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ABSTRACT In this paper, we propose the following model for the case of a
damped sinusoid
There has been much recent interest in damped sinusoidal models,
probably as a result of their relevance to magnetic resonance imagXt
ing. In [1], a model which allowed the sinusoid to decaydtwas
examined, and a Fourier coefficient estimation procedure was prQ

osed. [2] noted that in order for any asymptotic theory to be avall-ar which there is a fixed number of sinusoidal periods. The same
P y Y asymp Y igqeawas used in [6], where limit theory was established for the least

?r\%eésthri dtigiybzzg\ljilgr g(f)tablzeoilrlizvrvggetf(f)iccigmplre(sﬁéglrfe i);igéns% uares estimator of the frequency of a sinusoid, when the frequen-
ymp P y was ‘low’. We derive the asymptotic theory for the least squares

this assumption, for which the asymptotic behavior of nonlinear leasistimators of the parameters. We then propose Fourier transform

squares estimators had already been derived in [3]. In this paper, W imators ofy anda. A special case is that af — 0, i.e. a pure-

consider the problem of estimating the frequency and damping fa(ﬁ/ exponential signal. The Fourier transform technique outperforms

tOFWheF‘ the frequency IS SO low that onlyafmlte nu_mber of Pe”Odﬁeast squares from the computational point of view, and has very
appear in the data. Additionally, we consider a Fourier technique for.

estimating the dampina factor in a noisy real exponential similar asymptotics. The technique is generalized to a broad class of
9 ping Y P ) nonlinear functions, using a more general class of transforms. Simu-

Index Terms— exponentially damped sinsuoid estimation, lations are performed to evaluate the accuracy of the asymptotics in

:/A+Aefwt/Tcos(at/T+¢)+st, t=0,1,...,7T—1 (3)

Fourier coefficient method relatively small samples.
1. INTRODUCTION 2. LEAST SQUARES AND THE GAUSSIAN CRLB
In [2] the model considered initially was [6] examined(3) when~ = 0. The least squares procedure was
, defined and analyzed imposing only weak conditions{ey} . In
Xi=p+ Ae cos(wt+¢)+e, t=0,1,...,T—1 (1) particular, Gaussianity and whiteness are not needed for the param-

eter estimators to satisfy a central limit theorem, which depends on
wherep, A > 0, > 0,w and¢ are unknown parameters, afic } {e:} only through its spectral density (w) at 0 frequency. The
is some general ‘noise’ process, not necessarily Gaussian or whitgerivation of the central limit theorem is complicated by the fact that
Interest was in the estimation of these unknown parameters, and th€i) hasthree sinusoidal terms that ‘interfere’ with each other, at fre-
asymptotic properties & — oo. However, as the amplitudée ™" quencies-a/T,0 anda/T. In [7] it is shown thatT*/? (G — a) is
converges t@ asT — oo, the Cranér-Rao lower bound does not asymptotically normal with meahand variance of the form
converge td asT — oo and so the estimators are inconsistent. The

model was reparametrized as 487;{2(0) I cos? 1 + C sin? o},

X :M—i-Ae_'Yt/Tcos(wt—&—qﬁ) +e, t=0,1,...,T—1, (2)

where¢ and¢ depend only om andy = ¢ + a/2. Here we rewrite

as in [3] in order to avoid this problem. A review of estimation the model as
techniques was conducted and a generalization of [4] produced.
Of note in(2) is that although the amplitude of the sinusoid doesx, = p+q {e—vt/T cos (at/T) — c}+ﬂ {e—“/i/T sin (at/T) — 5}+5t7
not converge td as7 — oo, the number of periods of the s-
inusoid is linear inT, and therefore diverges too. In [5], a
similar idea is used with model given byt), but at the times
t=0,1/(T"-1),2/(T —1),...,1, the number of periods of the _— _—
sinusoid is fixed, and the stochastic properties of the noise process -1 —yt/T 1 —~t)T .
{e+} thus become problematic. o= 2 e cos (at/T),s =T7* ) e sin (at/T).

wherev =y — ac — Bs and

t=0 t=0
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We thus minimize with respect ta «, 5 anda, 3. FOURIER COEFFICIENT ESTIMATION TECHNIQUE

T-1
S(v,a,B,a,7) = Z [Xt—V—a{e_wt/Tcos(at/T)—c} Let T—1 T—1
—o Y, = Z Xte—jQ‘rrkt/T7 Uy = Z Ete—jQﬂ-kt/T.
2 — —
_8 {e—vt/T sin (at/T) — s}] . @) =0 0
Then, withd;; denoting Kronecker’s delt&;; is given by
Under Gaussian assumptions{n }, the log-likelihood is 1 _ e—vtia p—

Twdont+D = =jarammr TP T o=Grrsarammr T Uk

T 2 1
| = 7§log (27TU ) — ES(V,CY”B»CMV):

. where D = Ae’?/2. The major complication in implementing
gnd S0 the Iea_st squ?_rlfsl_ﬁstlanatotr_w,af,ﬁ,a ?\lndwfaref_als;tr;e a Fourier coefficient method, which does not occur in the fixed-
agsrslan.maxlméjm.tlhel 00 tets ima ozjs. r?w Or_'x% n_ frequency case, is that the term above involving is not insignif-
%’,1 |sTn_1|1n;r(n|zed with respect to, o and 5 whenv = - icant compared with the term involving. As in [4], suppose that
2o Xean a = 2r(n+9), where§ € (—1/2,1/2). Then, althoughn is
M o ] - { Dii Dis ]—1 { Cy } unknown, it may be shown that,iif > 0,

B D12 D22 Ca argmax < <|(7-1)/2] |Yk|2—>n,

where almost surely a§” — oo, and may thus be used to estimate

C4 (X = X) e T cos (at/T) If |6] = 1/2, the limit points are the sefn — 1,n,n+ 1}, but
Cx | 7 | (X —X) e " Tsin (at/T) | this will not matter, for the same reason as in [7]. Assume first that
a > 3w. Then fork = —1,0,1 andn > 2,

D11 [ Z;‘r:_ol e 2T cos? (at)T) — Tc?

D2 | = T=1 o=27t/T cos (at/T) sin (at/T) — T'sc 1 — e~ v+27I8 " 1 — e Y2798

Das L = et 7§ siI/12 ()at/T() 1 7?52 Yotk = DI —Ggmeramnyr T D T o=Grremisranmyr T Unth:
The least squares procedure is then the same as maximizing As in [4], solving the equations

—1 —~+2758 —v—27j8
o D11 D12 Cl _ I*G’Y J * 1*€’Y J
Play=[C C ] [ D12 Do } { Cs } : Ynir = D1 — e—(y=2mjé+2mj)/T +D 1 — e—(v+2mjo+ans)/T
. . —y+2758 —y—27jd

Note that the elements @ may be asymptotically approximated by Y, =D l—e” ‘J +D* l—e .J
applying(8) to z = —2y andz = —2v + 2ja. P (a,~) can also 1—e-(y=2m38)/T 1— e (r+2mio)/T

be made to look more like a periodogram by using a Lomb-Scargl

. iy ) §ields one set of estimators f, v andé, since the equations above
[8, 9] type trick, replacing™*/7 cos (at/T + ¢) in (3) by

represent four (real) equations in four (real) unknowns. Solving

e T cos (a(t— 1) /T + ), 1 — e—+2mié 1 — ——2mib
. o Y.-1=D - . + D" n .
recalculating the above and finding-ahat forcesD;» to be0. The ! 1— e~ (y—2mjé—2m5)/T 1 _ e—(v+2mjo—anj)/T
details are fairly simple and will not be given here. Indeed, in light 1 — e~ Y1278 . 1 — e Y2738
of comments made in [10], computingand using the modified for- Yo=D 1 — e—(v—2mjé—2mj)/T +D 1 — e~ (v+2mjo—dnj)/T

mulae might cause numerical instability. )
Gaussian (asymptotic) CrémRao bounds and the asymptotic 9IVesS another.' There appear to be no closed-form formulae for §olv
distribution of the estimators af and~ are quite complicated, but g the equations, or choosing between the two sets of solutions,

simplified by using the original modéB) . The log-likelihood! is even if asymptotic versions of the equations are used. Moreover,
then given by whena < 37, Y, cannot be used, as it involves and is also real.

T 1 ThusY; andY> need to be used when< 5.
l = —5 log (27F02) — 272VT (@) 5 (5)
o 3.1. Aspecial casea =0

!
whereO = A ¢ a ~ ] and Whena = ¢ — 0, we have

T—-1
2 -
Vr(0) = Y {Xi—p—Ae " cos(at/T+9)} (6 _ 1—e
T( ) ; t 1% € COS(a/ +¢) ( ) Yk_TM60k+A1_e—(7+27rjk)/T +Uk
The (asymptotic) Cragr-Rao bounds are computed in the appendix,We may thus estimate by solving
and are given by the diagonal elementdof'o2Q 1. In fact, these
are also the asymptotic variances in the central limit theorem even Yi=A

under non-Gaussian and colored noise assumptions@lpdme the
minimizer of Vr (©) with respect to9. Then under the same as- which reduces to

sumptions as in [6]@ converges almost surely tbasT — oo, (4 jamy /T
. . . ~ 1—e (y—g27
and the distribution of™/2 (@T - @) converges a%§ — oo to the Re (V1) Re (|1_67(’Y+j27r)/T‘2) _ 1—e /T cos (2n/T)

1—e"
1 _e-(+2mi)/T>

normal with meard and variancer f (0) @~ '. The fixed-frequency  Im (V;) |e—(=izmyr e W/Tsin(2n/T)
case has been discussed in [3, 11, 2]. Im [1—e=(rFs2m)/T?

4299



for which the solution is

v =77 =Tlog <cos (2n/T) — iﬁgé; sin (27T/T)>

~ =27 Re (Yl)/IIIl (Yl) .

For example, supposg(z) = e, and

1 ;i k=0
ge () =14 cos(az) ; k=1
; k=2

The estimatofyr is remarkably simple, and certainly much faster to Then

compute than the nonlinear least squares estimator, found by mini-

mizing with respect tqu, A and~,

T-1

> {Xt —p— Ae*wT}2 :

t=0

or equivalently by maximizing with respect to

T (e -%) e}

2
T—1 ,_24t/T -1 ZT—l —~t/T
=0 e vt/ - T =0 e vt/

4. GENERALIZATION

The above suggests an estimation procedure for ‘low frequency’

nonlinear regression problems. Suppose we wish to fit

Xf:u+/8f('7t/T)+€f7t:O7177T_1

where{e:} is ‘noise’ andf is known. Let{gx (z)} be a family of
functions whose domains aj@ 1], and put

T-1
Vi = Xugx (t/T)
t=0
T—1

ST+ B k /T) f(/T) + 3 eeg (4/T).

t=0

As long as{gx. (x)} is suitably well-behaved,

var {T1/2 i €tk (t/T)} — 27 f (0) /o gr (z) dz.

t=0
Thus, at least in probability 88 — oo,

1

1
T Y, d d
k—HL/O ok () x+5/0 g1 (2) f (v) da
= uGr + BHy (),

say. For fixedy, we might thus estimatg and 8 by solving the
above equation fok = 0, 1, viz.

]=[8 RO T [0

and thus estimate by solving for~y

reten o[ & BT [E]

1G2 {H1 () Yo — Ho (v) Y1} + H2 () (GoY1 — G1Y0)

1 ;i k=0
Gk = sina /a ;i k=1
(1—cosa)/a ; k=2
and
Ho(v)=(1-e7") /v
Hi(y)=(y—~cosae " +asinae ")/ (a2 +'y2)
Hy(y)=(a—acosae ” —vsinae ")/ (a2 + 72)
In the special case whete= 2nm, n an integerGx = dox,

Ho(y)=(1—-¢")/y
Hi(y) =~ (1-e)/(4n°n* ++7)
Hy(y)=2nm(1—e ")/ (4n27r2 + 'yz)

and so
k(y) =Y —2n7Ya) (1—e ")/ (4n27r2 + 72) .

The estimatofr of v is thus2nnY2 /Y1, agreeing with the formula

in section 3.1 for the case = 1. Unlessa is of the form given,
zeros ofx () have to be found by search or some iterative pro-
cedure. In the general casgy converges almost surely tg and
T2 (5r — ~) is asymptotically normal with meahand variance

¢ (70) Q¢ (70)

2nf (0) A2)\2 (70)
where
d
AQ) = =g 2 ()
GO HO -1 %HO (fy)
+[ G Ha(v) ] { Gh ng; } { i H1(7) }

G1 Hi(y)

and( is the3 x 3 matrix with (j, k)th entry [ g; (z) gr (z) dz.
Whena = 2nm, n an integer,

c’(w)={—[02 Hg('y)}{GO Hm)r 1}

A() == 4 Ha () +

1 0 0
Q=|0 1/2 0
0 0 1/2

__Ha(v)
Hy(v)

¢ ()= 0

GoHi (v) — GiHo (7)

i.e. by finding zeros of

K (7) = (GoY1 — G1Yo) Hz (v) + (G2Yo — GoY2) Hi (v) (7)
+ (G1Y2 — G2Y1) Ho () .

and so the asymptotic variance is

2
Ha(v)
1+ {HI(W)

5
E LACRS RoFLAC)

7f(0)
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5. SIMULATIONS 6. APPENDIX

Only a few results for the = 0 case are reported. Figure 1 shows with the log-likelihood! defined by(5), and V1 (©) by (6), the
that the theoretical and simulated, least squares and Fourier esiitfformation matrixZr may be shown to satisfy

mates are all in close agreement. Of interest is the fact that the mean

square errors initially decrease-aincreases, but then increase, the 1 9 (0_2)2 0

least squares estimates showing superiority at low and high values Tip — 0 o201 |

of v. Figures 2 and 3 show that there is a threshold effect for fixed

with decreasing SNR. Below threshold, the theoretical and Simu"”“\?vhere(z is the symmetrié x 5 matrix with entries given by

ed mean square errors agree, while the least squares estimates again

eventually show superiority with decreasing SNR. There 608
ntually p y Wil 9 . Qi1 =1,Q2=Relp1,1,%3=—-AlmIp11,
replications for each combination of parameters, and the noise was
simulated Gaussian and white. Qa=—-Alm 11,05 = —ARel11,1,
1 A
s (#ELASLOZOLTZI0 Qa2 = 5 (20 +Reloz2), s = 5 Imlo2,,
i + Least Squares Estimates A A
x  Fourier Estimates
s Theoretical Asymptotic Variance Least Squares | Q24 = _5 Im 11,2717 Qo5 = _5 (Il>2~,0 + Re 11,272) )
e —— Theoretical Asymptotic Variance Fourier technique
A2 A2
2t 1 Q33 = 5 (Io,2,0 — Relo,2,2) , Q34 = > (I1,2,0— Rel2,2),

log MSE 2 2

A A
Qa5 = 5 ImIi 20,04 = > (I2,2,0 — Relz,2),

2 A2
N Qs = 5 ImIz 20,055 = > (I2,2,0 — Rel22,2)
e L where
1
) . . . . . . _ k _—nyx+jm(az+¢)
760 05 1 15 2 25 3 35 4 Ik’n’m 7‘/0 x e dm.
Fig 1. MSE for fixedo as function ofy To see this, note, for example, thatBs— oo,
pn=1b=1,~v=1,T=100 T_1
! ‘+ Le;slsqu;res E;timate; ‘ H T71 82l 11 —t/T ( t/T+ ¢)
T = 5= e Ccos (a
8F % Fourier Estimates N O,LL&A o2T
Theoretical Asymptotic Variance Least Squares t=0
6 — Theoretical Asymptotic Variance Fourier technique | ] 1 1 1
=—— [ e cos(ax+¢)dz+O(T™").
% Jo

Q may be computed exactly using the result thatkoe= 0,1, ...
and complex,

1 k 1 k _z
k zz d 2T d e —1
/0 e dr = @ ) edr = @ > . (8)

0 01 02 03 0.4 0: 06 07 08 09 1 7. CONCLUS|ONS
Fig 2. MSE for fixedy as a function of Techniques have been proposed for estimating the parameters in ex-
p=1,b=17=1T=1000 ponentially damped sinusoids when the damping has not been com-
e pleted by the end of the time period, and the number of periods of
*  Fourier Estimates b the sinusoid is fixed as the sample size increases. This enables the
L reorotoal Aot Vartanee Fourer wamiaue asymptotic behavior of the estimation procedures to be evaluated
s without restrictive distributional assumptions being made. Gener-
alisation has been suggested, and simulations reported for the case
of a noisy pure real exponential.
Excluded from this paper, for reasons of space, are the asymp-
totic properties of the low-frequency Fourier coefficient method, and
a computationally efficient implementation. Moreover, many of the
ideas are applicable to the complex signal case, with some modifi-
cation due to, for example, the fact that interference is only between
the zero and positive frequency components. As well, the purely
e e e e e e e exponential case in not as straightforward as there are more param-
7 eters. Extension to the multicomponent case is also of interest, and
Fig 3. MSE for fixedy as a function ot will be the subject of further research.
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