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ABSTRACT

Phase retrieval has recently attracted renewed interest. It is
revisited here through a new approach based on nonconvex
quadratically constrained quadratic programming (QCQP).A
least-squares (LS) formulation is adopted, and a recently de-
veloped non-convex QCQP approximation technique called
feasible point pursuit (FPP)is tailored to obtain a new LS-
FPP phase retrieval algorithm. The Cramér-Rao bound (CRB)
is also derived for phase retrieval under additive white Gaus-
sian noise. We demonstrate through simulations that the LS-
FPP method outperforms the prior art and its mean square
error approaches the CRB.

Index Terms— Phase retrieval, quadratically constrained
quadratic programming (QCQP), semidefinite programming
(SDP), feasible point pursuit (FPP), Cramér-Rao bound
(CRB).

1. INTRODUCTION

Phase retrieval (PR) is a fundamental problem in many dif-
ferent areas of science, e.g., crystallography [1], diffraction
imaging [2] and microscopy [3], where it is easier to mea-
sure the magnitude than the phase. Specifically, PR seeks to
recover an unknown complex-valued signal (up to a global
phase factor) or real-valued signal (up to a sign ambiguity)
from its magnitude measurements of the form

yi = |aHi x|2 + ni, i = 1, · · · ,M (1)

where| · | is the magnitude of a complex number,(·)H is the
conjugate transpose,ai ∈ C

N is a known measurement vec-
tor andni denotes additive white Gaussian noise with vari-
anceσ2

n.
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Early works for PR were mainly based on alternating opti-
mization. Among them, Gerchberg-Saxton [4] and Fienup [5]
are the most well-known and widely used methods in prac-
tice, where the unknownx is iteratively estimated by impos-
ing Fourier and real-space magnitude constraints. However,
the alternating optimization approach can converge to a local
minimum, and often fails to recover to the true solution. Re-
cently, an alternative based on semidefinite relaxation (SDR),
referred to asPhaseLift[6], has been developed for PR. In-
stead of estimatingx directly, PhaseLift tries to find a rank-1
matrix X = xxH that satisfies the set of linear equalities
yi = trace(AiX), ∀i ∈ {1, · · · ,M} where trace(·) stands
for the trace operator andAi = aia

H
i , and then picks the

principal eigenvector ofX as the estimate ofx. It has been
shown in [7] that ifM ∼ O(N logN) i.i.d. Gaussian mea-
surements are used, PhaseLift can accurately recoverx with
high probability. However, in the presence of noise, the con-
straints above are at best approximately satisfied, so thereis
no guarantee that PhaseLift will yield a rank-1 solution [8].
Another semidefinite programming based algorithm isPhase-
Cut [9], which takes a similar approach as PhaseLift but it es-
timates the phase ofyi first. Since PhaseCut can be read as
the classicalMaxCutproblem in networks, it allows fast SDR
algorithms developed for MaxCut to be applied to PhaseCut.

More recently, a new approach namedWirtinger Flow
(WF) [10] which relies on a smart initialization followed by
relatively simple first-order refinement has been proposed.
Although it has been theoretically proved that when a suf-
ficiently large number of i.i.d. Gaussian measurements are
employed, WF can yield the desired solution with high prob-
ability, reliable recovery cannot be guaranteed if the number
of measurements is small or when the measurement vectors
are not random - mainly because the principal eigenvector
used for initialization is not a good approximation ofx in
such cases.

In this paper, we present a new method for PR from mea-
surements of type (1). This method, which we callLS-FPP,
is obtained using a non-convex quadratically constrained
quadratic programming (QCQP) formulation ofleast-squares
(LS)PR, and an approximation technique calledfeasible point
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pursuit (FPP)that was recently introduced in [11]. LS-FPP
is designed for i.i.d. Gaussian measurement errors, where
LS is equivalent to maximum likelihood, resulting in opti-
mal estimates that have excellent statistical properties.The
performance of LS-FPP is evaluated against state-of-the-art
algorithms and the general Cramér-Rao bound (CRB) for PR
from magnitude measurements in additive Gaussian noise,
which is also derived here. Derivations and additional results
can be found in the journal version [12], which also includes
another algorithm for a different measurement model.

2. PROPOSED ALGORITHM

The LS formulation of PR has been recently considered in
[10], but the WF approach does not always work well, as we
will show in our simulations in Section 4. This is not surpris-
ing, of course, since we are dealing with an NP-hard prob-
lem. Our contribution here is to recast LS PR as a non-convex
quadratic-plus-linear problem, and then approximate it using
FPP. As we will demonstrate, our approach gives consistently
better approximation results, especially in challenging scenar-
ios, at the cost of additional computational complexity.

The LS formulation for PR is [10]

min
x

M
∑

i=1

(yi − xHAix)
2. (2)

Define

wi = yi − xHAix, ∀i (3)

which leads to

P0







min
w,x

||w||2
2

s. t. xHAix+ wi = yi, ∀i

wherew = [w1 · · · wM ]T . Let ei be theith column of
IM whereIM denotes aM × M identity matrix, such that
wi = eTi w. Then the constraints inP0 become

xHAix+ eTi w = yi (4)

which can be rewritten as

xHAix+ eTi w ≤ yi (5a)

xHAix+ eTi w ≥ yi. (5b)

It is clear that the constraints in (5b) are non-convex, so
P0 belongs to a class of non-convex QCQP problems, which
is NP-hard in its general form. To approximately solveP0,
we follow [11] to deal with (5b) using successive convex ap-
proximation. SinceAi is positive semidefinite with only one
positive eigenvalue, for anyz andx, we have

(x− z)HAi(x− z) ≥ 0 (6)

which, after expanding the left-hand side of (6), yields

xHAix ≥ 2Re{zHAix} − zHAiz (7)

whereRe{·} takes the real part of its argument. Following
the rationale in [11], we replace (5b) by

2Re{zHAix}+ eTi w + si ≥ yi + zHAiz (8)

wheresi ≥ 0 is a slack variable. This leads to the following
formulation:

P1



































min
x,w,s

||w||2 + λ

M
∑

i=1

si

s. t. 2Re{zHAix} + eTi w + si ≥ yi + zHAiz

xHAix+ eTi w ≤ yi,

si ≥ 0, ∀i.

wheres = [s1 · · · sM ]T andλ is the regularization parameter
that balances the objective function and slack penalty term.
Starting from an initialz, we obtain(x,w, s) iteratively by
solving a sequence of problems of typeP1. Since the cost
function inP1 is fixed throughout the iterations, and the so-
lution of thekth iteration is also feasible for the(k + 1)th
iteration, it follows that the optimal cost sequence generated
this way will be non-increasing, and since it is bounded from
below it is guaranteed to converge. The steps for LS-FPP are
summarized inAlgorithm 1 .

Algorithm 1 LS-FPP Algorithm for Phase Retrieval
1: function x̂ = LS-FPP(A,y, λ, z)
2: repeat
3: x̂← solution ofP1

4: z = x̂

5: until a stopping criterion on the cost function ofP1

is satisfied
6: end function

Remark: The problem inP1 is convex and can be solved
via interior point methods [13]-[14]. The worst-case com-
plexity of solvingP1 is O

(

(N + 3M)3.5
)

. Moreover, few
outer iterations of LS-FPP are usually needed, so that the
overall complexity is often manageable for moderateN .

3. CRAMÉR-RAO BOUND

Balan [15, 16] has derived the Fisher Information Matrix
(FIM) for the model in (1), and noted in [16] that it is singu-
lar. Attributing this to the lack of global phase identifiability,
he proposed using side information aboutx to compute the
CRB. Identifiability neither implies nor is implied by a fi-
nite FIM [17], so we make no such assumption, and use
the pseudoinverse instead, as detailed later. In the case of
real x, Balan’s result is valid only for real measurement
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vectors. Balan also derived [18] the FIM for white Gaus-
sian noise addedprior to taking the magnitude square, i.e.,
yi = |aHi x + ni|2, which is different from our model in (1).
We also note [19], where the CRB has been derived for a 2-D
phase retrieval model with 2-D Fourier measurements.

The following theorem presents a closed-form expression
for the general CRB for complex-valuedx under white Gaus-
sian noise.

Theorem 3.1 For x ∈ CN , the CRB for the PR model in(1)
is

CRBc = trace
(

F†
c

)

(9)

where(·)† represents the pseudo-inverse and the FIM is given
by

Fc =
4

σ2
n

GcG
T
c (10)

with

Gc =

[

Re{A1x} · · · Re{AMx}
Im{A1x} · · · Im{AMx}

]

. (11)

Here, Im{·} denotes the imaginary part of its argument. It
is worth mentioning thatFc is always singular with rank-1
deficiency. Therefore, we replace the inverse ofFc by its
pseudo-inverse to generate the CRB. It has been pointed out in
[20]-[22] thattrace(F†

c) is a valid lower bound which is often
attainable in practice and thus predictive of optimal estimator
performance [21]. Also note that, whenx is real-valued, the
corresponding CRB can be viewed as a special case of the
complex-valued one, see the following Theorem 3.2.

Theorem 3.2 For x ∈ RN , the CRB for the PR model in(1)
is

CRBr = trace
(

F−1

r

)

(12)

where(·)−1 denotes the inverse and the FIM is given by

Fr =
4

σ2
n

GrG
T
r (13)

with

Gr =
[

Re{A1}x · · · Re{AM}x
]

. (14)

We expect a reduced bound when the number of measure-
ments is increased (keeping the signal-to-noise ratio (SNR)
fixed). The following result confirms this.

Proposition 3.3 For givenx and fixedσn, the CRBs for both
complex- and real-valuedx decrease as more measurements
are made available:

CRBc(A(:, 1 : M + 1)) ≤ CRBc(A(:, 1 : M))

CRBr(A(:, 1 : M + 1)) ≤ CRBr(A(:, 1 : M)) (15)

whereA(:, ℓ : r) is (Matlab notation for) the submatrix ofA
comprising columns fromℓ to r inclusive.
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Fig. 1. Signal recovery ofx by LS-FPP.

4. SIMULATION RESULTS

In this section, we compare the performance of LS-FPP,
PhaseLift, PhaseCut and WF algorithms for PR. LS-FPP
is initialized by the output of PhaseLift, and the stopping
criterion is ||zk − x̂||2

2
≤ 10−5 or a maximum number of

iterations, set to 10. The SNR is defined as

SNR=

∑M

i=1
|aHi x|4

Mσ2
n

.

Furthermore, the signalx is fixed throughout all Monte-
Carlo trials, and chosen as a uniformly sampled version of
exp((j0.4π − 0.3)t), t ∈ [0, 10] comprisingN = 32 sam-
ples. For illustration purposes, we remove the global phase
ambiguity after signal recovery.

To begin, let us illustrate the recovery performance of LS-
FPP by means of example, where we setN = 32, M =
5N = 160 and SNR = 20 dB. The measurement vectors
{ai}Mi=1

are generated from a complex normal distribution.
It is shown in Fig. 1 that our scheme can accurately recover
x.

We now compare the performance in terms of mean
square error (MSE) and probability of resolution for all meth-
ods, as a function of SNR, using 50 Monte-Carlo trials. The
signal is considered to be resolved if||x̂− x||2 ≤ 0.1, other-
wise we declare an outage. The CRB in Theorem 3.1 is also
included as a benchmark. Fig. 2(a) depicts the MSE results
for Gaussian measurements whenN = 32 andM = 160,
from which we can observe that the LS-FPP achieves the best
performance and outperforms WF, PhaseLift and PhaseCut
when SNR is higher than 10 dB. The relatively large MSE
of WF is mainly caused by occasional outages, as can be
verified from Fig. 2(b), where the probabilities of resolution
for WF, PhaseCut and PhaseLift are around 95%, 98% and
60%, respectively, at high SNR. We also include a curve ‘WF
without outages’ to show the performance of WF after dis-
carding trials with outage. Similar results can also be found

4290



0 10 20 30 40 50 60
−50

−40

−30

−20

−10

0

10

SNR (dB)

M
S

E
 (

dB
)

 

 

LS−FPP
PhaseCut
PhaseLift
WF
WF without outages
CRB

(a) MSE versus SNR.
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Fig. 2. Performance comparison with Gaussian measure-
ments.

in Fig. 3, where 4 masked Fourier measurements are used.
Here, the masked Fourier matrix has the form

AH =









FD1

FD2

FD3

FD4









(16)

whereF is a N × N Fourier matrix andDi is a N × N
diagonal masking matrix with its diagonal entries generated
by b1b2, wherebyb1 andb2 are independent and distributed
as [10]

b1 =



















1 with prob. 0.25

−1 with prob. 0.25

−j with prob. 0.25

j with prob. 0.25

(17)
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Fig. 3. Performance comparison with masked Fourier mea-
surements.

and

b2 =

{√
2/2 with prob. 0.8
√
3 with prob. 0.2.

(18)

5. CONCLUSION

The PR problem was revisited through the LS-FPP approach,
which builds upon recent work on feasible point pursuit for
non-convex QCQP problems. LS-FPP is based on a LS cri-
terion that is tailored for white Gaussian noise added after
taking the magnitude square of the linear measurements. Fur-
thermore, the relevant CRB was also derived and studied.
Simulation results suggest that LS-FPP outperforms the state-
of-the-art and its MSE comes very close to the CRB in the
high SNR regime. The main drawback of LS-FPP is its rel-
atively high computational complexity, especially compared
to WF. Hence, finding ways of bringing down the complexity
(e.g., possibly using variations of the initialization of the WF
scheme) will be the subject of future work.
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