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ABSTRACT

One approach to spectrum sensing for cognitive radio is the
detection of cyclostationarity. We extend an existing multi-
antenna detector for cyclostationarity proposed by Ramírez et
al. [1], which makes no assumptions about the noise beyond
being (temporally) wide-sense stationary. In special cases, the
noise could be uncorrelated among antennas, or it could be
temporally white. The performance of a general detector can
be improved by making use of a priori structural information.
We do not, however, require knowledge of the exact values
of the temporal or spatial noise covariances. We develop an
asymptotic generalized likelihood ratio test and evaluate the
performance by simulations.

Index Terms— cognitive radio, cyclostationarity, detec-
tion, GLRT, spectrum sensing

1. INTRODUCTION

Cognitive radio is a promising technology for improving the
usage of radio frequencies. It is already part of specifications
such as IEEE 802.22 (WRAN) and may become more pop-
ular in the future. Here, we are concerned with a special
type, called interweave cognitive radio, where a frequency
band may be used when no primary user is occupying it. This
reduces the amount of white spaces in the spectrum, where
a licensed user is temporally or geographically not utilizing
its right to use a band. Studies have shown that this indeed
happens [2]. Therefore, a key component of interweave cog-
nitive radio is the ability to perform spectrum sensing, which
determines which frequency bands to use.
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For that purpose, numerous detectors exist, as listed in re-
views, e.g. [3]. Generally speaking, this is a signal detection
task. For the use in cognitive radio, the challenges are a low
SNR, fading channels, and limited knowledge of signal pa-
rameters, for example the noise level. One popular approach
is to make use of the fact that digital communication signals
are cyclostationary [4]. In this approach, the goal becomes
the detection of a primary user by detecting cyclostationarity
in the observed signal.

The detection of cyclostationary signals has been the sub-
ject of research since the early 90s. An asymptotic detec-
tor was proposed by Dandawaté [5] and another detector was
developed by Enserink [6]. Based on these detectors, there
have been some detectors that simultaneously evaluate differ-
ent cycle frequencies [7] or extend the ideas to multiple anten-
nas [8]. In contrast to most previous detectors, the detectors
proposed in [1,9,10] are based on established statistical tech-
niques such as the generalized likelihood ratio test (GLRT)
and the locally most powerful invariant test. Even though they
require the assumption of Gaussian input data, they perform
well even for non-Gaussian communication signals. These
tests are about the structure of the signal’s covariance matrix,
and knowledge of the matrix elements is actually not required.

This paper aims to extend the idea of [1, 9] for different
assumptions about the noise. In [1, 9], the noise is assumed
wide-sense stationary (WSS) with arbitrary spatio-temporal
correlation. Spatial correlation in this context is the corre-
lation between the signals at different antennas. Arbitrary
spatial correlation and wide-sense stationarity are very gen-
eral. In many cases, more specific information is available.
Here we consider temporally white noise, spatially uncorre-
lated noise, or a combination thereof. Spatially uncorrelated
noise is a good model if the ambient noise is low compared
to the noise at the receivers. Since we do not require calibra-
tion, we allow for different noise levels at the antennas. We
propose detectors based on the GLRT that have knowledge of
the temporal or spatial structure of the noise.
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2. PROBLEM FORMULATION

The multiantenna cognitive monitor observes NP samples of
the zero-mean discrete-time signal x[n] ∈ CL, which is cy-
clostationary with known cycle period P , and L is the num-
ber of receiver antennas. In our model, we assume that in
the absence of a primary user we observe only noise, which
is WSS. The noise could be temporally white or colored, and
spatially it could be either correlated or uncorrelated among
the antennas. The temporal and spatial structure can occur
in any combination. The general temporally colored and spa-
tially correlated case was covered by [1]. The remaining three
cases are

(I) temporally colored and spatially uncorrelated,

(II) temporally white and spatially correlated,

(III) temporally white and spatially uncorrelated.

For each of these cases, we are interested in the binary hy-
pothesis test

H1 : x[n] is cylostationary with cycle period P ,
H0 : x[n] is WSS with temporal and/or spatial structure.

(1)

Assuming that x[n] is a proper complex normal vector, both
hypotheses result in a special structure of the covariance ma-
trix. Following the idea of [1], we stack the NP observations
as

y =
[
xT [0] . . .xT [NP − 1]

]T
(2)

to obtain theNPL×1 vector y. To find the covariance matrix
of y underH1, we define the process

xP [n] =
[
xT [nP ] . . .xT [(n+ 1)P − 1]

]T
to represent y as

y =
[
xT
P [0] . . .x

T
P [N − 1]

]T
.

Since xP [n] is WSS [11], the autocorrelation function only
depends on the lag:

EH1

[
xP [n]x

H
P [n− k]

]
= Q[k] ∈ CLP×LP

This results in a block-Toeplitz structure of the covariance
matrix R1 = EH1

[
yyH

]
, with a block size of LP × LP [1]:

R1 =

 Q[0] . . . Q[−N + 1]
...

. . .
...

Q[N − 1] . . . Q[0]


The same procedure is followed to find the covariance ma-
trix R0 under H0: Find the autocorrelation function and fill

R0 with it. Since we do this for different spatial or tempo-
ral structures, this will be performed in the following subsec-
tions. Then we obtain the following hypothesis test, which is
equivalent to the one in (1):

H1 : y ∼ CN (0,R1)

H0 : y ∼ CN (0,R0)
(3)

Since the exact values of the covariance matrices are un-
known, this hypothesis test is about the structure of the
covariance matrix.

The problem with this test is that we need a maximum
likelihood (ML) estimate to obtain the generalized likeli-
hood ratio, but there is no closed-form ML estimate of a
block-Toeplitz matrix [12]. Therefore, we approximate the
block-Toeplitz matrices by block-circulant matrices in the
frequency domain [1, 9], and the observations in y are trans-
formed to z [10]:

z = (LNP,N ⊗ IL)(FNP ⊗ IL)
Hy, (4)

where FNP is a Fourier matrix and LNP,N is the commuta-
tion matrix [13]. This approximation and the transformation
are designed such that the covariance matrix of z becomes
block-diagonal under both hypotheses [1]. This yields the
following hypothesis test, which is asymptotically (N →∞)
equivalent to (3):

H1 : z ∼ CN (0,S1)

H0 : z ∼ CN (0,S0)
(5)

Here, S1 is block-diagonal with positive definite blocks of
size LP ×LP and S0 is a block-diagonal matrix with blocks
of size L × L. These blocks depend on the temporal and
spatial structure and will be derived in the following.

2.1. S0 for spatially uncorrelated noise

For the case (I), the autocorrelation is a function of the lag k:

EH0

[
x[n]xH [n− k]

]
= M[k] ∈ CL×L (6)

Since we consider the spatially uncorrelated case, the matrix-
valued function M[k] is diagonal, but with unknown diagonal
elements. Then the covariance matrix for the vector y as de-
fined in (2) becomes block-Toeplitz (with block size L × L)
with diagonal blocks:

R0 =

 M[0] . . . M[−NP + 1]
...

. . .
...

M[NP − 1] . . . M[0]


In the frequency domain, this leads to a diagonal matrix S0,
where we know only that the diagonal elements are positive.
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2.2. S0 for white noise

Assuming white noise underH0, the autocorrelation function
of x[n] is

EH0

[
x[n]xH [n− k]

]
= M0δ[k] ∈ CL×L

with an unknown M0. This results in the covariance matrix
R0 = EH0

[
yyH

]
= INP ⊗M0, which is block-diagonal

with identical blocks M0. If we assume spatially correlated
noise (case II), this matrix has no further structure beyond be-
ing positive definite. For case (III), M0 is a diagonal matrix
with positive elements. Besides this structure, the exact cor-
relations in M0 are unknown.

In the frequency domain this results in a block-diagonal
matrix S0 = INP ⊗ S̃0, with identical blocks S̃0 of size
L × L. The blocks S̃0 are positive definite in any case, but
only in case (III) are they diagonal.

3. DERIVATION OF THE GLRT

Since S1 and S0 are block-diagonal in all cases, we can ob-
tain closed-form ML estimates for them and proceed with the
derivation of the GLRT. We assume to have M independent
and identically distributed (i.i.d.) realizations of z, and we
would like to decide whether or not the signal is cyclostation-
ary. We cannot evaluate the likelihood ratio, as the covariance
matrices are unknown. Instead, we perform a GLRT where
the unknown covariance matrices are replaced by their ML
estimates. To find the GLRT, we need the generalized likeli-
hood ratio (GLR)

L =
max
S0

p(z1, . . . , zM ;H0)

max
S1

p(z1, . . . , zM ;H1)
,

and for this we need the ML estimates of the covariance matri-
ces with the different structures. With the sample covariance
matrix of z,

Ŝ =
1

M

M∑
m=1

zmzHm,

the estimator of S1 is the one from [1]:

Ŝ1 = diagLP (Ŝ)

The operation diagLP (Ŝ) returns the diagonal blocks of size
LP × LP from Ŝ and sets the off-diagonal blocks to zero.

For S0, we have different estimators depending on the

Table 1: Estimate Ŝ0 for the covariance matrix of
noise with special temporal or spatial structure.

temporally spatially Ŝ0

colored uncorrelated diag (Ŝ)

white correlated INP ⊗
[

1
NP

NP∑
k=1

Ŝk

]
white uncorrelated INP ⊗

[
1

NP

NP∑
k=1

diag (Ŝk)

]

structure: In general, the likelihood function is

p(z1, . . . , zM ) = π−LMNP (detS0)
−M

× exp
{
−M tr

(
S−10 Ŝ

)}
= π−LMNP

NP∏
k=1

(detSk)
−M

× exp

{
−M tr

(
NP∑
k=1

S−1k Ŝk

)}
,

where we used the kth L × L diagonal blocks Ŝk and Sk of
the matrices Ŝ and S0, respectively. For spatially uncorrelated
noise (case I), the blocks Ŝk and Sk become diagonal. For
temporally white noise (cases II and III), the blocks Sk = S̃0

are identical, and we can further simplify the likelihood:

p(z1, . . . , zM ) = π−LMNP (det S̃0)
−MNP

× exp

{
−M tr

(
S̃−10

NP∑
k=1

Ŝk

)}
The ML estimators for all three cases of S0 can be derived

using complex matrix derivatives [14] (see Table 1). Now, we
can find the GLR: Using the respective estimate from Table 1,
we define the sample coherence matrix as

Ĉ = Ŝ
−1/2
0 Ŝ1Ŝ

−1/2
0 ,

and then the GLR for the hypothesis test (5) can be compactly
written as L ∝ det(Ĉ). The corresponding test is obtained
by comparing the statistic with a threshold η:1

L ∝ det(Ĉ)
H0

≷
H1

η

The sample coherence matrix can be interpreted as the esti-
mate under H1 normalized by the estimate under H0. This
requires the covariance matrix Ŝ0 to be full-rank.

4. SIMULATION

To demonstrate the performance of the proposed detectors,
we ran Monte Carlo simulations. As a benchmark detector

1The selection of the threshold η was discussed in detail by [1].
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Figure 1: PMD vs. SNR: benchmark detector [1]
(dashed lines) and proposed detector (full lines)

0 0.1 0.2 0.3 0.4 0.5

0.4

0.6

0.8

1

PFA

P
D

proposed GLRT
GLRT from [1]
Detector from [7]
Detector from [8]

Figure 2: ROC curves of four detectors for the
case (III)

we used the GLRT from [1] and, with a few modifications,
we used the same simulation setup: Under the different hy-
potheses, the generated signals x[n] ∈ CL are

H1 : x[n] = (H ∗ s)[n] +w[n]

H0 : x[n] = w[n],

where ∗ means convolution. The noise process w[n] is either
(un)correlated among antennas, temporally white or colored,
or a combination thereof. To realize temporally colored noise,
we pass white noise through a moving average filter of or-
der 19. The signal s[n] is baseband QPSK with rectangular
shaping and P samples per symbol. The channel H[n] is
a Rayleigh fading channel, with exponential power delay
profile, uncorrelated among antennas, and constant for each
Monte Carlo experiment.

In Figure 1, we plot the performance of the detectors
(measured by the probability of missed detection PMD) as
a function of the SNR. We use the parameters P = 4,
N = 16, L = 4, M = 20, and a constant false alarm
rate of PFA = 10−3. For case (I), the difference between
the benchmark and the proposed detector is negligible, but
for the cases (II) and (III) with white noise, the proposed
detectors perform much better. The main reason is that in (I)
the number of unknown parameters under H0 is not reduced
as much as in (II) or (III).

One more comment concerning Figure 1 is in order. One
may wonder why the detector in case (III), which uses the
most a priori information about the noise, actually performs
worst among the three cases. The answer is that these cases
are not completely comparable in terms of SNR only, be-
cause the kind of colored noise (i.e., the exact covariance of
the noise) also influences the performance.

The performance for the scenario (III) is further studied
in Figure 2, which shows a receiver operating characteristic

(ROC). Here the simulation parameters are chosen as L = 2,
the SNR is −8 dB, and everything else is as before. As ad-
ditional detectors the tests from [7] and [8] are used. The
test [7] can be used as an extension of the test from [5], in the
case of multiple antennas. This detector requires the choice
of parameters and for this simulation we use the first cycle
frequency and the lags 0, 1, 2, and 3. For the test from [8]
we also use the first cycle frequency, but we can only use one
lag and we choose the lag equal to 2. In Figure 2, it is clearly
visible that the proposed detector, which makes use of the
structural information, outperforms the competing detectors.

5. CONCLUSION

We have derived an asymptotic GLRT that makes use of ad-
ditional information. We assume to know whether the noise
is uncorrelated or correlated among antennas and whether the
noise is white or colored. For these cases, we developed tests
and showed with simulations that this knowledge helps im-
prove the more general detector from [1].
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