
DISTRIBUTED DYADIC CYCLIC DESCENT FOR NON-NEGATIVE MATRIX

FACTORIZATION

M.O. Ulfarsson†, V. Solo‡, J. Sigurdsson†, and J.R. Sveinsson†

†University of Iceland, Dept. Electrical Eng., Reykjavik, ICELAND
‡University of New South Wales, School of Electrical Eng., Sydney, AUSTRALIA

ABSTRACT

Non-negative matrix factorization (NMF) has found use in

fields such as remote sensing and computer vision where the

signals of interest are usually non-negative. Data dimensions

in these applications can be huge and traditional algorithms

break down due to unachievable memory demands. One is

then compelled to consider distributed algorithms. In this

paper, we develop for the first time a distributed version of

NMF using the alternating direction method of multipliers

(ADMM) algorithm and dyadic cyclic descent. The algorithm

is compared to well established variants of NMF using sim-

ulated data, and is also evaluated using real remote sensing

hyperspectral data.

Index Terms— Non-negative matrix factorization, dyadic

cyclic descent, alternating direction method of multipliers,

optimization, distributed signal processing.

1. INTRODUCTION

Non-negative matrix factorization (NMF) is a standard method

for finding a low-rank representation for non-negative signals.

Although algorithms for performing NMF were developed

earlier, it was the work of Lee and Seung [1, 2] that triggered

a rapid growth in the use of NMF in areas such as image

processing [3], document mining [4], community detection,

[5] and remote sensing [6].

Due to the size of the data in the above-mentioned appli-

cation, distributed storage and processing is often necessary.

An important class of distributed algorithms is the alterna-

tive direction method of multipliers (ADMM) [7]. The aim of

ADMM is to split a large global optimization problem into a

number of small local subproblems that are fused to solve the

global problem. Those small subproblems can be solved on

different nodes in a computer cluster.

1.1. Related Work

A number of NMF algorithms have been proposed in the lit-

erature [8, 9, 1, 3, 10]. These algorithms include gradient de-

This work was partly supported by the Research Fund of the University

of Iceland and the Icelandic Research Fund (130635-051)

scent, alternating least squares, and multiplicative algorithms.

A distributed version of the Lee-Seung NMF algorithm was

proposed in [11] for sparse web-scale data. In [12], ADMM

was used to develop a distributed version of principal compo-

nent analysis (PCA) with application to sensor networks.

1.2. Contribution

We develop, for the first time a distributed NMF algorithm.

Our particular version is also aided by the use of the recently

developed dyadic cyclic descent algorithm [13, 14] which has

been used for sparse component analysis. Our motivation

comes from the hyperspectral unmixing problem where NMF

has been widely used. In this problem, the data consists of a

datacube that represents a sequence of images each measured

at a different spectral band. The image dimension is often

very large so it is of interest to split the datacube into smaller

datacubes that can be processed individually and then fused

together to solve the overall NMF problem. This is precisely

what our proposed algorithm does. To solve those smaller

subproblems we employ a dyadic cyclic descent algorithm.

The paper is organized as follows. In Section 2, the model

used is introduced and in Section 3, the distributed version is

detailed. In Section 4, the algorithms are evaluated and com-

pared to two variants of NMF. Finally, in Section 5, conclu-

sions are drawn.

1.3. Notation

Matrices are denoted with upper case bold letters and vectors

denoted with lower case bold letters. IM is the M ×M iden-

tity matrix. The tth row of vector S is denoted as sTt , and the

jth column vector of S is denoted as s(j). The matrix A-j is

equal to A with its jth column removed. An estimate of s at

iteration k is denoted as sk; tr(A) =
∑

i aii.

2. DYADIC CYCLIC DESCENT

There are two main types of NMF algorithms, one is based on

the optimizing a Kullback-Leibler divergence, and the other

on optimizing a least squares problem [1]. In this paper, the

4303978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

focus is on the least squares approach which involves solving

Â, Ŝ = argmin ‖Y − SA
T ‖2F (1)

s.t. S ≥ 0,A ≥ 0 and ‖a(j)‖
2 = 1, j = 1, ..., r

where Y is a T × M matrix, A is an M × r non-negative

matrix, and S a T × r non-negative matrix. This formulation

is unusual due to the unit norm constraint on the columns of

A but there is no loss of generality in doing this since, as

long as the SAT is kept fixed, A and S can always be re-

normalized. The reason for the normalization is that it saves

some computations in the algorithm below.

There is no closed form solution available for solving (1).

We propose to use the dyadic cyclic descent (DCD) to solve

this problem which is based on the dyadic expansion

SA
T =

r
∑

j=1

s(j)a
T
(j). (2)

Using (2), a cyclic descent procedure can be devised by iter-

atively updating the columns of A and S. The algorithm has

two steps that are iterated until convergence:

a-step : Given Rj = Y − S-jA
T
-j and sk(j), get

a
k+1
(j) = argmin

a:a≥0,‖a‖=1‖Rj − s
k
(j)a

T ‖2

= max

(

0,
R

T
j s

k
(j)

‖RT
j s

k
(j)‖

)

.

s-step : Given Rj = Y − S-jA
T
-j and a

k+1
(j) , get

s
k+1
(j) = argmin

s≥0
‖Rj − sa

k+1
(j)

T
‖2

= max(0,Rja
k+1
(j)).

We call the resulting algorithm NMF-DCD.

3. DISTRIBUTED DYADIC CYCLIC DESCENT

The main idea in developing the distributed dyadic cyclic de-

scent for NMF is to split it into N subproblems, i.e.,

Â, Ŝ =
argmin

A≥0,S≥0

1
2

∑N

i=1 ‖Yi − SiA
T
i ‖

2
F

s.t. Ai −A = 0

Ai ≥ 0, i = 1, ..N

(3)

whereY = [Y T
1 , ...,Y T

N]T and S = [ST
1 , ...,S

T
N]T . To solve

(3) we use the ADMM algorithm, which uses the following

augmented Lagrangian function

Lρ =

N
∑

i=1

(

1

2
‖Yi − SiA

T
i ‖

2
F + tr

(

X
T
i (Ai −A)

)

+
ρ

2
‖Ai −A‖2F

)

.

The ADMM algorithm for solving (3) is given by

S
k+1
i ,Ak+1

i = arg min
Ai≥0,Si≥0

1

2
‖Yi − SiA

T
i ‖

2
F

+ tr(Xk)T (Ai −A
k)

+
ρk

2
‖Ai −A

k‖2F

A
k+1 = max

(

1

N

N
∑

i=1

(Ak+1
i +

1

ρk
X

k
i), 0

)

X
k+1
i = X

k
i + ρk(Ak+1

i −A
k+1)

where the max operator operates elementwise. Note that we

allow the penalty parameter ρk to vary with iteration num-

ber which has been shown to improve the convergence rate

[7]. To estimate Ai and Si we use DCD which in this case

involves performing the following two steps iteratively

a-step : Given Rij ,sk
i,(j), x

k
i,(j), and ak

(j), get

a
k+1
i,(j) = max

(

0,
RT

ijs
k
i,(j) − x

k
i,(j) + ρkak

(j)

‖RT
ijs

k
i,(j) − x

k
i,(j) + ρkak

(j)‖

)

.

with Rij = Yi − Si,-j Ai,
T
-j .

s-step : Given Rij , and a
k+1
i,(j), get

s
k+1
i,(j) = max(0,Rija

k+1
i,(j)).

We call the resulting algorithm dNMF-DCD and for easy ref-

erence it is listed in Algorithm 1.

Algorithm 1: dNMF-DCD algorithm.

Input: Y , r, N ,

Initialization:

Split Y into N matrices, Y1,Y2, ...,YN .

Initialize A0
i , S

0
i , i = 1, ..., N

Set A0 = 0,X0 = 0

for k=0... do

update ρk

for i=1...N do

Estimate Ak+1
i and S

k+1
i

Calculate Ak+1 and Xk+1

Output: Â = Âi, Ŝi, i = 1, ..., N

4. EXAMPLES

4.1. Simulated Data

In this section, we compare the NMF-DCD and the dNMF-

DCD against two NMF algorithms 1. The first is the Lee-

Seung algorithm [1] which we call NMF-L&S, and the second

1The Matlab nnmf implementation is used for these two algorithms.

4304

algorithm is the alternating least squares algorithm for NMF

[8] which we refer to as NMF-ALS.

To evaluate these algorithms we use a simulated data set,

generated according to

Y = SA
T +N

with M = 100, r = 6, and T = 1000. The elements of

A and S are drawn from the standard uniform distribution

on the open interval (0, 1), and the elements of N are drawn

from the Gaussian distribution with zero mean and variance

σ2. The signal to noise ratio (SNR) is set to

SNR = 10 log10

(

‖SAT ‖2F
TMσ2

)

= 14.01dB (4)

by choosing σ2 = 0.1. In these tests, we assume that the rank

(r) is known.

The algorithms are run 100 times using the simulated data.

In each run, different random values are used to initialize the

algorithms. The algorithms are terminated when the relative

change in Â and Ŝ is less than 10−4. The NMF-ALS al-

gorithm also needs to be terminated if the differences of the

residuals between each iteration is less that a very small val-

ues (10−12). If this is not done, the NMF-ALS algorithm con-

verges to a degenerate solution.

For the dNMF-DCD algorithm, the data matrix Y is split

into N = 4 matrices, i.e., Y = [Y T
1 ,Y T

2 ,Y T
3 ,Y T

4]T . The

dNMF-DCD algorithm is run for 60 iterations, and the ρk

parameter is increased in each iteration according to ρk =
e0.307k − 1. By using this method of changing ρk, the algo-

rithm is able to adapt to each region in the image and in the

final iterations, all Âi matrices are forced to converge into the

same matrix. The values of ρk in each iteration are shown in

Fig. 1.

0 10 20 30 40 50 60
0

0.5

1

·108

iteration

ρ
k

Fig. 1. The value of ρk in each iteration.

In Table. 1, we compare all the algorithms used by using

the normalized mean square error (nMSE), defined as

nMSE =
1

100

100
∑

n=1

‖ŜnÂ
T
n − SAT ‖2F

‖SAT ‖2F
, (5)

where Ân and Ŝn denote the estimates of A and S, respec-

tively, for the nth simulation. The NMF-DCD and dNMF-

DCD yield, the lowest, almost identical nMSE, with a low

standard deviation.

Table 1. The nMSE (± one standard deviation) for the simu-

lated data.

Algorithm nMSE

NMF-L&S 0.00135± 5 · 10−5

NMF-ALS 0.00134± 2.4 · 10−9

NMF-DCD 0.00131± 7.5 · 10−7

dNMF-DCD 0.00131± 3.5 · 10−7

4.2. Real Data

1 2 3 4 5 6

Fig. 2. The generated RGB image of the Urban data set. The

data is split into 6 regions, shown here and marked 1-6.

Here the dNMF-DCD algorithm is evaluated using a real

hyperspectral data set. We will compare the results obtained

by the dNMF-DCD algorithm to the results obtained using

NMF-DCD algorithm.

The hyperspectral image used here is a HYDICE hyper-

spectral image2 of an urban landscape. The number of spec-

tral bands in this data set is 210 and covers the 400-2500nm

spectral range.

This image is 307×307 pixels and the whole image is

used. Bands numbered [89, 90, 103-109, 130-152, 204-210]

are identified as water absorption or low SNR bands and are

removed, resulting in 171 usable bands. The Y matrix is thus

of dimensions 3072 × 171. An RGB image, generated using

the hyperspectral data, is shown in Fig. 2. The RGB image

is created by using specific spectral bands from the data set,

to represent the red, green, and blue channels of the RGB im-

age. The image is split into N = 6 regions, marked 1-6 in the

RGB image. The data matrix, Y is thus split into 6 matrices.

The dNMF-DCD algorithm is run for 60 iterations, using

the same values of ρk, as in the previous subsection.

Using the algorithm proposed in [15], the rank is esti-

mated to be r = 8. The algorithms are initialized randomly

2http://www.agc.army.mil/hypercube/

4305

in the same manner as was done in the previous subsection.

In Fig. 3, two column in the Â and Ŝ are shown, using

NMF-DCD and dNMF-DCD, respectively. The columns of

Â are shown as a plot and the columns of Ŝ are shown as

intensity maps.

It can be seen that the solutions found by dNMF-DCD and

NMF-DCD are very similar but not identical. There are some

minor differences between the two solutions. There are no

discontinuities visible in the intensity maps at the locations

where the data was split up (vertical yellow lines in Fig. 2).

Column 1 in Â Column 2 in Â

0 50 100 150
0

0.05

0.1

0.15

spectral band

in
te

n
si

ty

NMF-DCD

dNMF-DCD

0 50 100 150
0

0.1

0.2

spectral band

in
te

n
si

ty

dNMF-DCD Map 1 dNMF-DCD Map 2

NMF-DCD Map 1 NMF-DCD Map 2

Fig. 3. The top row shows two columns of the Â ma-

trix, estimates by NMF-DCD and dNMF-DCD, respectively.

The middle row shows the corresponding columns in the Ŝ

(dNMF-DCD) matrix reshaped into a 307×307 intensity map.

The bottom row shows the same column in in the Ŝ (NMF-

DCD) matrix.

5. CONCLUSIONS

In this paper, we developed for the first time a distributed ver-

sion of NMF using ADMM, and the dyadic cyclic descent

algorithm. Using simulated data, the algorithms are evaluated

and compared to two variants of NMF. The proposed algo-

rithms outperformed both of these NMF variants. In addition,

the algorithm was also illustrated using a real remote sens-

ing hyperspectral image. It is important to note that the new

procedure could be used on very large problems whereas the

standard algorithm could not be implemented due to memory

problems.

6. REFERENCES

[1] D. D. Lee and S.H. Seung, “Algorithms for Non-

Negative Matrix Factorization,” Advances in Neural

Information Processing System, vol. 13, pp. 556–562,

2001.

[2] D. D. Lee and H. Sebastian Seung, “Learning the parts

of objects by non-negative matrix factorization,” Nature,

vol. 401, no. 6755, pp. 788–791, Oct 1999.

[3] Patrik O. Hoyer, “Non-negative matrix factorization

with sparseness constraints,” J. Mach. Learn. Res., vol.

5, pp. 1457–1469, Dec. 2004.

[4] A. Owen and P. Perry, “Bi-cross-validation of the SVD

and the nonnegative matrix factorization,” The annals of

applied statistics, vol. 3, no. 2, pp. 564–594, 2009.

[5] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon,

“Overlapping community detection using bayesian non-

negative matrix factorization,” Phys. Rev. E, vol. 83, no.

6, 2011.

[6] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente,

Q. Du, P. Gader, and J. Chanussot, “Hyperspectral un-

mixing overview: Geometrical, statistical, and sparse

regression-based approaches,” IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sens-

ing, vol. 5, no. 2, pp. 354 –379, April 2012.

[7] S. Boyd, N. Parikh, E. Chu, and B. Peleato, “Distributed

optimization and statistical learning via the alternating

direction method of multipliers,” Foundation and trends

in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010.

[8] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca,

and R J. Plemmons, “Algorithms and applications for

approximate nonnegative matrix factorization,” in Com-

putational Statistics and Data Analysis, 2006, pp. 155–

173.

[9] P. Paatero and U. Tapper, “Positive matrix factorization:

A non-negative factor model with optimal utilization of

error estimates of data values,” Environmetrics, vol. 5,

no. 2, pp. 111–126, June 1994.

[10] C.-J. Lin, “Projected gradient methods for nonnegative

matrix factorization,” Neural Comput., vol. 19, no. 10,

pp. 2756–2779, Oct. 2007.

[11] C. Liu, H. c. Yang, J. Fan, L.-W. He, and Y.-M. Wang,

“Distributed nonnegative matrix factorization for web-

scale dyadic data analysis on mapreduce,” Proceedings

of the 19th International World Wide Web Conference,

April 2010.

4306

[12] A. Aduroja, I.D. Schizas, and V. Maroulas, “Dis-

tributed principal component analysis in sensor net-

works,” in Proc. IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP’13),

Vancouver, Canada, 2013.

[13] M. Ulfarsson and V. Solo, “Sparse component analysis

via dyadic cyclic descent,” in Proc. IEEE International

Conference on Acoustics, Speech, and Signal Process-

ing (ICASSP’14), Florence, Italy, 2014.

[14] M. Sedeghi, M. Babaie-Zadeh, and C. Jutten, “Learning

overcomplete dictionary based on atom-by-atom updat-

ing,” IEEE Trans. Signal Proc., vol. 62, no. 4, 2014.

[15] M.O. Ulfarsson and V. Solo, “Tuning parameter

selection for nonnegative matrix factorization,” in

Proc. IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP’13), Vancou-

ver, Canada, 2013.

4307

