
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