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ABSTRACT

In this paper we address target detection in correlated non-Gaussian
noise. We introduce a powerful class of multivariate complex val-
ued distribution that allows us to specify flexible non-Gaussian
marginals, as well as correlation between the variables, while pre-
serving circular symmetry. For noise belonging to this class, we
study the fundamental problem of signal detection under different
settings, and develop the needed (generalized) likelihood ratio tests.
We also consider the problem of estimation of the noise parameters,
and derive the maximum likelihood formulations. We compare the
performance of the proposed methods using numerical simulations
on synthetic data, and demonstrate the importance of using both
correlations and non-Gaussiantiy.

Index Terms— Circular symmetry, non-Gaussian, copula, de-
tection.

1. INTRODUCTION

Detection of a signal corrupted by noise is a fundamental problem in
statistical signal processing [1, 2]. The basic formulation assumes a
known complex signal with a possibly unknown scaling factor, and
with various models for the noise distribution. These range from
expressive models with independent marginals [2, Chapter 10] to
correlated models that are Gaussians [2, Chapter 4], as well as hy-
brids that only allow for limited control of the correlations [3, 4] (see
details below). Our goal is to provide a unified and flexible frame-
work for detection in non-Gaussian yet correlated noise. Towards
this, we introduce a novel and powerful class of noise distributions,
and derive the associated detectors and estimators.

As a branch of electrical engineering, statistical signal process-
ing mostly deals with complex valued random variables which are
useful in modeling electromagnetic waves. A common assumption
is circular symmetry (CS), i.e. that the distribution is invariant to a
constant phase rotation [5]. In the scalar case, this simply means that
the amplitude and phase are statistically independent, and that the
phase is uniformly distributed on the unit circle. The multivariate
case is more subtle conceptually though some intuition can be ob-
tained by examining the second order statistics, where CS is equiva-
lent to properness, and dictates a zero mean and a specific covariance
structure; the multivariate scenario is also more difficult in practice,
from the constructive modeling perspective.

Consequently, the two common multivariate CS models are the
independently and identically distributed non-Gaussian (IIDNG),
which works with independent scalars, and the multivariate com-
plex normal (CN), which is characterized by second order statistics.
IIDNG models are limited in that they cannot capture dependencies
between the variables. They can be colored using a linear trans-
formation [6, 7], but this destroys their marginal properties. CN
models, on the other hand, allow us to control correlation, but as-
sume Gaussian marginals and thus cannot account for heavy tailed

signals. CNs can be extended to complex elliptical distributions
(CEDs) [3, 4], which allow for arbitrary marginals but limited cor-
relation control. For example, CEDs do not include IIDNG as a
special case. They are constructed by multiplying a CN vector with
a positive random scalar that changes their marginals. Thus, even
if the original CN has independent and identically distributed (IID)
variables, these elements will be statistically dependent after the
multiplication. Nonetheless, CEDs are commonly used in signal
detection, e.g., [8, 9, 10].

The main contribution in this paper is a new class of multivari-
ate distributions which allows for flexible parameterized marginals,
control over correlations, and also guarantees multivariate CS. We
denote this class as Para Complex Normal (PCN), and construct it as
follows. We begin with a CN vector and apply an identical element-
wise parameterized operation on the amplitudes of its elements. This
transformation provides the three promised properties, and in fact is
the only component-wise transformation that results in a multivariate
CS distribution. PCN is directly related to the recent nonparanormal
(NPN) proposal, where a similar transformation was non-parametric
[11]. PCN is also related to copulas, and in particular to the class of
Gaussian Copulas [12, 13, 14, 15, 16]. However, these frameworks
deal with real-valued random variables with no notion of CS, and are
thus designed for completely different applications.

Armed with the modeling power of PCN, we consider classical
signal detection problems. We begin with detection of a known sig-
nal in PCN noise with known statistics, and derive the associated
likelihood ratio test (LRT). Next, we extend the setting to the case
of a known signal scaled by an unknown scalar, and derive the as-
sociated Generalized likelihood ratio test (GLRT). This test requires
an expensive line search for estimating the scaling. Thus, we pro-
pose an alternative computationally efficient heuristic which shows
reasonable performance. Finally, we address the issue of unknown
PCN statistics. Following [17, 18], we assume a secondary dataset
with i.i.d. target-less PCN samples, and derive the maximum likeli-
hood (ML) estimator of the distribution parameters. The computa-
tional complexity of our numerical solution depends heavily on the
number of parameters in the PCN transformation (typically only 2-
3 parameters), but its dependence on the dimension of the vector is
negligible. We demonstrate the performance of the different estima-
tors and detectors via numerical simulations. In particular, we show
the importance of both diverging from the Gaussian assumption, as
well as allowing for correlations.

2. THE PCN DISTRIBUTION

In this section we introduce a class of complex-valued multivariate
distributions which: 1) allows for flexible marginals; 2) has a corre-
lation structure; 3) is CS. As discussed, existing frameworks satisfy
only subsets of the these three properties, and our goal is specifically
to fill this gap. We start by recalling the definition of a complex
multivariate CS distribution [19]:
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Definition 1. Let z ∈ Cp be a complex random vector of dimension
p. We say that z is (multivariate) CS if zejφ has the same distribution
as z for any real φ.

Probably the most common CS setting is the CN distribution
denoted by CN (0,Q), where the set of complex random variable
is jointly Gaussian, and parameterized by a correlation matrix Q
(note that a mean of zero follows from CS). Our proposal is to begin
with this building block and modify its marginals. This leads to the
following PCN definition:

Definition 2. Let gθ : R+ → R+ be an invertible and differen-
tiable function parametrized by the vector θ. Let Q be a positive
definite correlation matrix with unit diagonal elements. Then, a com-
plex random vector w = [w1, · · · , wp]T has a ParaComplexNormal
(PCN) distribution denoted by

w ∼ PCN g (θ,Q) .

if
z = gθ (|w|) ej∠w ∼ CN (0,Q) , (1)

where gθ(·) is applied element-wise, i.e.,

zk = gθ (|wk|) ej∠wk , k = 1, · · · , p.

An obvious consequence of this definition is that it is straight-
forward to generate synthetic PCN samples. For this purpose, one
simply generates a standard CN sample and applies g−1

θ (·) to each
marginal amplitudes. The result is clearly PCN.

As promised, the PCN distribution satisfies the required proper-
ties, as formalized in the following lemmas.

Lemma 1. If w has a PCN distribution then it is multivariate CS.

Proof. Since z is CS, zejφ ∼ z. Applying the inverse function g−1
θ

to both sides yields g−1
θ (|z|) ej(∠z+φ) ∼ g−1

θ (|z|) ej∠z. For the
left hand side, we have g−1

θ (|z|) ej(∠z+φ) = wej(∠z+φ) = wejφ.
For the right hand side, we have g−1

θ (|z|) ej∠z = w directly. Thus,
w ∼ wejφ.

Interestingly, under weak conditions (i.e., non-degeneracy), the
converse to this lemma is also true: to ensure that PCN is CS using
marginal transformations, we must use a transformation that modi-
fies only the amplitude. We formally provide and prove the result in
the journal version [20].

Lemma 2. The PCN can be designed to have arbitrary (yet identi-
cal) CS marginal distributions. Specifically, to obtain CS marginals
with magnitude CDF

Fθ(ω) = Pθ (|wk| ≤ ω)

we choose
gθ (|wk|) = F−1

Ray ◦ Fθ (|wk|)

where FRay (x) = 1− e−x
2

is the Rayleigh CDF

Proof. Having directly constructed the desired marginal CDF, we
simply need to show that our choice of gθ() results in a CN distri-
bution. CS marginals are characterized by uniform phase which is
statistically independent of the amplitude, and gθ() only involves
the magnitude. Thus, the phase and (transformed) magnitude re-
main independent, and the phase distribution is unchanged. Fθ

is always uniformely distributed (for any continuous random vari-
able) and applying the inverse Rayleigh CDF to it results in a

Rayleigh distributed magnitude. Together with the uniform and
independent phase, the distribution is CN (see, for instance, [4].
There the squared magnitude is considered, which is chi-square
distributed).

The previous lemmas show that the PCN distribution is multi-
variate CS and allows for a flexible choice of the marginal magni-
tudes. The PCN class also allows flexible control on the correlation
structure via the choice of Q. For example, by choosing Q = I,
we obtain an IIDNG distribution, and by choosing Q = 11T we
obtain a vector with identical elements. More details on the relation
between the correlation matrix of a PCN vector and the matrix Q are
provided in the journal version [20].

The density of w ∼ PCN(0,Q) can also be derived, as a func-
tion of gθ(), and will be useful in the following sections:

Lemma 3. The PDF of PCN is

fPCN (w) =
1

πp|Q|e
−z(w)HQ−1z(w)

p∏
k=1

ġθ (|wk|) gθ (|wk|)
|wk|

(2)

where z (w) = gθ (|w|) ej∠w, as defined in (1). The marginal pdfs
are identical and equal to

f (wk) =
1

π
e−|gθ(wk)|2 ġθ (|wk|) gθ (|wk|)

|wk|

and have a uniform phase independent of the magnitudes.

Proof. Due to space limitations, we only give a sketch of the
proof technique and leave the details to [20]. We use a real-
valued representation w′ =

[
wR1 , w

I
1 , ..., w

R
p , w

I
p

]T
and z′ =[

zR1 , z
I
1 , ..., z

R
p , z

I
p

]T
. Transformation from w′ to z′ is done by:

zRk =
gθ (|wk|)
|wk|

wRk , zIk =
gθ (|wk|)
|wk|

wIk. (3)

Recall that, from the transformation theorem for random variables,

f
(
w′
)

= f
(
z′
(
w′
))
|J|, Jk,` =

∂z′k
∂w′`

, k, ` = 1, ..., 2p,

where J is the Jacobian matrix of the transformation. From the or-
dering of elements in w′, J is block diagonal and each block is easy
to compute (details omitted). Combining this with (3) yields the
above PDF.

Example: We conclude this section by illustrating PCN via a spe-
cific example: PCN with complex Generalized Gaussian marginals
(GGPCN). These marginals are known to be useful in characterizing
signals in many applications, e.g. [3, 4, 10, 21]. The PDF of the
marginals is

f (wk) =
1

2π

β

σ
4
β Γ
(

2
β

)e− 1
σ2
|wk|β ,

and is parameterized by two parameters θ =
[
β σ2

]T , that relate
to shape and scale, respectively. Two well known special cases are
β = 2 which coincides with the Gaussian distribution, and β = 1
which coincides with Laplacian distribution. The distribution of the
GG magnitudes |wk| is less known, but their powers |wk|β are sim-
ply Gamma distributed. Their CDFs are goverened by the incom-
plete gamma function which is available in most scientific toolboxes.
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Thus, the function gθ , its inverse and its derivative can be easily im-
plemented. For example, a MATLAB pseudocode is

gθ (x) =

√
−log

(
1− gammainc

(
xβ

2σ2
,

2

β

))

g−1
θ (x) =

(
2σ2gammaincinv

(
1− e−x

2

,
2

β

)) 1
β

ġθ (x) =
βx

2Γ
(

2
β

)
(2σ2)

2
β

e
− xβ

2σ2
1

gθ (x)
eg

2
θ(x).

3. SIGNAL DETECTION

Having defined the multivariate CS flexible PCN distribution, we
now consider the fundamental signal detection problems in the face
of PCN noise. In this section we assume full knowledge of the
PCN distribution, and consider the unknown noise parameters that
requires estimation in the next.

3.1. Known Signal

We start with the simplest scenario where the observations are mod-
eled as

y = A0s + w, (4)
whereA0 is a real known deterministic parameter, s is a known steer-
ing vector of dimension p, and w ∼ PCN g (θ,Q) with known
gθ(), θ and Q. This formulation generalizes two classical textbook
detection problems. When gθ (|w|) = |w|, the model reduces to
a signal corrupted by colored Gaussian noise, e.g., [2, chapter 4].
When Q = I, the model reduces to a signal corrupted by indepen-
dent and identically distributed non-Gaussian noise, e.g., [2, chapter
10].

Our goal is to decide whether a signal is present or not. This
leads to a simple hypothesis test:

H0 : A = 0

H1 : A = A0.

We use the likelihood ratio test (LRT) to solve the decision problem.
This test is optimal in a sense that it is the most powerful for a given
significance level, according to Neyman-Pearson lemma [2, chapter
3]. The LRT is defined as

T (y) =
f (y;A0,H1)

f (y; 0,H0)
=
fPCN (y −A0s)

fPCN (y)
> τ, (5)

where fPCN (·) is defined in (2), and τ is chosen to fit a given false
alarm probability

Prob (T (y) > τ |H0) = α.

In this basic formulation, all the parameters are known and the dis-
tribution of the test is, in principle, straight forward. Nonetheless,
computation of the threshold can be challenging since the distribu-
tion involves non-Gaussian random variables and a non-linear trans-
formation, preventing a closed form solution.

We propose a numerical approach via simulations; generate K
IID w’s according to the PCN distribution, and define the empirical
CDF of the test as F̂T . Then, we set τ = F̂−1

T (1− α). We empha-
size that this procedure, similarly to the computation of distribution
tables, can be performed off-line before observing the vector y.

3.2. Unknown Signal Amplitude

We now consider a more realistic setting in which the amplitude of
the signal in unknown, e.g., as in [2, chapter 7]. We still assume full
knowledge of the PCN noise distribution. Using the same model of
(4), this formulation leads to a composite hypothesis test

H0 : A = 0

H1 : A 6= 0. (6)

Since A is unknown, we will use a generalized likelihood ratio test
(GLRT) which replaces the unknown A0 in (5) with its ML estimate
Â. This requires the solution of the following line-search

ÂML = arg max
A 6=0

fPCN
(
y − Âs

)
.

In applications where this search is too computationally expensive,
we propose to use a Gaussian approximation and estimate the am-
plitude using a simple weighted least squares (WLS) approach:

ÂWLS =
<
(
sHQ−1y

)
sHQ−1s

.

This estimate is also asymptotically consistent, but not efficient, in
the statistical estimation sense. Thus, it provides a reasonable trade
off between accuracy and computational complexity.

As before, the threshold τ is chosen to fit a given false alarm
probability. Importantly, even though A is missing, all the H0 pa-
rameters are known, and the distribution of the signal-free test can be
computed via simulations. However, in contrast to the known am-
plitude case, this procedure cannot be performed off-line since the
test itself depends on ÂML or ÂWLS, both of which are functions of
y. Thus, we can only perform these computations after the observa-
tions are available.

4. PARAMETER ESTIMATION

We now consider the scenario where the noise PCN distribution itself
is unknown. In this case, it is common to first estimate the param-
eters of the noise distribution, and then perform detection assuming
known (estimated) noise characteristics. To do so, we adopt a stan-
dard approach [17, 18] and assume that, in addition to the primary
data y used for detection, we have a set of secondary data with only
noise originating from the same noise distribution

wk ∼ PCN (θ,Q) , k = 1, · · ·N,

where y and wk are all statistically independent of each other. We
will use this secondary dataset to estimate {θ,Q}, which will then
be used in the detection as if they were the true parameters of the
PCN distribution. In what follows, we explain how to perform the
estimation phase.

We propose to estimate {θ,Q} given {wk}Nk=1 using the max-
imum likelihood approach. The method is known to be asymptot-
ically unbiased and efficient in the sense of minimizing the mean
squared error among all unbiased estimators. The log-likelihood of
the observations, denoted by L

(
{wk}Nk=1;θ,Q

)
, is given by the

logarithm of the PDF in (2). It can be shown that for any θ, the
maximum likelihood with respect to Q is attained by the standard
sample correlation matrix of the transformed data[

Q̂
(
{wk}Nk=1;θ

)]
ij

=
Sij (θ)√

Sii (θ)
√

Sjj (θ)
,
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Fig. 1. Detection ROC curves with known PCN noise distribution

where

S (θ) =
1

N

N∑
k=1

z (wk) zH (wk) .

Recall that z (wk) = gθ (|wk|) ej∠wk . Plugging this back into the
log-likelihood, we obtain an objective parameterized only by θ:

L̃
(
{wk}Nk=1;θ

)
= L

(
{wk}Nk=1;θ, Q̂

(
{wk}Nk=1;θ

))
.

We can now optimize over this low dimensional objective using a
simple grid search. For example, with GG-PCN marginals, we only
need to search over the values of two parameters, namely σ and β.

5. SIMULATIONS

In this section, we demonstrate the merit of the PCN noise represen-
tation using numerical simulations. More detailed and exhaustive
experiments will appear in the journal version [20].

We start with signal detection in PCN noise, where the noise dis-
tribution is known. The signal itself is a vector of dimension p = 20,
where all entries are identical and equal to 1 + j, i.e s = (1 + j)1.
The shape noise parameter is β = 1 (Laplace), while the scale pa-
rameter is σ = 1. The correlation matrix has random entries with
strong correlation, i.e most of the off diagnoal entries have real and
imagianry parts that are close to one. The true amplitude is A0 = 1.
Figure 1 shows the receiver operating characteristic (ROC) averaged
over 50 independent trials for our PCN detection test under three
different settings: PCN LRT with known amplitude; PCN GLRT
with ML estimate of the amplitude; PCN GLRT with WLS estimate
of the amplitude. We also compare to the two standard baselines:
CN LRT with known amplitude (i.e., PCN with no transformation);
standard IIDNG LRT with known amplitude (i.e. PCN with Q = I).
The advantage of our LRT PCN detector when the signal is known
is quite substantial even at false alarm rates that are far from zero.
Further, our GLRT detector is also consistently better than the base-
lines, despite being at the disadvantage where the signal amplitude
is unknown. Finally, although the performance of our WLS detector
degrades without knowledge of the amplitude and with the Gaussian

Fig. 2. Detection ROC curves for unknown PCN noise distribution.

approximation, we are still on part with the baselines that have full
knowledge of the signal.

Recall that to compute the threshold of our detector, we use a
numerical method. Thus, to complement the ROC curves, we also
examine the robustness of this computation. Using the same set-
ting, we set a false alarm probability of α = 0.05, and compute the
threshold using K = 100 trials. We then test the accuracy of the
threshold for noise variance values ranging from 0 to 15. As de-
sired, the mean false alarm rate for each noise variance is extremely
close to α = 0.05, while the standard deviation is in the [0.02, 0.03]
range, even with the small number of computations.

We now consider detection in the more challenging scenario
where the parameters of the PCN noise distribution are unknown.
As discussed, in this scenario we first estimate the parameters from
a secondary dataset with only noise, and then use these estimates for
detection, as if they were the true parameters. Figure 2 shows the
ROC curves for this scenario where the true noise distribution pa-
rameters are as before. The signal now is a vector with dimension of
p = 10, and all entries are identical and equal to 1+j. As before, our
PCN approach is compared to the CN and IID models. 200 samples
were use for the secondary dataset, whereas 100 samples were used
for detection and the computation of the ROC curves. For reference,
we also show the ROC curve for the case where the parameters of
the noise distribution are known. Clearly, estimation noise does not
noticeably influence the performance of our PCN detector, and the
advantage over the baselines is evident throughout much of the false
alarm rate range.

6. CONCLUSION

We presented PCN, a novel and powerful class of multivariate com-
plex CS distributions, and developed detection tests in the face of
noise belonging to this class. Importantly, the PCN noise distribu-
tion family allows for arbitrary CS marginals, as well as flexible con-
trol of the correlation. To the best of our knowledge, ours is the first
work to consider detection with this combined flexibility in the com-
plex CS setting that is central to signal processing. Complete proofs
and additional evaluation are provided in the journal version [20].
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