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ABSTRACT

An ordered set of data sequences is given where, broadly, the
data sequences are categorized into normal and abnormal ones. The
normal sequences consist of random variables generated according
to a known distribution, while there exist uncertainties about the dis-
tributions of the abnormal sequences. Moreover, the generations of
different sequences are correlated, induced by an underlying physi-
cal coupling, where a sequence being normal or abnormal depends
on the status of the rest of the sequences according to a known de-
pendency kernel. The objective is to design the quickest sequential
and data-adaptive sampling procedure for identifying one abnormal
sequence. This quickest search strategy strikes a balance between
the quality and agility of the search process, as two opposing figures
of merit. This paper characterizes the sampling and search strat-
egy. Motivated by the fact that full characterization of such strate-
gies can become computationally prohibitive, this paper also pro-
poses asymptotically optimal sampling and search strategies that are
computationally efficient.

Index Terms— Quickest search, correlated sequences, stopping
time, model uncertainty.

1. INTRODUCTION
Advances in data acquisition and information processing have led
to the generation of very large data sets in many domains, and this
trend is expected to grow well into the future. This trend increases
the significance of efficient searching algorithms for identifying de-
sired or undesired features in data. Quickest search over data sets
aims to perform a real-time and data-adaptive search over a set of
data streams in order to identify one exhibiting a desired feature. It
strikes a balance between the quality and agility of search, as two
opposing figures of merit. Quickest search arises in many appli-
cation domains such as detection of chemical or biological attacks,
identification of free spectrum bands for opportunistic wireless trans-
mission, and monitoring of computer networks for faults or security
breaches, to name a few, [1].

Quickest search over data streams is closely related to the se-
quential testing problems introduced by Wald for distinguishing the
distribution of one data stream [2], and further extended to address
quickest detection in [3] and [4]. When the given sequence is dis-
tributed according to one of two known distributions, the optimal test
is characterized by finding an optimal stopping time for the sampling
procedure, which collects data until a sufficiently confident decision
about the underlying distribution can be formed. The extension to
multihypothesis testing and unknown distributions is studied in [5],
[6] and [7].

This paper focuses on linear search in which data streams are
ordered and examined sequentially. Linear search arises in appli-
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cations where data streams are available in a specific order such as
production line quality control [8], scanning text, audio, and video to
detect a specific feature [9], and blind search by robots [10]. Quick-
est linear search is characterized by an information-gathering proce-
dure in which, besides the stopping time of the sampling procedure,
a switching rule determines when to discard one sequence and take
samples from the next one. The problem of quickest search was first
formalized in [11] as an extension of quickest detection, in which
it is assumed that multiple data streams are available such that each
one is generated according to one of the two known distributions in-
dependently of each other. The decision goal of quickest search is
to identify one sequence generated according to the desired distri-
bution in the quickest fashion. Other variations of search problems
with different assumptions on settings and objectives are also studied
in [12], [13] and [14].

In this paper, quickest linear search over multiple data streams
is studied, and it has two major distinctions with the aforementioned
studies. First, the generation of the data streams follows a certain de-
pendency kernel. This is motivated by the fact that often in networks
the observations and actions of the constituent agents are coupled,
based on which the measurements collected from different agents
exhibit certain correlation structures. Secondly, the data streams are,
broadly, categorized into normal and abnormal ones, where only the
underlying statistical behavior of the normal data streams is known,
while that of the abnormal sequences is known only imperfectly.
Specifically, the abnormal distribution is one of the distributions
from a finite set of distributions. The number of abnormal sequences
is a random variable, and the objective is to identify one of them.
This problem under the setting that the distribution of the abnormal
sequences is fully known is studied in [15].

Other studies of quickest search problems under different set-
tings and objectives include the scanning problem, in which a finite
number of sequences are available and only one sequence is gener-
ated according to the desired statistical feature which makes it fun-
damentally different from this paper. In the scanning problems stud-
ied in [16], [17] and [18] both distributions are known, while the
studies in [14], [19] and [20] consider unknown discrete alphabet
distributions for both normal and desired distributions. In another
direction, the set of available sequences contains multiple sequences
with the desired distribution and the goal is to identify all of them.
Specifically, [21] and [22] investigate anomaly detection with known
distributions and [23] analyzes the setting with unknown continuous
distributions for normal and outlier processes. Finally, [24] studies
outlier detection with unknown discrete distributions under the set-
ting that possibly multiple outlier sequences are available and the
objective is to detect all of them. The major distinction of this paper
from all the aforementioned studies is that these studies, irrespective
of their discrepancies in settings and objectives, conform in the fact
that different sequences are generated independently of each other.
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2. PROBLEM FORMULATION

2.1. Data Model

Consider an ordered set of n sequences {X 1, . . . ,Xn} where each
sequence consists of independent and identically distributed (i.i.d.)
real-valued observations X i 4

= {Xi
1, X

i
2, . . . }. Each sequence

obeys the following hypothesis model:

H0 : Xi
j ∼ F0, j = 1, 2, . . .

H1 : Xi
j ∼ Fθ, j = 1, 2, . . . , θ ∈ {θ1, . . . , θM}

, (1)

where F0 and Fθk denote cumulative distribution functions (cdfs).
The distribution F0 captures the statistical behavior of the normal se-
quences and the distribution of the abnormal sequences is not known
perfectly but is assumed to be one of the M possible distributions
{Fθk}

M
k=1. We further assume that probability density functions

(pdfs) corresponding to F0 and Fθk exist and are well-behaved and
denoted by f0 and fθk , respectively. Induced by the underlying
physical coupling, the generation of sequences follows a certain de-
pendence structure, in which the prior probability of each sequence
being abnormal is controlled by the distribution of its preceding se-
quence. More specifically, if Ti denotes the true model underlying
sequence X i for i ∈ {1, . . . , n − 1}, we have the following depen-
dency kernel:

P(Ti+1 = H1 | Ti = Hj) = εj , for j ∈ {0, 1} . (2)

We also assume that the initial sequence X 1 is abnormal with prior
probability ε, i.e.,

P(T1 = H1) = ε . (3)

Additionally, we assume that an abnormal sequence is generated ac-
cording to Fθk with prior probability µk for k ∈ {1, . . . ,M}, i.e.,

P(θ = θk) = µk ,

where we have
∑M
k=1 µk = 1.

2.2. Sampling Model

The objective of the search process is to identify one abnormal se-
quence. The sampling procedure examines the sequences sequen-
tially and according to their order by taking one measurement at a
time until a sufficiently confident decision can be formed. Specifi-
cally, by denoting the index of the observed sequence and its sample
at time t ∈ N by st and Yt, respectively, we can abstract the informa-
tion accumulated sequentially by the filtration Ft

4
= σ(Y1, . . . , Yt).

The sampling process starts from the first sequence, i.e., s1 = 1,
and based on the information accumulated up to time t, i.e., Ft, the
sampling procedure takes one of the following actions:

A1) Detection: stops taking more samples and declares sequence
st to be abnormal;

A2) Observation: due to lack of sufficient confidence to make any
decision, one more sample is taken from the same sequence,
i.e., st+1 = st; or

A3) Exploration: sequence st is discarded and the sampling pro-
cedure switches to the next sequence and takes one observa-
tion from the new sequence, i.e., st+1 = st + 1.

In order to formalize the sampling procedure we define τ as the
stopping time of the procedure, which is the instance at which de-
tection action (A1) is performed. To characterize dynamic switch-
ing between observation and exploration actions we define the bi-
nary function ψ : {1, . . . , τ − 1} → {0, 1} such that at time t ∈

{1, . . . , τ − 1} if the decision is in favor of performing observation
(A2) we set ψ(t) = 0, while ψ(t) = 1 indicates a decision in favor
of exploration (A3). Hence, ∀t ∈ {1, . . . , τ − 1}

ψ(t) =

{
0 action A2

1 action A3
. (4)

A sampling strategy is completely characterized by the set Φ
4
=

{τ, ψ(1), . . . , ψ(τ − 1)}.

2.3. Problem Formulation

The optimal search procedure can be found by determining the sam-
pling strategy Φ. Two natural performance measures for evaluating
the efficiency of the sampling procedure are the quality of the final
decision, which is captured by the frequency of the erroneous deci-
sions Pe(Φ)

4
= P(Tsτ = H0), and the average delay in reaching a

decision, i.e., AD(Φ)
4
= E{τ}. There exists an inherent tension be-

tween these two measures as improving one penalizes the other one.
By integrating these two figures of merit into one cost function, the
optimal sampling strategy can be obtained as the solution to

inf
Φ

Pe(Φ) + c · AD(Φ) , (5)

where c > 0 is a constant that controls the balance between quality
and agility of the search process.

3. QUICKEST SEARCH ALGORITHM

We consider an infinite-horizon setting for the search process, in
which the process does not have to be terminated prior to a hard
deadline. In order to formalize the search process, we define πt as
the posterior probability that the sequence observed at time t is ab-
normal, i.e., πt

4
= P(Tst = H1 | Ft). It can be readily verified that

π1 =
ε
∑M
k=1 µkfθk (Y1)

ε
∑M
k=1 µkfθk (Y1) + (1− ε)f0(Y1)

, (6)

and we have the following temporal evolution for πt:

πt+1 =
πt
∑M
k=1 µ

t
kfθk (Yt+1)

πt
∑M
k=1 µ

t
kfθk (Yt+1) + (1− πt)f0(Yt+1)

1(ψ(t)=0)

+
π̄t
∑M
k=1 µ̃

t
kfθk (Yt+1)

π̄t
∑M
k=1 µ̃

t
kfθk (Yt+1) + (1− π̄t)f0(Yt+1)

1(ψ(t)=1) ,

(7)

where 1(·) denotes the indicator function, µ0
k

4
= µk, and we have

defined

π̄t
4
= (ε1 − ε0)πt + ε0 , (8)

µtk
4
= P(θ = θk|Tst = H1,Ft) (9)

=
µt−1
k fθk (Yt)∑M

m=1 µ
t−1
m fθm(Yt)

1(ψ(t−1)=0)

+
µ̃t−1
k fθk (Yt)∑M

m=1 µ̃
t−1
m fθm(Yt)

1(ψ(t−1)=1) , (10)

µ̃tk
4
=
ε1πtµ

t
k + ε0(1− πt)ηtk

ε1πt + ε0(1− πt)
, (11)

and , ηtk
4
=

(1− ε0)(1− πt)ηt−1
k + (1− ε1)πtµ

t−1
k

(1− ε0)(1− πt) + (1− ε1)πt
. (12)
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Next, in order to identify which of the three actions detection, ob-
servation, and exploration should be taken at each time t, we define
three cost functions associated with these three actions. The opti-
mal action at time t is determined by the one that yields the minimal
cost-to-go. Specifically, given the filtration Ft and the structure of
the cost function in (5), the minimal cost-to-go at time t, denoted
by G̃t(Ft), is related to the costs associated with actions {Ai}3i=1

according to

G̃t(Ft) = min
{

1− πt , c+ min
i=0,1

J̃t;i(Ft)
}
, (13)

where (1 − πt) is the cost of stopping without taking further mea-
surements and detecting the sequence st as an abnormal sequence,
and (c + J̃t;i(Ft)) denotes the cost associated with the observation
and exploration actions for i = 0 and i = 1, respectively. These cost
functions, in turn, are related to G̃t(Ft) through

J̃t;i(Ft)
4
= E

{
G̃t(Ft+1) | Ft, ψ(t) = i

}
, for i ∈ {0, 1}. (14)

From the recursive connections among πt and {µtk}Mk=1, it can be
established that they form a sufficient statistic for the cost functions
G̃t(Ft) and {J̃t;i(Ft)}1i=0, as formalized in the next lemma.

Lemma 1 The cost functions G̃t(Ft) and {J̃t;i(Ft)}1i=0 depend
on Ft only through (πt, µ

t
1, . . . , µ

t
M−1), and can be cast as func-

tions of (πt, µ
t
1, . . . , µ

t
M−1), denoted by Gt(πt, µ

t
1, . . . , µ

t
M−1)

and {Jt;i(πt, µt1, . . . , µtM−1)}1i=0.

Based on Lemma 1 and by taking into account that we are consider-
ing the infinite-horizon setting, it can be verified that the structures
of the cost functions are independent of time t, and we denote them
by G(πt, µ

t
1, . . . , µ

t
M−1) and Ji(πt, µt1, . . . , µtM−1), respectively.

Next, we characterize some properties of these cost functions, which
are instrumental in designing the optimal sampling strategy.

Lemma 2 Functions G(·) and Ji(·) are non-negative, concave
functions of π over [0, 1], and they are bounded above by 1.

Based on the Bayesian cost function defined in (5), the sampling pro-
cess terminates when the cost-to-go associated with detection falls
below those associated with exploration and observation, and the
optimal stopping time is the first instance at which such a relation-
ship holds. Based on Lemmas 1 and 2, the optimal stopping rule and
time are characterized in the following theorem.

Theorem 1 The optimal stopping time of the search process is

τ
4
= inf

{
t : πt ≥ πU

(
µt1, . . . , µ

t
M−1

)}
, (15)

where πU
(
µt1, . . . , µ

t
M−1

)
is the solution of

1−πU
(
µt1, . . . , µ

t
M−1

)
=

c+ min
i=0,1

Ji(πU
(
µt1, . . . , µ

t
M−1

)
, µt1, . . . , µ

t
M−1) . (16)

This theorem indicates that the optimal stopping rule can be simpli-
fied to comparing the posterior probability πt with a fixed threshold
at time t, which can be found as the unique solution of (16). This
threshold is time-dependent and varies over time. However, by lever-
aging the fact that the optimal decision rule has a thresholding struc-
ture, we devise an alternative decision rule that can be computed
more efficiently and is asymptotically optimal.

Next, we characterize the optimal decision rules prior to the
stopping time in order to dynamically decide between exploration

and observation actions. Based on the cost-to-go functions defined
earlier, at each time t the optimal action is the one with the smaller
associated cost, which leads to the following rule:

ψ(t) =

{
0 J0(πt, µ

t
1, . . . , µ

t
k−1) ≤ J1(πt, µ

t
1, . . . , µ

t
k−1)

1 J0(πt, µ
t
1, . . . , µ

t
k−1) > J1(πt, µ

t
1, . . . , µ

t
k−1)

.

(17)
Computing the optimal stopping time and switching rules in (15)
and (17) involves extensive dynamic programming and can become
computationally prohibitive. As a remedy, we next propose alter-
native decision rules that can incur significantly less computational
complexity and enjoy asymptotic optimality when c (the cost per
sample) tends to zero. Such asymptotic optimality, equivalently, can
be also considered optimal when the rate of erroneous detection de-
cisions tends to zero. Specifically, we define the sampling strategy
S(π∗L, π

1
U , π

2
U , . . . , π

M
U ), where we have defined

π∗L
4
=

ε0
1− ε1 + ε0

, and πkU
4
= πU

(
ek
)
, (18)

with ek ∈ RM−1 being the vector that is zero everywhere except in
its kth element which is 1. This sampling strategy discards sequence
st and switches to sequence st + 1 when πt < π∗L, i.e.,

ψ(t) =

{
1 If πt < π∗L

0 If πt ≥ π∗L
, (19)

and it terminates the sampling procedure at time t if πt ≥ π∗U , where
we have defined

π∗U
4
= πkU , when k = arg max

m∈{1,...,M}
µtm . (20)

According to this stopping rule, for the stopping time we have

τ
4
= inf

{
t : πt ≥ πkU , k = arg max

m∈{1,...,M}
µtm
}
. (21)

The following theorem proves that this sampling procedure is
asymptotically optimal.

Theorem 2 As Pe approaches zero and for every abnormal distri-
bution, the sampling strategy S(π∗L, π

1
U , π

2
U , . . . , π

M
U ) is first-order

asymptotically optimal, i.e.,

inf
Φ

Eθk
{
τ
}

= Eθk
{
τ
}(

1 + o(1)
)

=
| logPe|
D(fθk‖f0)

(
1 + o(1)

)
, (22)

where Eθk{·} denotes expected value under distribution Fθk .

Even though the threshold π∗L is not necessarily the optimal solution,
it exhibits an important property. By recalling the definition of π̄t in
(8) we observe that the condition πt < π∗L is equivalent to π̄t > πt
and, conversely, the condition πt > π∗L is equivalent to π̄t < πt.
Hence, the switching rule in (19) is equivalent to

ψ(t)
4
=

{
1 If πt < π̄t

0 If πt ≥ π̄t
. (23)

Moreover, by recalling that πt is the posterior probability that se-
quence st is an abnormal sequence and π̄t is the prior probability
that sequence st + 1 is an abnormal sequence, the switching rule
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is equivalent to following the decision that yields the best instanta-
neous chance of a correct decision. Hence, besides being asymptoti-
cally optimal, it also exhibits desirable non-asymptotic performance.
Selecting this threshold ensures that the expected time before visit-
ing the last sequence remains finite as Pe tends to zero, which is
a fundamental part of proving optimality. Similarly, the stopping
rule given in (21), while not being non-asymptotically optimal, ex-
hibits a desirable property. According to Theorem 1, the optimal
stopping rule reduces to dynamically comparing the posterior prob-
ability with a threshold, which generally varies over time. However,
under the setting that c (or equivalently Pe) tends to zero, the last
sequence under observation, i.e., sτ , is an anomalous sequence with
high probability. By taking more samples from this sequence, the
value of µtk for the true θk tends to 1 and other values diminish to
zero. This observation motivates finding the maximum value of µtk
for k ∈ {1, . . . ,M} and selecting πkU as the upper threshold, which
controls the error rate and forces it to zero as c tends to zero.

4. CONCLUSION
We have analyzed the problem of quickest sequential search for an
anomaly among a group of correlated data streams. We have as-
sumed a setting in which the normal data streams have a known
distribution, but the distribution of the abnormal stream is known
imperfectly. Also, induced by some underlying physical coupling,
the state of the sequences are correlated according to a known de-
pendency kernel. A sequential sampling strategy for identifying one
abnormal sequence has been designed for the setting in which the
abnormal distribution takes one of a finite number of possible forms.
We have shown that an asymptotically optimal decision rule reduces
to comparing the posterior probability of the sequence under obser-
vation being abnormal with specific thresholds. If it falls below the
lower threshold, which is a function of the correlation structure, then
the sequence under scrutiny should be discarded and the following
sequence should be observed next, while when it exceeds a dynami-
cally changing upper threshold, the sampling process terminates and
the last sequence observed is declared as one with an abnormal dis-
tribution.
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