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ABSTRACT Early works for PR were mainly based on alternating opti-
mization. Among them, Gerchberg-Saxton [4] and Fienup [5]
ae the most well-known and widely used methods in prac-
fice, where the unknown is iteratively estimated by impos-
ing Fourier and real-space magnitude constraints. However
Hwe alternating optimization approach can converge toal loc
minimum, and often fails to recover to the true solution. Re-
ently, an alternative based on semidefinite relaxatiorRSD
eferred to ashaselift[6], has been developed for PR. In-
§_tead of estimating directly, PhaselLift tries to find a rank-1

FPP method outperforms the prior art and its mean Squalrgatrix X = ax? that satisfies the set of linear equalities
error approaches the CRB. y; = tracdA;X),Vi € {1,---, M} where tracé) stands
for the trace operator and; = a;al’, and then picks the

Index Terms— Phase retrieval, quadratically constrainedprincipal eigenvector oK as the estimate of. It has been
quadratic programming (QCQP), semidefinite programminghown in [7] that if A/ ~ O(N log N) i.i.d. Gaussian mea-
(SDP), feasible point pursuit (FPP), Cramér-Rao boundurements are used, PhaselLift can accurately recoveth
(CRB). high probability. However, in the presence of noise, the-con

straints above are at best approximately satisfied, so there
1. INTRODUCTION no guarantee that PhaseLift will yield a rank-1 solution [8]
Another semidefinite programming based algorithiRlgse-
Phase retrieval (PR) is a fundamental problem in many difCut[9], which takes a similar approach as PhaselLift but it es-
ferent areas of science, e.g., crystallography [1], difitm timates the phase of; first. Since PhaseCut can be read as
imaging [2] and microscopy [3], where it is easier to mea-the classicaMaxCutproblem in networks, it allows fast SDR
sure the magnitude than the phase. Specifically, PR seeksatgorithms developed for MaxCut to be applied to PhaseCut.
recover an unknown complex-valued signal (up to a global
phase factor) or real-valued signal (up to a sign ambiguityz
from its magnitude measurements of the form

Phase retrieval has recently attracted renewed interes. |
revisited here through a new approach based on nonconv
guadratically constrained quadratic programming (QC@P).

least-squares (LS) formulation is adopted, and a receetly d
veloped non-convex QCQP approximation technique calle
feasible point pursuit (FPPis tailored to obtain a new LS-

FPP phase retrieval algorithm. The Cramér-Rao bound (CR
is also derived for phase retrieval under additive white $sau
sian noise. We demonstrate through simulations that the L

More recently, a new approach namedrtinger Flow

WF) [10] which relies on a smart initialization followed by
relatively simple first-order refinement has been proposed.

(1) Although it has been theoretically proved that when a suf-
ficiently large number of i.i.d. Gaussian measurements are

employed, WF can yield the desired solution with high prob-

ability, reliable recovery cannot be guaranteed if the nemb

of measurements is small or when the measurement vectors

are not random - mainly because the principal eigenvector

used for initialization is not a good approximation %fin
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where| - | is the magnitude of a complex numbgp? is the
conjugate transpose,; € C” is a known measurement vec-
tor andn; denotes additive white Gaussian noise with vari-
anceo?.
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pursuit (FPP)that was recently introduced in [11]. LS-FPP which, after expanding the left-hand side of (6), yields

is designed for i.i.d. Gaussian measurement errors, where . . "

LS is equivalent to maximum likelihood, resulting in opti- x"Aix > 2Re{z" Aix} — 2" Az (7
mal estimates that have excellent statistical properfidse
performance of LS-FPP is evaluated against state-of4the-
algorithms and the general Cramér-Rao bound (CRB) for P
from magnitude measurements in additive Gaussian noise, 2Re{z A;x} +eTw+s; >y + 27 Az (8)
which is also derived here. Derivations and additionalltssu

can be found in the journal version [12], which also includeswvheres; > 0 is a slack variable. This leads to the following

whereRe{-} takes the real part of its argument. Following
e rationale in [11], we replace (5b) by

another algorithm for a different measurement model. formulation:
M
2. PROPOSED ALGORITHM min lw|>+A) s
X,W,S =

The LS formulation of PR has been recently considered in p,
[10], but the WF approach does not always work well, as we " .’
will show in our simulations in Section 4. This is not surpris xTAix+e;w <y,

ing, of course, since we are dealing with an NP-hard prob- s; > 0, Vi.

lem. Our contribution here is to recast LS PR as a non-convex

quadratic-plus-linear problem, and then approximateiitgis Wheres = [s; --- s)/]” and) is the regularization parameter
FPP. As we will demonstrate, our approach gives consistentthat balances the objective function and slack penalty.term
better approximation results, especially in challengoenar- ~ Starting from an initiakz, we obtain(x, w, s) iteratively by

s.t. 2Re{z"A;x} + e;—TW +5; >y +2zT Az

ios, at the cost of additional computational complexity. solving a sequence of problems of typg. Since the cost
The LS formulation for PR is [10] function inP; is fixed throughout the iterations, and the so-
lution of the kth iteration is also feasible for thg + 1)th
oM . ) iteration, it follows that the optimal cost sequence geteeta
m Z(yz‘ —x7TAX)". (2) " this way will be non-increasing, and since it is bounded from
=t below it is guaranteed to converge. The steps for LS-FPP are
Define summarized irAlgorithm 1.
w; =y — xTAx, Vi (3)  Algorithm 1 LS-FPP Algorithm for Phase Retrieval
which leads to ; funitalgga)tc LS-FPPA. Y. \.2)
min  ||w]2 3 X <—Asolution ofP,
< WX 4: Z—=X
s.t. xTAx+w, =y, Vi 5 until a stopping criterion on the cost function Bf
is satisfied
wherew = [w; --- wy]T. Lete; be theith column of 6: end function
I, wherel,,; denotes a\/ x M identity matrix, such that
w; = el'w. Then the constraints iRy become Remark The problem irP; is convex and can be solved
- T via interior point methods [13]-[14]. The worst-case com-
xTAix+e;w=y; (4)  plexity of solving; is O((N + 3M)*5). Moreover, few

outer iterations of LS-FPP are usually needed, so that the

which can be rewritten as o
overall complexity is often manageable for moderste

xTA;x + eiTW < (5a)
At eTw > i (5b) 3. CRAMER-RAO BOUND

It is clear that the constraints in (5b) are non-convex, sd3@lan [15, 16] has derived the Fisher Information Matrix
P, belongs to a class of non-convex QCQP problems, whickFIM) for the model in (1), and noted in [16] that it is singu-
is NP-hard in its general form. To approximately solg  lar. Attributing this to the lack of global phase identifiétyi
we follow [11] to deal with (5b) using successive convex ap-h€ proposed using side information abauto compute the
proximation. SinceA; is positive semidefinite with only one CRB. Identifiability neither implies nor is implied by a fi-

the pseudoinverse instead, as detailed later. In the case of
(x—2z)TAi(x—2)>0 (6) real x, Balan’s result is valid only for real measurement
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vectors. Balan also derived [18] the FIM for white Gaus-
sian noise addegrior to taking the magnitude square, i.e.,
yi = |affx + n;|?, which is different from our model in (1).
We also note [19], where the CRB has been derived for a 2-D
phase retrieval model with 2-D Fourier measurements.
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The following theorem presents a closed-form expression [ R R
for the general CRB for complex-valugdunder white Gaus-
sian noise. ]
Theorem 3.1 For x € C¥, the CRB for the PR model {i1) f OSWW
is 2 “, ]
CRB, = trace (FZ) (9) ) 1: S
where(-)T represents the pseudo-inverse and the FIM is given ‘
by Fig. 1. Signal recovery ok by LS-FPP.
4
F.= U—QGchT (10)
" 4. SIMULATION RESULTS
with
o _ Re{A;x} --- Re{Ayx} 1) In this _section, we compare the pe_rformance of LS-FPP,
©= m{A;x} -~ Im{Ayx}|" PhaselLift, PhaseCut and WF algorithms for PR. LS-FPP

is initialized by the output of PhaseLift, and the stopping
Here,Im{-} denotes the imaginary part of its argument. ltcriterion is||zx — %||3 < 1075 or a maximum number of
is worth mentioning tha¥'. is always singular with rank-1 jterations, set to 10. The SNR is defined as
deficiency. Therefore, we replace the inverseFpfby its
pseudo-inverse to generate the CRB. It has been pointed out i
[20]-[22] thattrace(F) is a valid lower bound which is often Mo?
attainable in practice and thus predictive of optimal eaton
performance [21]. Also note that, whenis real-valued, the Furthermore, the signat is fixed throughout all Monte-
corresponding CRB can be viewed as a special case of tiearlo trials, and chosen as a uniformly sampled version of
complex-valued one, see the following Theorem 3.2. exp((j0.4m — 0.3)t),t € [0,10] comprisingN = 32 sam-

N . ples. For illustration purposes, we remove the global phase
Theorem 3.2 For x € RY, the CRB for the PR model {{1) ambiguity after signal recovery.
is

To begin, let us illustrate the recovery performance of LS-

CRB, = trace (F; ") (12) FPP by means of example, where we 8ét= 32, M =
5N = 160 and SNR = 20 dB. The measurement vectors
where(-)~" denotes the inverse and the FIM is givenby (4,1 are generated from a complex normal distribution.

4 It is shown in Fig. 1 that our scheme can accurately recover
F, = —QGTG,T (13) «.
' " We now compare the performance in terms of mean
with square error (MSE) and probability of resolution for all met
G, = [Re{Al}x Re{AM}x] ' (14) ods, as a function of SNR, using 50 Monte-Carlo trials. The

signal is considered to be resolved|# — x||» < 0.1, other-

We expect a reduced bound when the number of measurerise we declare an outage. The CRB in Theorem 3.1 is also
ments is increased (keeping the signal-to-noise ratio (SNRncluded as a benchmark. Fig. 2(a) depicts the MSE results
fixed). The following result confirms this. for Gaussian measurements wh¥n= 32 and M = 160,
Proposition 3.3 For givenx and fixeds,,, the CRBS for both from which we can observe that the LS-FPP _achieves the best
complex- and real-values decrease as more measurementgP"formance and outperforms WF, PhaseLift and PhaseCut
are made available: when S_NR is higher than 10 dB. The relatively large MSE

of WF is mainly caused by occasional outages, as can be

CRB.(A(:,1: M +1)) <CRB.(A(:,1: M)) verified from Fig. 2(b), where the probabilities of resodutti

CRB,(A(:;,1: M +1)) < CRB,(A(;,1: M)) (15) for WF, PhaseCut and PhaseLift are around 95%, 98% and

60%, respectively, at high SNR. We also include a curve ‘WF
whereA(:, £ : r) is (Matlab notation for) the submatrix 8 without outages’ to show the performance of WF after dis-
comprising columns fromito r inclusive. carding trials with outage. Similar results can also be ébun
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Fig. 2. Performance comparison with Gaussian measurd-ig. 3. Performance comparison with masked Fourier mea-

ments. surements.
and
in Fig. 3, where 4 masked Fourier measurements are used. V2/2  with prob. 0.8 (18)
. . y =
Here, the masked Fourier matrix has the form V3 with prob. 0.2
FD, 5. CONCLUSION
H FD,
A" = (16) .
FD;3 The PR problem was revisited through the LS-FPP approach,
FD4 which builds upon recent work on feasible point pursuit for

non-convex QCQP problems. LS-FPP is based on a LS cri-

whereF is a N x N Fourier matrix andD; is a N x N terion that is tailored for white Gaussian noise added after
diagonal masking matrix with its diagonal entries generate taking the magnitude square of the linear measurements. Fur
by b1b2, wherebyb; andb, are independent and distributed thermore, the relevant CRB was also derived and studied.

as [10]

1 with prob. 0.25
—1 with prob. 0.25
—7 with prob. 0.25

j with prob. 0.25

Simulation results suggest that LS-FPP outperforms the-sta
of-the-art and its MSE comes very close to the CRB in the
high SNR regime. The main drawback of LS-FPP is its rel-
atively high computational complexity, especially congzhr

(17)  to WF. Hence, finding ways of bringing down the complexity
(e.g., possibly using variations of the initialization betWF
scheme) will be the subject of future work.
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