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ABSTRACT

We consider the problem of testing whether a complex-valued
vector random sequence is proper. Past work on this problem
is limited to a sequence of independent Gaussian random vec-
tors whereas we allow an arbitrary stationary vector sequence
that can be non-Gaussian. A binary hypothesis testing ap-
proach is formulated and a generalized likelihood ratio test
(GLRT) is derived using the power spectral density estimator
of an augmented sequence. An asymptotic analytical solution
for calculating the test threshold is provided. The results are
illustrated via simulations.

Index Terms— Improper complex random signals; gen-
eralized likelihood ratio test (GLRT); spectral analysis.

1. INTRODUCTION

A complex-valued random sequence is called improper if the
cross-correlation function of the sequence with its complex
conjugate is non-vanishing, else it is proper [1]. Quite often,
algorithms for complex signal processing in communications
and statistical signal processing have been derived assuming
that the complex signals are proper [1, 2, 3]. However, this
assumption of propriety is often not justified. For example,
BPSK, offset QPSK and ASK modulation based signals are
improper [1]. If the underlying signals are improper, much
can be gained in performance if they are treated as improper
[4]. If it is not known apriori whether a signal of interest is
proper or improper, this information must be obtained from its
noisy measurements. This problem has received considerable
attention in the literature [1, 5, 6, 7, 8].
Relation to Prior Work: Past work on this problem of

determination of propriety is limited to the case where the
measurements consist of a sequence of independent Gaus-
sian random vectors [1, 5, 6, 8], or independent possibly non-
Gaussian random vectors [7]. In this paper we allow an arbi-
trary stationary (i.e., correlated) vector sequence that can be
non-Gaussian.
Contributions: A binary hypothesis testing approach is

formulated and a generalized likelihood ratio test (GLRT) is
derived using the power spectral density estimator of an aug-
mented sequence. An asymptotic analytical solution for cal-
culating the test threshold is provided. The results are illus-
trated via simulations. The tests of [1, 5, 6, 8, 7] do not apply
to the case of correlated sequences since their tests are not in-
variant under changes to the correlation structure of the null

hypothesis signals which, in turn, precludes determination of
the test threshold for a specified false-alarm rate either via
simulations or analytically.

Notation: We use S � 0 and S ≻ 0 to denote that
Hermitian S is positive semi-definite and positive definite, re-
spectively. For a square matrix A, |A| and etr(A) denote
the determinant and the exponential of the trace of A, re-
spectively, i.e., etr(A) = exp(tr(A)), Bk;i:l,j:m denotes the
submatrix of the matrix Bk comprising its rows i through l
and columns j through m, Bk;ij is its ijth element, and I is
the identity matrix. The superscripts ∗, T and H denote the
complex conjugate, transpose and the Hermitian (conjugate
transpose) operations, respectively.

2. SYSTEMMODEL

A stationary complex zero-mean process {x(t)} of dimension
p is said to be proper [1] if its matrix complementary corre-
lation (covariance) function (called pseudo-correlation in [2])

R̃xx(τ) vanishes, i.e., if

R̃xx(τ) = E{x(t+ τ)xT (t)} = 0, τ = 0,±1, · · · , (1)

where x(t) = xr(t) + jxi(t), with xr(t) and xi(t) denoting
its real and imaginary components, respectively.

Define Rxx(τ) = E{x(t + τ)xH(t)}, the conven-
tional matrix correlation function. Denote the power spec-
tral density (PSD) of {x(t)} by Sx(f), where Sx(f) =
∑∞

τ=−∞
Rxx(τ)e

−j2πfτ , the Fourier transform of Rxx(τ).
Denote the complementary PSD (C-PSD) of {x(t)} by

S̃x(f), with S̃x(f) =
∑∞

τ=−∞
R̃xx(τ)e

−j2πfτ . Clearly,
for a proper process, the C-PSD vanishes.

We observe x(t) for t = 0, 1, · · · , N − 1 (N samples).
We employ multivariate spectral analysis to test if its C-PSD
vanishes. Define the augmented complex process {y(t)} and
the real-valued process {z(t)} as

y(t) =

[

x(t)
x∗(t)

]

, z(t) =

[

xr(t)
xi(t)

]

. (2)

We assume that {z(t)} satisfies Assumption 2.6.1 of [9] so
that some asymptotic results from [9] regarding PSD estima-
tors can be invoked; this assumption implies that the time se-
ries need not be Gaussian but its moments of all orders should
be finite.
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Consider the finite Fourier transform (FFT) dz(fn) of
z(t), t = 1, 2, · · · , N − 1, given by

dz(fn) :=

N−1
∑

t=0

z(t)e−j2πfnt (3)

where fn = n/N , n = 0, 1, · · · , N−1. Then the estimator of
the PSD of z(t) at frequency fn, based on the Daniell method,
is given by

Ŝz(fn) =
1

K

mt
∑

l=−mt

(

N−1dz(fn+l)d
H
z (fn+l)

)

(4)

where K = 2mt + 1 is the smoothing window size. By [9,

Theorem 7.3.3], Ŝz(fn) is asymptotically (“large” N ) dis-
tributed as WC

(

2p,K,K−1Sz(fn)
)

so long as the smooth-
ing window in (4) does not include the frequency at n = 0 or
n = N/2, whereWC

(

2p,K,K−1Sz(fn)
)

denotes the com-
plex Wishart distribution of dimension 2p, degrees of free-
dom K, and mean value Sz(fn). If a random matrix X ∼
WC (p,K,S(f)), then by [9, Sec. 4.2], E{X} = KS(f),
cov {Xjk,Xlm} = KSjl(f)S

∗
km(f), and for K ≥ p, the

probability density function (pdf) ofX is given by

fX(X) =
1

Γp(K)

1

|S(f)|K |X|K−p etr{−S−1(f)X} (5)

where the pdf (5) is defined for S(f) ≻ 0 and X � 0, and is
otherwise zero, and Γp(K) := πp(p−1)/2

∏p
j=1 Γ(K− j+1)

where Γ(n) denotes the (complete) Gamma function Γ(z) :=
∫∞

0
tz−1e−t dt.
We will confine our attention to the frequency points over

which the spectral estimators are (approximately) mutually
independent, which for the Daniell method are given by

f̃k =
(k − 1)K +mt + 1

N
, 1 ≤ k ≤ M =

⌊ N
2 −mt − 1

K

⌋

.

(6)
LetM := {f̃k : 1 ≤ k ≤ M} denote the set ofM frequency
bins as in (6) of interest. From (2) we have

y(t) = T z(t), T =

[

I jI
I −jI

]

(7)

where (2p) × (2p) T is full-rank . Hence, dy(fn) =

T dz(fn) and Ŝy(fn) = T Ŝz(fn)T H where dy(fn) =
∑N−1

t=0 y(t)e−j2πfnt and

Ŝy(fn) =
1

K

mt
∑

l=−mt

(

N−1dy(fn+l)d
H
y (fn+l)

)

. (8)

By the complex-valued counterpart of [10, Thm. 3.2.5], for
any m × p matrix A of rank m, if X ∼ WC (p,K,S(f)),

then AXAH ∼ WC

(

m,K,AS(f)AH
)

. Therefore Ŝy(fn)

is (asymptotically) distributed as WC

(

2p,K,K−1Sy(fn)
)

.

Furthermore, Ŝy(f̃k)’s for f̃k as in (6) are asymptotically mu-
tually independent complex Wishart random matrices.

If x(t) is a proper random process, then

Sy(f) =

[

Sx(f) 0

0 S∗
x(−f)

]

, (9)

else Sy(f) � 0 with no specific structure. Testing for im-
propriety of x(t) is then cast as a binary hypothesis testing
problem:

H0 : S̃x(f̃k) = 0 ∀f̃k ∈ M, x(t) is proper

H1 : S̃x(f̃k) 6≡ 0, x(t) is improper
(10)

whereH0 is the null hypothesis andH1 is the alternative.
We assume that Sy(f) ≻ 0 for any f . Otherwise, one can

add artificial proper white Gaussian noise to x(t) to achieve
Sy(f) ≻ 0.

3. PSD-BASED GLRT FOR TESTING IMPROPRIETY

In this section we derive the GLRT. We will denote the spec-

tral estimator at the k-th frequency bin f̃k (see (6), acquired

from {y(t)}N−1
t=0 , via (8), asYk. We have (

a∼ denotes asymp-
totic distribution)

Yk
a∼ WC

(

2p,K,K−1Sy(f̃k)
)

(11)

and Yks are mutually independent for k ∈ [1,M ]. The

joint probability density function (pdf) of Yk for f̃k ∈ M
under H0 is maximized w.r.t. the Hermitian matrix Sx(f̃k)

for Ŝx(f̃k) = Yk;1:p,1:p, and w.r.t. the Hermitian matrix

S∗
x(−f̃k) for Ŝ

∗
x(−f̃k) = Yk;1+p:2p,1+p:2p. Under H1, the

joint pdf of Yk for k ∈ [1,M ] is maximized w.r.t. the Her-

mitian matrix Sy(f̃k) for Ŝy(f̃k) = Yk. Then one gets the
GLRT (Y = (Yk, k ∈ M))

L :=
fY(Yk, k ∈ M|H1, Ŝy(f̃k))

fY(Yk, k ∈ M|H0, Ŝx(f̃k), Ŝ∗
x(−f̃k))

H1

R
H0

τ1 (12)

where the threshold τ1 is picked to achieve a pre-specified
probability of false alarm Pfa = P{L ≥ τ1 |H0}. This re-
quires pdf of L under H0 which is discussed in Sec. 4. Sim-
plifying, one obtains

L =
M
∏

k=1

Lk, Lk :=
|Yk;1:p,1:p|K |Yk;1+p:2p,1+p:2p|K

|Yk|K
(13)

Invariance of GLRT: Note that Lk is invariant to trans-
formation Yk → AkYkA

H
k for any nonsingular Ak ∈

C
2p×2p such that Ak = block− diag{A(1)

k ,A
(2)
k }, A(i)

k ∈
C

p×p for i = 1, 2. This observation allows us to trans-
form any Yk to Ỹk ∼ WC (2p,K, I) under H0 by choosing

A
(1)
k =

√
KS

−1/2
x (f̃k) and A

(2)
k =

√
K(S

−1/2
x (−f̃k))

∗.

Then L is invariant and transformed Ỹks now correspond
to proper i.i.d. (white) sequence x(t) which can be used to
compute the test threshold via Monte Carlo simulations. This
threshold is valid for any other PSD. However, in Sec. 4, we
offer an analytical approach.
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4. THRESHOLD SELECTION

We now turn to determination of an asymptotic expansion of
the distribution of L under H0 following [10, 11, 12], which
allows us to calculate the test threshold analytically instead of
via simulations. The main result is stated in Theorem 1.

First we need the following result:
Lemma 1 : UnderH0, E{ 1

Lh |H0}

=

∏p−1
ℓ=0 Γ

2M (K + ℓ)

ΓM
2p(K)

[

∏2p
k=1 Γ(K(1 + h)− k + 1)

]M

[

∏p
j=1 Γ(K(1 + h)− j + 1)

]2M

(14)
Proof : Using the transformation specified in Sec. 3 to ob-

tain Ỹk ∼ WC (2p,K, I) under H0 and denoting Ỹ
(1)
k =

Ỹk;1:p,1:p, Ỹ
(2)
k = Ỹk;1+p:2p,1+p:2p, we have

E{1/Lh
k |H0} =

∫ |Ỹk|Kh+K−2p

|Ỹ(1)
k |Kh|Ỹ(2)

k |Kh

× 1

Γ2p(K)
etr{−Ỹk} dỸk

=
Γ2p(K +Kh)

Γ2p(K)
E{|Ỹ′(1)

k |−Kh}E{|Ỹ′(2)
k |−Kh}, (15)

where Ỹ′
k ∼ WC (2p,K(1 + h), I), Ỹ

′(1)
k = Ỹ′

k;1:p,1:p ∼
WC (p,K(1 + h), I), Ỹ

′(2)
k = Ỹ′

k;1+p:2p,1+p:2p

∼ WC (p,K(1 + h), I), and Ỹ
′(1)
k is independent of Ỹ

′(2)
k .

Using [13, Theorem 3.8, p. 51], we have

E{|Ỹ′(1)
k |−Kh} = E

{( p
∏

l=1

(1/2)Vl

)−Kh}

(16)

where Vl ∼ χ2
2(K(1+h)−l+1 and Vl’s are mutually indepen-

dent. Since (see [10, p. 101])

E{W r} =
2rΓ((n/2) + r)

Γ((n/2))
for W ∼ χ2

n, (17)

we obtain

E{|Ỹ′(1)
k |−Kh} =

p
∏

l=1

Γ(K − p+ l)

Γ(K(1 + h)− p+ l)
(18)

= E{|Ỹ′(2)
k |−Kh}. Now using (13), (15), (18) and Γp(K) :=

πp(p−1)/2
∏p

j=1 Γ(K − j + 1), we get the desired result. �
In order to exploit Lemma 2 (stated next), we need to es-

tablish that 0 ≤ L−1 ≤ 1. SinceYk and its principal subma-
trices are ≻ 0, clearly L−1 > 0, and by Fischer’s inequality
[14, p. 478], we have |Yk| ≤ |Yk;1:p,1:p||Yk;1+p:2p,1+p:2p|
which implies L−1 ≤ 1. The following result follows from
[10, Sec. 8.2.4], [11, Sec. 8.5.1]:
Lemma 2 : Consider a random variable W (0 ≤ W ≤ 1)

with the hth moment (h = 0, 1, 2, · · · )

E{Wh} = C

(

∏b
j=1 y

yj

j
∏a

k=1 x
xk

k

)h
∏a

k=1 Γ(xk(1 + h) + ξk)
∏b

j=1 Γ(yj(1 + h) + ηj)
,

(19)
where a and b are integers,C is a constant such thatE{W 0} =

1 and
∑a

k=1 xk =
∑b

j=1 yj . Let Br(h) denote the Bernoulli
polynomial of degree r and order unity. Define

ν = −2
[
∑a

k=1 ξk − ∑b
j=1 ηj − 1

2 (a − b)
]

, ρ = 1 −
1
ν

[
∑a

k=1 x
−1
k

(

ξ2k − ξk + 1
6

)

−∑b
j=1 y

−1
j

(

η2j − ηj +
1
6

)]

,

βk = (1− ρ)xk, ǫj = (1− ρ)yj and

ωr = (−1)r+1

r(r+1)

{
∑a

k=1
Br+1(βk+ξk)

(ρxk)r
− ∑b

j=1
Br+1(ǫj+ηj)

(ρyj)r

}

.

Then with χ2
n denoting a random variable with central chi-

square distribution with n degrees of freedom (as well as the
distribution itself),

P{−2ρ ln(W ) ≤ z} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+
1

2
ω2
2

[

P{χ2
ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+
a

∑

k=1

O(x−5
k ) +

b
∑

j=1

O(y−5
j ). (20)

Comparing (19) with (14), we find the correspondence

a = 2Mp, b = 2Mp, xk = K,

ξk = 1− kmod(2p) for k = 1, 2, · · · , a,
yj = K and ηj = 1− jmod(p) for j = 1, 2, · · · , b. (21)

Comparing Lemmas 1 and 2, we further have

βk = (1− ρ)K ∀k, ǫj = (1− ρ)K ∀j. (22)

Furthermore, one has E{1/L0 |H0} = 1. Thus, Lemma 2 is
applicable with W = 1/L and parameters specified in (21).
Using these values in Lemma 2 and simplifying, one gets

ν = 2p2M, ρ = 1− p

K
, (23)

a
∑

k=1

Br+1(βk + ξk)

(ρxk)r
= M

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

(ρK)r
,

(24)
b

∑

j=1

Br+1(ǫj + ηj)

(ρyj)r
= 2M

p
∑

l=1

Br+1((1− ρ)K + 1− l)

(2ρK)r
.

(25)
Therefore, we have

ωr =
(−1)r+1M

r(r + 1)(ρK)r

{

(

2p
∑

l=1

Br+1((1− ρ)K + 1− l)

)
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−
(

p
∑

l=1

2Br+1((1− ρ)K + 1− l)

)

}

. (26)

It then follows from Lemma 2 that

P{2ρ ln(L) ≤ z |H0} = P{χ2
ν ≤ z}+ ω2

[

P{χ2
ν+4 ≤ z}

−P{χ2
ν ≤ z}

]

+ ω3

[

P{χ2
ν+6 ≤ z} − P{χ2

ν ≤ z}
]

+
{

ω4

[

P{χ2
ν+8 ≤ z} − P{χ2

ν ≤ z}
]

+
1

2
ω2
2

[

P{χ2
ν+8 ≤ z}

−2P{χ2
ν+4 ≤ z}+ P{χ2

ν ≤ z}
] }

+O(K−5) (27)

where ωr’s are given by (24)-(26), and

ln(L) =K
M
∑

k=1

{

ln(|Yk;1:p,1:p|) + ln(|Yk;1+p:2p,1+p:2p|)

− ln(|Yk|)
}

. (28)

We summarize the above in the following result.

Theorem 1. The GLRT for (10) is given by 2ρ ln(L)
H1

R
H0

τ

where ρ and ln(L) are given by (23) and (28), respectively.
The threshold τ is picked to achieve a pre-specified Pfa =
1 − P{2ρ ln(L) ≤ τ |H0} where P{2ρ ln(L) ≤ τ |H0} is
given by (27) and the various needed parameters are specified
in (23)-(26) •

Theorem 1 allows us to calculate the test threshold ana-
lytically.
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Fig. 1: Actual Pfa vs design Pfa, N = 256,K = 15,M = 8

5. NUMERICAL EXPERIMENTS

First we investigate the efficacy of Theorem 1 in computing
the GLRT threshold for a given Pfa. We consider p anten-
nas (p=1,2,3 or 4) with spatially uncorrelated, colored proper
complex Gaussian noise {n(t)} generated by filtering p inde-
pendent sequences through p separate linear filters each with
impulse response {0.3, 1.0, 0.3}. To estimate the PSD of aug-
mented y(t) for N = 256, we choose mt = 7 leading to
K = 15 and M = 8. In Fig. 1 we compare the actual Pfa

and design Pfa based on 10,000 runs. It is seen that Theorem
1 is effective in accurately calculating the threshold value.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

 P
fa

 P
d snr=−7.5dB, p=3

snr=−5dB, p=3

snr=−2.5dB, p=3

Fig. 2: ROC curve, N = 256,K = 15,M = 8

Next we show the receiver operating characteristic (ROC)
curves. The p × 1 random sequence x(t) was generated as
x(t) = xs(t) +n(t); the noise sequence n(t) is as in the pre-

vious example and xs(t) =
∑4

l=0 h(l)I(t − l) where I(t)
is a scalar BPSK sequence and p × 1 vector channel h(l)
is Rayleigh fading with 5 taps, equal power delay profile,
mutually independent components. Thus signal is improper
and noise is proper. The probability of detection Pd versus
false-alarm rate Pfa results for three different SNR values
and p = 3, based on 10,000 runs, is shown in Fig. 2; SNR
is defined as ratio of the sum of signal powers at the p anten-
nas to the sum of noise powers. In all cases we have N=256,
K=15 and M=8. It is seen that performance improves with
increasing SNR, and our approach is able to detect improper
random signals quite well at low SNRs. For the same set-up,
Fig. 3 shows Pd vs SNR for p = 1,2,3 or 4, Pfa = 0.005.
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Fig. 3: Pd vs. SNR, Pfa = 0.005, N = 256,K = 15,M = 8

6. CONCLUSIONS

In this paper we investigated a method based on analysis of
the multivariate PSD of augmented received noisy complex
signal to determine if the signal is proper or improper. Our
proposed approach is based on GLRT. An analytical method
for calculation of the test threshold was provided and illus-
trated via simulations. Past work on this problem is limited to
a sequence of independent random vectors whereas we allow
correlated signal sequences with unknown correlation.
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