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ABSTRACT

There has been much recent interest in damped sinusoidal models,
probably as a result of their relevance to magnetic resonance imag-
ing. In [1], a model which allowed the sinusoid to decay to0 was
examined, and a Fourier coefficient estimation procedure was pro-
posed. [2] noted that in order for any asymptotic theory to be avail-
able, the decay should not be allowed to complete, and examined
the asymptotic behavior of a Fourier coefficient procedure based on
this assumption, for which the asymptotic behavior of nonlinear least
squares estimators had already been derived in [3]. In this paper, we
consider the problem of estimating the frequency and damping fac-
tor when the frequency is so low that only a finite number of periods
appear in the data. Additionally, we consider a Fourier technique for
estimating the damping factor in a noisy real exponential.

Index Terms— exponentially damped sinsuoid estimation,
Fourier coefficient method

1. INTRODUCTION

In [2] the model considered initially was

Xt = µ+Ae−γt cos (ωt+ φ) + εt, t = 0, 1, . . . , T − 1 (1)

whereµ,A > 0, γ > 0, ω andφ are unknown parameters, and{εt}
is some general ‘noise’ process, not necessarily Gaussian or white.
Interest was in the estimation of these unknown parameters, and their
asymptotic properties asT → ∞.However, as the amplitudeAe−γt

converges to0 asT → ∞, the Craḿer-Rao lower bound does not
converge to0 asT → ∞ and so the estimators are inconsistent. The
model was reparametrized as

Xt = µ+Ae−γt/T cos (ωt+ φ) + εt, t = 0, 1, . . . , T − 1, (2)

as in [3] in order to avoid this problem. A review of estimation
techniques was conducted and a generalization of [4] produced.
Of note in (2) is that although the amplitude of the sinusoid does
not converge to0 as T → ∞, the number of periods of the s-
inusoid is linear inT , and therefore diverges to∞. In [5], a
similar idea is used with model given by(1) , but at the times
t = 0, 1/ (T − 1) , 2/ (T − 1) , . . . , 1, the number of periods of the
sinusoid is fixed, and the stochastic properties of the noise process
{εt} thus become problematic.

In this paper, we propose the following model for the case of a
damped sinusoid

Xt = µ+Ae−γt/T cos (at/T + φ)+εt, t = 0, 1, . . . , T −1 (3)

for which there is a fixed number of sinusoidal periods. The same
idea was used in [6], where limit theory was established for the least
squares estimator of the frequency of a sinusoid, when the frequen-
cy was ‘low’. We derive the asymptotic theory for the least squares
estimators of the parameters. We then propose Fourier transform
estimators ofγ anda. A special case is that ofa = 0, i.e. a pure-
ly exponential signal. The Fourier transform technique outperforms
least squares from the computational point of view, and has very
similar asymptotics. The technique is generalized to a broad class of
nonlinear functions, using a more general class of transforms. Simu-
lations are performed to evaluate the accuracy of the asymptotics in
relatively small samples.

2. LEAST SQUARES AND THE GAUSSIAN CRLB

[6] examined(3) when γ = 0. The least squares procedure was
defined and analyzed imposing only weak conditions on{εt} . In
particular, Gaussianity and whiteness are not needed for the param-
eter estimators to satisfy a central limit theorem, which depends on
{εt} only through its spectral densityf (ω) at 0 frequency. The
derivation of the central limit theorem is complicated by the fact that
(3) hasthree sinusoidal terms that ‘interfere’ with each other, at fre-
quencies−a/T, 0 anda/T. In [7] it is shown thatT 1/2 (âT − a) is
asymptotically normal with mean0 and variance of the form

48πf (0)

A2

{
ξ cos2 ψ + ζ sin2 ψ

}
,

whereξ andζ depend only ona andψ = φ+ a/2. Here we rewrite
the model as

Xt = ν+α
{
e−γt/T cos (at/T )− c

}
+β

{
e−γt/T sin (at/T )− s

}
+εt,

whereν = µ− αc− βs and

c = T−1
T−1∑

t=0

e−γt/T cos (at/T ) , s = T−1
T−1∑

t=0

e−γt/T sin (at/T ) .
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We thus minimize with respect toν, α, β anda,

S (ν, α, β, a, γ) =

T−1∑

t=0

[
Xt − ν − α

{
e−γt/T cos (at/T )− c

}

−β
{
e−γt/T sin (at/T )− s

}]2
. (4)

Under Gaussian assumptions on{εt} , the log-likelihood is

l = −
T

2
log

(
2πσ2)− 1

2σ2
S (ν, α, β, a, γ) ,

and so the least squares estimators ofν, α, β, a andγ are also the
Gaussian maximum likelihood estimators. Now for fixeda and
γ, S is minimized with respect toν, α and β when ν = X =
T−1 ∑T−1

t=0 Xt and
[
α
β

]
=

[
D11 D12

D12 D22

]−1 [
C1

C2

]

where
[
C1

C2

]
=

[ ∑T−1
t=0

(
Xt −X

)
e−γt/T cos (at/T )∑T−1

t=0

(
Xt −X

)
e−γt/T sin (at/T )

]
,




D11

D12

D22



 =





∑T−1
t=0 e−2γt/T cos2 (at/T )− Tc2∑T−1

t=0 e−2γt/T cos (at/T ) sin (at/T )− Tsc∑T−1
t=0 e−2γt/T sin2 (at/T )− Ts2





The least squares procedure is then the same as maximizing

P (a, γ) =
[
C1 C2

] [ D11 D12

D12 D22

]−1 [
C1

C2

]
.

Note that the elements ofD may be asymptotically approximated by
applying(8) to z = −2γ andz = −2γ + 2ja. P (a, γ) can also
be made to look more like a periodogram by using a Lomb-Scargle
[8, 9] type trick, replacinge−γt/T cos (at/T + φ) in (3) by

e−γ(t−τ)/T cos (a (t− τ) /T + φ) ,

recalculating the above and finding aτ that forcesD12 to be0. The
details are fairly simple and will not be given here. Indeed, in light
of comments made in [10], computingτ and using the modified for-
mulae might cause numerical instability.

Gaussian (asymptotic) Cramér-Rao bounds and the asymptotic
distribution of the estimators ofa andγ are quite complicated, but
simplified by using the original model(3) . The log-likelihoodl is
then given by

l = −
T

2
log

(
2πσ2)− 1

2σ2
VT (Θ) , (5)

whereΘ =
[
µ A φ a γ

]′
and

VT (Θ) =

T−1∑

t=0

{
Xt − µ−Ae−γt/T cos (at/T + φ)

}2

(6)

The (asymptotic) Craḿer-Rao bounds are computed in the appendix,
and are given by the diagonal elements ofT−1σ2Ω−1. In fact, these
are also the asymptotic variances in the central limit theorem even
under non-Gaussian and colored noise assumptions: LetΘ̂T be the
minimizer of VT (Θ) with respect toΘ. Then under the same as-
sumptions as in [6],̂ΘT converges almost surely to0 asT → ∞,

and the distribution ofT 1/2
(
Θ̂T −Θ

)
converges asT → ∞ to the

normal with mean0 and variance2πf (0)Ω−1. The fixed-frequency
case has been discussed in [3, 11, 2].

3. FOURIER COEFFICIENT ESTIMATION TECHNIQUE

Let

Yk =

T−1∑

t=0

Xte
−j2πkt/T , Uk =

T−1∑

t=0

εte
−j2πkt/T .

Then, withδij denoting Kronecker’s delta,Yk is given by

Tµδ0k+D
1− e−γ+ja

1− e−(γ−ja+2πjk)/T
+D∗ 1− e−γ−ja

1− e−(γ+ja+2πjk)/T
+Uk,

whereD = Aejφ/2. The major complication in implementing
a Fourier coefficient method, which does not occur in the fixed-
frequency case, is that the term above involvingD∗ is not insignif-
icant compared with the term involvingD. As in [4], suppose that
a = 2π (n+ δ) , whereδ ∈ (−1/2, 1/2) . Then, althoughn is
unknown, it may be shown that, ifn > 0,

argmax1≤k≤⌊(T−1)/2⌋ |Yk|
2 → n,

almost surely asT → ∞, and may thus be used to estimaten.
If |δ| = 1/2, the limit points are the set{n− 1, n, n+ 1} , but
this will not matter, for the same reason as in [7]. Assume first that
a > 3π. Then fork = −1, 0, 1 andn ≥ 2,

Yn+k = D
1− e−γ+2πjδ

1− e−(γ−2πjδ+2πjk)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ+4πjk)/T
+Un+k.

As in [4], solving the equations

Yn+1 = D
1− e−γ+2πjδ

1− e−(γ−2πjδ+2πj)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ+4πj)/T

Yn = D
1− e−γ+2πjδ

1− e−(γ−2πjδ)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ)/T

yields one set of estimators ofD, γ andδ, since the equations above
represent four (real) equations in four (real) unknowns. Solving

Yn−1 = D
1− e−γ+2πjδ

1− e−(γ−2πjδ−2πj)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ−4πj)/T

Yn = D
1− e−γ+2πjδ

1− e−(γ−2πjδ−2πj)/T
+D∗ 1− e−γ−2πjδ

1− e−(γ+2πjδ−4πj)/T

gives another. There appear to be no closed-form formulae for solv-
ing the equations, or choosing between the two sets of solutions,
even if asymptotic versions of the equations are used. Moreover,
whena ≤ 3π, Y0 cannot be used, as it involvesµ, and is also real.
ThusY1 andY2 need to be used whena < 5π.

3.1. A special case:a = 0

Whena = φ = 0, we have

Yk = Tµδ0k +A
1− e−γ

1− e−(γ+2πjk)/T
+ Uk.

We may thus estimateγ by solving

Y1 = A
1− e−γ

1− e−(γ+2πj)/T
,

which reduces to

Re (Y1)

Im (Y1)
=

Re

(
1−e−(γ−j2π)/T

|1−e−(γ+j2π)/T |2

)

Im

(
1−e−(γ−j2π)/T

|1−e−(γ+j2π)/T |2

) =
1− e−γ/T cos (2π/T )

e−γ/T sin (2π/T )
,
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for which the solution is

γ = γ̂T = T log

(
cos (2π/T )−

Re (Y1)

Im (Y1)
sin (2π/T )

)

∼ −2πRe (Y1) / Im (Y1) .

The estimator̂γT is remarkably simple, and certainly much faster to
compute than the nonlinear least squares estimator, found by mini-
mizing with respect toµ,A andγ,

T−1∑

t=0

{
Xt − µ−Ae−γt/T

}2

,

or equivalently by maximizing with respect toγ
{∑T−1

t=0

(
Xt −X

)
e−γt/T

}2

∑T−1
t=0 e−2γt/T − T−1

(∑T−1
t=0 e−γt/T

)2

4. GENERALIZATION

The above suggests an estimation procedure for ‘low frequency’
nonlinear regression problems. Suppose we wish to fit

Xt = µ+ βf (γt/T ) + εt, t = 0, 1, . . . , T − 1

where{εt} is ‘noise’ andf is known. Let{gk (x)} be a family of
functions whose domains are[0, 1], and put

Yk =

T−1∑

t=0

Xtgk (t/T )

= µ

T−1∑

t=0

gk (t/T ) + β

T−1∑

t=0

gk (t/T ) f (γt/T ) +

T−1∑

t=0

εtgk (t/T ) .

As long as{gk (x)} is suitably well-behaved,

var

{

T−1/2
T−1∑

t=0

εtgk (t/T )

}

→ 2πf (0)

∫ 1

0

g2k (x) dx.

Thus, at least in probability asT → ∞,

T−1Yk → µ

∫ 1

0

gk (x) dx+ β

∫ 1

0

gk (x) f (γx) dx

= µGk + βHk (γ) ,

say. For fixedγ, we might thus estimateµ andβ by solving the
above equation fork = 0, 1, viz.

[
µ
β

]
=

[
G0 H0 (γ)
G1 H1 (γ)

]−1 [
T−1Y0

T−1Y1

]
,

and thus estimateγ by solving forγ

T−1Y2 =
[
G2 H2 (γ)

] [ G0 H0 (γ)
G1 H1 (γ)

]−1 [
T−1Y0

T−1Y1

]

= T−1G2 {H1 (γ)Y0 −H0 (γ)Y1}+H2 (γ) (G0Y1 −G1Y0)

G0H1 (γ)−G1H0 (γ)
,

i.e. by finding zeros of

κ (γ) = (G0Y1 −G1Y0)H2 (γ) + (G2Y0 −G0Y2)H1 (γ) (7)

+ (G1Y2 −G2Y1)H0 (γ) .

For example, supposef (x) = e−x, and

gk (x) =






1 ; k = 0
cos (ax) ; k = 1
sin (ax) ; k = 2.

Then

Gk =






1 ; k = 0
sin a /a ; k = 1

(1− cos a) /a ; k = 2

and

H0 (γ) =
(
1− e−γ) /γ

H1 (γ) =
(
γ − γ cos a e−γ + a sin a e−γ) /

(
a2 + γ2)

H2 (γ) =
(
a− a cos a e−γ − γ sin a e−γ) /

(
a2 + γ2)

In the special case wherea = 2nπ, n an integer,Gk = δ0k,

H0 (γ) =
(
1− e−γ) /γ

H1 (γ) = γ
(
1− e−γ) /

(
4n2π2 + γ2)

H2 (γ) = 2nπ
(
1− e−γ) /

(
4n2π2 + γ2)

and so

κ (γ) = (γY1 − 2nπY2)
(
1− e−γ) /

(
4n2π2 + γ2) .

The estimator̂γT of γ is thus2nπY2/Y1, agreeing with the formula
in section 3.1 for the casen = 1. Unlessa is of the form given,
zeros ofκ (γ) have to be found by search or some iterative pro-
cedure. In the general case,γ̂T converges almost surely toγ, and
T 1/2 (γ̂T − γ) is asymptotically normal with mean0 and variance

2πf (0)
c′ (γ0) Ωc (γ0)

A2λ2 (γ0)
,

where

λ (γ) = −
d

dγ
H2 (γ)

+
[
G2 H2 (γ)

] [ G0 H0 (γ)
G1 H1 (γ)

]−1
[

d
dγ
H0 (γ)

d
dγ
H1 (γ)

]

c′ (γ0) =

[
−
[
G2 H2 (γ)

] [ G0 H0 (γ)
G1 H1 (γ)

]−1

1

]

andΩ is the3 × 3 matrix with (j, k)th entry
∫ 1

0
gj (x) gk (x) dx.

Whena = 2nπ, n an integer,

λ (γ) = −
d

dγ
H2 (γ) +

H2 (γ)

H1 (γ)

d

dγ
H1 (γ)

Ω =




1 0 0
0 1/2 0
0 0 1/2





c′ (γ0) =
[

0 −H2(γ)
H1(γ)

1
]
,

and so the asymptotic variance is

πf (0)
1 +

{
H2(γ)
H1(γ)

}2

{
− d

dγ
H2 (γ) +

H2(γ)
H1(γ)

d
dγ
H1 (γ)

}2 .
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5. SIMULATIONS

Only a few results for thea = 0 case are reported. Figure 1 shows
that the theoretical and simulated, least squares and Fourier esti-
mates are all in close agreement. Of interest is the fact that the mean
square errors initially decrease asγ increases, but then increase, the
least squares estimates showing superiority at low and high values
of γ. Figures 2 and 3 show that there is a threshold effect for fixedγ
with decreasing SNR. Below threshold, the theoretical and simulat-
ed mean square errors agree, while the least squares estimates again
eventually show superiority with decreasing SNR. There were5000
replications for each combination of parameters, and the noise was
simulated Gaussian and white.

γ
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Theoretical Asymptotic Variance Fourier technique

Fig 1. MSE for fixedσ as function ofγ
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Fig 2. MSE for fixedγ as a function ofσ

σ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

log MSE

-10

-8

-6

-4

-2

0

2

4
µ = 1, b = 1, γ = 1, T = 1000

Least Squares Estimates
Fourier Estimates
Theoretical Asymptotic Variance Least Squares
Theoretical Asymptotic Variance Fourier technique

Fig 3. MSE for fixedγ as a function ofσ

6. APPENDIX

With the log-likelihoodl defined by(5) , andVT (Θ) by (6) , the
information matrixIT may be shown to satisfy

TI−1
T →

[
2
(
σ2

)2
0

0 σ2Ω−1

]
,

whereΩ is the symmetric5× 5 matrix with entries given by

Ω11 = 1,Ω12 = Re I0,1,1,Ω13 = −A Im I0,1,1,

Ω14 = −A Im I1,1,1,Ω15 = −ARe I1,1,1,

Ω22 =
1

2
(I0,2,0 +Re I0,2,2) ,Ω23 = −

A

2
Im I0,2,1,

Ω24 = −
A

2
Im I1,2,1,Ω25 = −

A

2
(I1,2,0 +Re I1,2,2) ,

Ω33 =
A2

2
(I0,2,0 − Re I0,2,2) ,Ω34 =

A2

2
(I1,2,0 − Re I1,2,2) ,

Ω35 =
A2

2
Im I1,2,2,Ω44 =

A2

2
(I2,2,0 − Re I2,2,2) ,

Ω45 =
A2

2
Im I2,2,2,Ω55 =

A2

2
(I2,2,0 − Re I2,2,2)

where

Ik,n,m =

∫ 1

0

xke−nγx+jm(ax+φ)dx.

To see this, note, for example, that asT → ∞,

T−1 ∂2l

∂µ∂A
= −

1

σ2

1

T

T−1∑

t=0

e−γt/T cos (at/T + φ)

= −
1

σ2

∫ 1

0

e−γx cos (ax+ φ) dx+O
(
T−1) .

Ω may be computed exactly using the result that fork = 0, 1, . . .
and complexz,

∫ 1

0

xkezxdx =
dk

dzk

∫ 1

0

ezxdx =
dk

dzk
ez − 1

z
. (8)

7. CONCLUSIONS

Techniques have been proposed for estimating the parameters in ex-
ponentially damped sinusoids when the damping has not been com-
pleted by the end of the time period, and the number of periods of
the sinusoid is fixed as the sample size increases. This enables the
asymptotic behavior of the estimation procedures to be evaluated
without restrictive distributional assumptions being made. Gener-
alisation has been suggested, and simulations reported for the case
of a noisy pure real exponential.

Excluded from this paper, for reasons of space, are the asymp-
totic properties of the low-frequency Fourier coefficient method, and
a computationally efficient implementation. Moreover, many of the
ideas are applicable to the complex signal case, with some modifi-
cation due to, for example, the fact that interference is only between
the zero and positive frequency components. As well, the purely
exponential case in not as straightforward as there are more param-
eters. Extension to the multicomponent case is also of interest, and
will be the subject of further research.
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