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ABSTRACT

Estimating the power spectrum of a wide-sense stationary stochas-
tic process is a core component of several signal processing tasks.
Distributed spectrum sensing problems naturally emerge in cases
where measurements of different realizations of a stochastic process
are collected at multiple spatial locations. This paper describes a
distributed power spectrum sensing scheme for stochastic processes
which are well represented by an autoregressive (AR) process. The
sensing model comprises a network of scattered low-end sensors
which transmit randomly filtered, one bit quantized power measure-
ments to a fusion center. The problem of AR power spectrum estima-
tion from such binary power measurements is cast as a non-convex
optimization problem, and an alternating minimization algorithm is
proposed to obtain a stationary point. Simulations showcase the ef-
fectiveness of this scheme when the AR parametrization is valid.

1. INTRODUCTION

In several modern signal processing applications (e.g., cognitive ra-
dio sensing, radio astronomy), it is desirable to perform power spec-
trum (PS) estimation from compressed measurements drawn from
the underlying wide-sense stationary (WSS) stochastic process. Non-
parametric methods for PS estimation from compressed analog mea-
surements were developed in [1, 2]. These results were extended
to the distributed sensing setting in [3] where a non-parametric ap-
proach was adopted to reconstruct power spectra from one-bit com-
pressed measurements. These methods are well suited for cases
when there is little prior knowledge about the structure of the un-
derlying WSS process. However, if it is known apriori that the pro-
cess admits a parametric representation, then this information can
be exploited for developing parametric PS estimation methods with
improved estimation performance - see [4, 5] for a moving average
(MA) parametrization in the context of [3]. Here we consider an
autoregressive (AR) parametrization instead.

AR power spectrum (PS) estimation from analog measurements
is a classic signal processing problem with many applications in geo-
physics, radar, sonar, radio astronomy, oceanography and speech
processing, see [6] and references therein. Traditional AR PS es-
timation is a two-step process, where a non-parametric estimate of
the autocorrelation is used to construct a system of linear equations
that determine the AR model parameters. In contrast, we consider
the problem of AR PS estimation in a distributed sensing scenario,
where we employ a network of low-end sensors, each of which draws
samples from the underlying WSS process, filters them using a ran-
dom broadband filter, averages the power at the filter’s output and
then compresses the result to one bit. The single bit power measure-
ments are then transmitted to a fusion center (FC), which aims to
reconstruct the ambient PS. To the best of our knowledge, this is the
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first time that the problem of AR PS estimation from a small num-
ber of one-bit power measurements has been considered. Exploiting
the underlying parametric structure and other pertinent properties of
autocorrelation sequences, it is shown that problem of AR PS es-
timation can be formulated as a non-convex optimization problem,
which appears hard to solve to global optimality in polynomial-time.
Instead, the conditionally decomposable structure of the problem
formulation is utilized to develop a simple alternating minimization
algorithm for obtaining high quality sub-optimal solutions, and con-
vergence to a stationary point of the original problem is established.
Simulations indicate the effectiveness of the proposed scheme.

2. SYSTEM MODEL

We consider a network sensing scenario (first described in [3]), where
M distributed, low-end sensors transmit randomly filtered, single
bit quantized power measurements to a FC. Every sensor m ac-
quires samples of x(n) in the form of the data sample vector x

(i)
m =

[xm(i), xm(i− 1), · · · , xm(i−K + 1)]T ∈ CK , (where i denotes
the sampling instance). Furthermore, each sensor is equipped with
an FIR filter with a broadband impulse response gm ∈ CK which
is generated independently and pseudo-randomly, with each element
being drawn from the following uniform distribution defined on a set
of 4 complex symbols

gm(n) =

{
∼ U({1 + j, 1− j,−1 + j,−1− j}) : n ∈ [0,K − 1]

0 : otherwise
(1)

where U(S) denotes the uniform probability mass function defined
over the finite set S. Using gm, sensor m obtains random linear
projections of x

(i)
m of the form z

(i)
m = gH

mx
(i)
m . The average power

of the random linear projections at each sensor is defined as,

ρm := E[|z(i)m |2] = E[|gH
mx(i)

m |2] = gH
mRxgm (2)

where Rx = E[x
(i)
m x

(i)H
m ] ∈ CK×K is the Toeplitz-Hermitian au-

tocorrelation matrix of x
(i)
m and is given by

Rx =


rx(0) rx(1) · · · rx(K − 1)
rx(−1) rx(0) · · · rx(K − 2)

...
...

. . .
...

rx(−K + 1) rx(−K + 2) · · · rx(0)

 (3)

Each sensor obtains soft estimates of ρm by a simple sample aver-
aging operation defined as

ρ(N)
m :=

1

N

N∑
n=1

|zm(n)|2 (4)

Finally, each power estimate ρ(N)
m is compared to a single, predeter-

mined threshold t. If ρ(N)
m ≥ t, the sensor transmits a bit bm = 1 to

the FC, otherwise, it sends bm = −1. Thus, each transmitted power
measurement bit can be expressed as

bm = sign(ρ(N)
m − t) (5)

4293978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



where sign(u) = 1 if u ≥ 0 and −1 otherwise ∀u ∈ R. Assuming
certain ergodic mixing conditions hold [7, p. 171], we have that
limN→∞ ρ

(N)
m = ρm, i.e., sample averages converge to ensemble

averages, which in turn corresponds to
bm = sign(gH

mRxgm − t) (6)
Thus, on receipt of a bit bm = 1 (or bm = −1) from sensor m, the
FC infers that the inequality gH

mRxgm ≥ t (or gH
mRxgm < t) is

satisfied. The task of the FC is to reconstruct the ambient PS from
the bit measurements {bm}Mm=1.

3. PROBLEM FORMULATION

We seek to formulate the problem of PS reconstruction from binary
power measurements as an optimization problem which takes into
account all pertinent prior available information so as to reduce the
under-determinacy of our estimation setup (cf. the binary measure-
ments).

First, note that since Rx is Toeplitz-Hermitian, it can be ex-
pressed as Rx =

∑K−1
k=−(K−1) rx(k)ΘK

k , where ΘK
k ∈ RK×K

is a elementary Toeplitz matrix with ones on the kth diagonal and
zeros elsewhere (by our notation, k = 0 corresponds to the main
diagonal, k > 0 correspond to the super-diagonals and k < 0
are the sub-diagonals). Exploiting this structure, the average power
ρm = gH

mRxgm can be expressed as

gH
mRxgm = gH

m

(
K−1∑

k=−(K−1)

rx(k)ΘK
k

)
gm (7a)

=

K−1∑
k=−(K−1)

gH
mΘK

k gm︸ ︷︷ ︸
cm(k)

rx(k) (7b)

= qT
mrx (7c)

where cm(k) represents the kth lag of the deterministic autocorre-
lation sequence of the mth broadband filter with impulse response
gm, and in the last step we have defined the vectors

qm : = [cm(0), 2 Re{cm(1)}, · · · , 2 Re{cm(K − 1)},

2 Im{cm(1)}, · · · , 2 Im{cm(K − 1)}]T ∈ R2K−1

rx : = [rx(0), 2 Re{rx(1)}, · · · , 2 Re{rx(K − 1)},

2 Im{rx(1)}, · · · , 2 Im{rx(K − 1)}]T ∈ R2K−1

(8)

From (6) and (7c), we have that each measurement bit bm corre-
sponds to the following linear inequality in rx.

bm(qT
mrx − t) ≥ 0, ∀m ∈M (9)

Additionally, the fact that the autocorrelation matrix Rx associated
with any autocorrelation vector rx of any order must be positive
semi-definite, can be exploited. This property ensures the non-negativity
of the PS ∀ω ∈ [0, 2π]. However, since we employ a finite parametriza-
tion of the autocorrelation sequence, the windowed PS estimate ob-
tained from the discrete-time Fourier Transform (DTFT) of rx is
not necessarily non-negative at all frequencies. In spite of this, it
was demonstrated in [3] that incorporating the non-negativity of the
windowed PS estimate as a constraint improves estimation quality
by reducing the under-determinacy of the problem setup. This con-
straint can be represented as Frx ≥ 0, where Frx is the discrete
NF -point PS estimate, F := F̃W, F̃ ∈ CNF×(2K−1) is the phase
shifted discrete Fourier transform (DFT) matrix, and

W :=

0K−1 JK−1 −jJK−1

1 0T
K−1 0T

K−1

0K−1 IK−1 jIK−1

 (10)

where 0K−1 is a vector of K − 1 zeros, IK−1 is the K − 1 identity
matrix, and JK−1 is the K − 1 anti-identity matrix. It has already
been established [3, Appendix C] that Frx ≥ 0 =⇒ Rx � 0, thus
the latter constraint is redundant.

Finally, we exploit the fact that x(n) admits an AR represen-
tation. The second-order statistics of an AR process of order p are
parametrized by the Yule-Walker equations (YWEs) [8], which are
given by

rx(l) +

p∑
k=1

α(k)rx(l − k) = δ(l), ∀ l ∈ Z+ (11)

where α = [α(1), · · · , α(p)]T ∈ Cp are the AR parameters and Z+

is the set of all non-negative integers. The AR parameters correspond
to the coefficients of the minimum-phase polynomial Ap(z) = 1 +∑p

k=1 α(k)z−k and the parametric form of the PS associated with
the AR process is given by

Sx(ejω) =
1

|Ap(ejω)|2 =
1

|1 +
p∑

k=1

α(k)e−jωk|2
(12)

If the true autocorrelation of the AR process were known, then one
could have formed a square system of p + 1 linear equations in
α obtained from (11) by taking l = 0 : p. Since the autocorre-
lation matrix is positive definite if and only if the AR parameters
are minimum-phase [9, p. 228], it follows that this system of linear
equations can be uniquely solved for α, which also corresponds to
the true minimum-phase solution. In practice when the true autocor-
relations are unknown, the traditional two-step approach uses sample
autocorrelation estimates obtained from the WSS process to solve
the YWEs for α. The sample autocorrelation matrix in that case can
also be shown to be positive definite under mild conditions [8, p. 93],
and hence the YWEs again admit a unique solution. Using sample
autocorrelation estimates to solve the YWEs can also be interpreted
as solving an approximate Maximum-Likelihood estimation prob-
lem for α [10, p.196], which yields the true AR parameters when
the sample size is large. Hence, the sample autocorrelations lags in
the range [−p, p] constitute a sufficient statistic for estimating α.

Note that sample autocorrelation estimates of rx are not avail-
able in our setup since our problem involves estimation from a finite
number of bits, and not samples of the WSS process. An estimate of
the window of 2p − 1 autocorrelation lags obtained from a few bits
is not guaranteed to be a sufficient statistic for estimating α. Thus,
we propose to estimate rx and α jointly. In order to make our prob-
lem less under-determined, we use the information contained in the
higher autocorrelation lags. Assuming K ≥ p, we form the follow-
ing overdetermined system of K bilinear equations in rx and α.

rx(0) rx(−1) · · · rx(−p)
rx(1) rx(0) · · · rx(−p+ 1)

...
...

. . .
...

rx(p) rx(p− 1) · · · rx(0)
...

...
. . .

...
rx(K − 1) rx(K − 2) · · · rx(K − p− 1)




1

α(1)
...

α(p)

 =


1
0
...
0


(13)

Denoting R̃x ∈ CK×(p+1) as the matrix defined in (13), α̃ :=
[1;α]T ∈ Cp+1 and eK

1 as the first canonical basis vector in RK ,
we can compactly express (13) as

R̃xα̃ = eK
1 (14)

which we refer to as the extended Yule Walker equations for an AR
process. In order to impose AR structure on rx, we propose to use
the following formulation
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min.
rx,α

‖R̃xα̃− eK
1 ‖22 (15a)

s.t. bm(qT
mrx − t) ≥ 0, ∀m ∈M (15b)

Frx ≥ 0 (15c)
Note that the problem is non-convex since the cost function is the
composition of a convex function with a bilinear function in rx and
α. Hence, it is unlikely that all instances of (15) can be solved to
global optimality in polynomial time. In the next section, we de-
scribe an alternating minimization (AM) algorithm for obtaining ap-
proximate solutions of (15).

4. ALTERNATING MINIMIZATION

Although problem (15) is non-convex, if either of the variables rx or
α is fixed, the resulting subproblem is convex in the other variable.
This suggests that rx and α can be updated in an alternating fashion,
which results in a simple AM algorithm consisting of the following
steps.

1. Initialization: First, we compute a solution of the problem
find rx (16a)

s.t. bm(qT
mrx − t) ≥ 0, ∀m ∈M (16b)

Frx ≥ 0 (16c)
which is a Linear Programming (LP) feasibility problem. The
solution of (16) corresponds to a truncated K-lag autocorre-
lation sequence that is consistent with the inequalities corre-
sponding to the bit measurements {bm}Mm=1, which is then
used to initialize the algorithm.

2. α Update: When rx is fixed, the update for α is a Least
Squares problem which can be represented as
‖R̃xα̃−eK

1 ‖22 = ‖R̄xα+ρ−eK
1 ‖22 = ‖R̄xα+ ρ̃‖22 (17)

where ρ ∈ CK is the first column of R̃x, R̄x ∈ CK×p is
obtained by deleting ρ from R̃x and ρ̃ = ρ − eK

1 . The
closed form solution of (17) is given by

α = −(R̄H
x R̄x + εIK)−1(R̄H

x ρ̃) (18)
where ε > 0 is an extra regularization parameter which guards
against ill-conditioning of R̄x.

3. rx Update: When α is fixed, the update for rx can be cast
as a Quadratic Programming (QP) problem. This is shown
by expressing the cost function (15a) in terms of rx. Define
the matrix EK

p+1 := [eK
1 , · · · , eK

p+1], whose columns are the

first (p+ 1) canonical basis vectors in RK . Then, we have

R̃xα̃ = RT
x EK

p+1α̃ (19a)

=

(
K−1∑

k=−(K−1)

rx(k)ΘK
−k

)
EK

p+1α̃ (19b)

=

(
rx(0)Θ0 +

K−1∑
k=1

Re{rx(k)}(ΘK
k + ΘK

−k︸ ︷︷ ︸
ΦK

k

)

+

K−1∑
k=1

Im{rx(k)}(jΘK
−k − jΘK

k︸ ︷︷ ︸
ΨK

k

)

)
EK

p+1α̃︸ ︷︷ ︸
γ

(19c)

= rx(0)γ +

K−1∑
k=1

Re{rx(k)}ΦK
k γ +

K−1∑
k=1

Im{rx(k)}ΨK
k γ

(19d)

= [γ,ΦK
1 γ, · · · ,ΦK

K−1γ,Ψ
K
1 γ, · · · ,ΨK

K−1γ]︸ ︷︷ ︸
Π

rx

(19e)

= Πrx (19f)

where Π ∈ CK×2K−1. Overall, we have a problem of the
form

min.
rx

‖Πrx − eK
1 ‖22 (20a)

s.t. bm(qT
mrx − t) ≥ 0, ∀m ∈M (20b)

Frx ≥ 0 (20c)
which is a QP problem in rx, and can be efficiently solved via
convex programming.

The overall algorithm can be summarized as follows.

Algorithm 1 : AM for AR PS Estimation

Initialization: Solve (16) to obtain r
(0)
x . Set k := 0.

Repeat

• Fix r
(k)
x . Update α(k+1) according to (18).

• Fix α(k+1). Update r
(k+1)
x by solving the QP problem (20).

• Compute cost value v(k+1) = ‖R̃(k+1)
x α̃(k+1) − eK

1 ‖22
• Set k := k + 1.

Until Improvement in cost function < tolerance factor in the last
10 iterations OR specified no. of iterations exceeded.

Since the update step for each variable is conditionally optimal given
the other variable, the algorithm produces a monotonically non-increasing
cost sequence. Moreover, we have the following proposition.

Proposition 1 Every limit point of Algorithm 1 is a stationary point
of (15).

Proof 1 In [11], it is proven that every limit point of AM is a station-
ary point of the original problem, provided that the cost function of
the original problem is continuously differentiable, each subproblem
has a solution, and the constraint set corresponding to each variable
block is closed and convex . Obviously, the first two conditions hold
in our case. Regarding the final condition, the constraint set of rx
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Fig. 1: Mean Normalized spectra for a complex AR(3) model

is a convex polyhedron, which is closed, while α ∈ Cp+1, which is
also closed and convex.

Once an estimate of α 1 is obtained from the algorithm, it can be
plugged into (12) to generate an estimate of the AR PS.

5. NUMERICAL RESULTS

For the purpose of benchmarking our proposed AM algorithm, we
consider the method of solving (16) followed by a single of step of
fitting AR model parameters according to (18). This two-step ap-
proach corresponds to the traditional AR estimation method in our
setup. The LP feasibility problem (16) and the QP problem (20)
were modeled using YALMIP [12] and solved using the solver Se-
dumi [13]. In all experiments, the maximum iteration counter of the
AM algorithm was set to 50 iterations (each iteration consisting of 2
alternating updates) and the exit tolerance factor was set to 10−5. In
order to qualitatively evaluate the performance of the methods with
regard to the quality of the PS estimates generated, we selected the
Normalized Mean Square Error (NMSE) as a performance criterion,
which is defined as

NMSE = E

[
‖Sx − Ŝx‖22
‖Sx‖22

]
(21)

where Sx is the true PS and Ŝx is the estimated PS, with both spec-
tra normalized by their peak values. The expectation is taken with
respect to the randomness of the signal and the broadband filters.

We now present an illustrative example showcasing the effec-
tiveness of our approach. A complex AR(3) model was used to gen-
erate a WSS stochastic process, and a sensing scenario was consid-
ered with 100 sensors, K = 25 and threshold t empirically tuned to
select 40 sensors to transmit bm = 1 to the FC. Knowledge of the
true model order is assumed apriori. Both methods were initialized
from the same instance of the LP feasibility problem. The averaged
results over 400 Monte-Carlo trials are depicted in Figure 1, with
each PS estimate normalized by its peak value. The non-parametric
LP initial estimate (black), obtained by taking theNF point Discrete
Fourier Transform (DFT) correctly estimates the peak of true AR
PS, but the follow up AR fitting procedure (green) does not improve
the estimation performance (in fact the spectral lobe widens). The

1Although we established convergence to a stationary point of (15), there
is no guarantee that the AR parameter estimates obtained are minimum-
phase, since the solution of the extended YWEs is not guaranteed to be
minimum-phase in general.
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Fig. 2: NMSE vs No. of sensors above threshold for AR(5) models

parametric AR estimate (blue), obtained from the AM algorithm, ex-
hibits the best estimation performance. Note that the quality of the
spectral estimate is very satisfactory considering that only 100 bits
(roughly equivalent to 6 floats in IEEE 16-bit precision standard)
were used. Hence, even though the AM algorithm is incapable of
solving (15) exactly, it generates high quality approximate solutions,
as evidenced from the figure. We also plotted the non-parametric
estimate obtained by taking the DFT of the autocorrelation vector
returned by the AM algorithm (in magenta). Ripples appear in the
spectral estimate since we only estimate a finite window of the auto-
correlation sequence, which degrades its overall quality.

A more comprehensive simulation is presented in Figure 2, where
we considered a sensing scenario with M = 100 sensors, set K =
50 and tuned the threshold t to vary the number of sensors reporting
above threshold. The spectral NMSE was computed for 30 randomly
drawn AR(5) models, with the NMSE for each value of t being av-
eraged out over 100 Monte-Carlo trials for each AR model. Prior
knowledge of the true model order was again assumed. Both meth-
ods were again initialized from the solution of the same instance
of the LP feasibility problem. Again, the superior performance of
the AM algorithm is noted, with the parametric AR estimate (blue)
exhibiting lowest spectral NMSE. The one step AR fitting method
is much worse-off in comparison. Extensive simulations across a
range of model orders and sensing scenarios revealed that the AM
algorithm always delivers the best performance, thus providing sup-
porting evidence of its approximation quality.

6. CONCLUSIONS

A network sensing scenario was considered, consisting of scattered
low-end sensors transmitting randomly filtered, one-bit quantized
power measurements to a FC. Under the assumption that the under-
lying stochastic process can be parametrized by an autoregressive
time series, the problem of estimating the ambient AR power spec-
trum from binary measurements was formulated as a non-convex
optimization problem, which is hard to solve exactly in polynomial-
time. Instead, the conditionally decomposable structure of the prob-
lem formulation was exploited to develop an alternating minimiza-
tion algorithm, with guaranteed convergence to a stationary point of
the original problem. The performance of the proposed algorithm
was compared against the traditional AR estimation method based
on obtaining a feasible autocorrelation estimate followed by a sin-
gle step of fitting AR model parameters. Simulations revealed the
superior performance of the AM algorithm with regard to spectral
NMSE, even though it only yields approximate solutions.
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