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ABSTRACT

In linear system identification, the coexistence of parameter-

misadjustment and output-error metrics has turned out very practical

and their relation is well understood. In nonlinear system identifi-

cation, however, such tools for performance evaluation are far less

developed and each nonlinear type may need its own treatment. This

paper focuses on the Hammerstein model as an instance of nonlinear

systems. Irrespective of particular identification algorithms, we gen-

eralize the framework of parameter- and output-based performance

metrics known from linear systems. An ambiguity in system param-

eters is resolved via the projection misalignment technique.

Index Terms— system modeling and identification, nonlinear

systems, adaptive signal processing, system performance

1. INTRODUCTION & RELATION TO PRIOR WORK

Many system identification algorithms rely on a linear plant [1], but

every physical system presumably shows a nonlinear behavior over

a certain excitation [2]. Seminal work in [3, 4] and extensions in [5]

thus outlined the concept and the need for nonlinear adaptive filters

in a range of applications. Volterra filter structures [6] have been

frequently considered, based on the argument that Volterra models

can serve as universal approximators to a large variety of nonlinear

systems, including the Wiener, Hammerstein, Wiener-Hammerstein,

or even more general model architectures [7, 8].

A nice property of the Volterra model is its linearity in the pa-

rameters. Linear LMS- or RLS-type [1] adaptation algorithms can

hence be applied [7]. The price for this “quasi-linearity” of the gen-

eral Volterra model is, however, its vast computational demand re-

lated to the typically huge number of parameters (just reflecting the

high dimensionality of the universal nonlinear space [7]). Due to

this curse of complexity, many practical applications revert to more

compact and specific nonlinear models, such as the Hammerstein

system [3] in the center of this contribution.

The Hammerstein model is widespread [9] and recognized as

one of the simplest extensions of linear filters into the nonlinear do-

main. It is created by arranging a memoryless nonlinear subsystem

ahead of an ordinary linear, for instance, FIR system, cf. Fig. 1 in

Sec. 2. The parametric Hammerstein model, as a special case of

the Volterra series [7], exhibits linearity in all coefficients too. Ap-

plications are found in audio and acoustic signal processing [10,11],

sound and vibration [12], medical ultrasound [13], biological [14,15]

or chemical modeling [16], to name just a few.

More specifically, the Hammerstein model is frequently envi-

sioned as a key component for realtime nonlinear acoustic echo con-

trol [17]. Adaptation algorithms with LMS- or RLS-type identifica-

tion of its polynomial subsystem and time-domain LMS-type adap-
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tation of its FIR filter were presented early on in [18] and a recursive

Bayesian algorithm with coupled estimation of both subsystems was

recently proposed as an update [19]. Upon merging nonlinear and

linear coefficients of the parametric Hammerstein model, an alterna-

tive multichannel-linear representation is obtained quickly and cor-

responding adaptation algorithms were again formulated with LMS-

type [20] and recursive Bayesian estimation [21].

The Hammerstein model is further recognized for excellent be-

havior in terms of its accuracy/complexity tradeoff with respect to

nonlinear power amplifier modeling in communications [22]. The

utility of the Hammerstein model has thus found a lot of apprecia-

tion very recently in signal processing for communications, when in-

band full-duplex wireless transmission is desired [23–26]. In this ap-

plication, various performance measures for models and algorithms

were explicitly considered in [27, 28].

Performance measures of nonlinear adaptive systems have un-

fortunately not received sufficient attention yet. In most of the cases,

merely the output error between the actual system and its estimate is

evaluated, since the identification algorithms already utilize this out-

put error to adapt the model. In system identification, however, one

is naturally interested in system parameters and one refers to perfect

identification if the estimated parameters perfectly match the actual

ones. Since this has not necessarily been achieved when the output

error vanishes, “one has to distinguish between the methods used to

obtain and to evaluate the estimate” [29]. This forms the basis of the

coexistence of output-signal and system distances as known from

linear systems [1] where both types of metrics are equal for broad-

band system input [30]. A particular Hammerstein system distance

was proposed in [18], but it lacks a clear relationship with the output

error. We therefore introduce Hammerstein distance metrics that can

a) achieve dedicated inspection of both subsystems and b) deliver a

prediction of the output error in case of sufficient excitation of the

system. In this way, procedures that have been appreciated in linear

adaptive systems will be generalized to nonlinear systems.

The remainder of the paper is organized as follows: Sec. 2 first

recalls the parametric Hammerstein model and currently available

performance measures in order to motivate the need for a Hammer-

stein specific treatment. Sec. 3 proposes the normalized projection

misalignment (NPM) [29] for the evaluation of the linear subsystem

and, with some generalization, of the nonlinear subsystem of the

Hammerstein model. We then derive how those two NPMs jointly

predict the output-error performance. Sec. 4 eventually demonstrates

the utility of our evaluation framework on simulation data.

2. SIGNAL MODEL & PERFORMANCE MEASURES

2.1. Parametric Hammerstein Model

The Hammerstein model in a system identification setup is depicted

in Fig. 1. Therein, the upper signal path represents an actual non-
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Fig. 1: Hammerstein model in a system identification scenario.

linear function f(x) followed by a linear subsystem with impulse

response wk, while the lower signal path comprises estimates f̂(x)
and ŵk of the actual subsystems. Actual and estimated Hammer-

stein system share the input signal x[k] at discrete time k, but their

output can be different due to observation noise n[k] or imperfect

adaptation of the subsystems. The output error e[k] = d[k]− ŷ[k] is

typically used to control the adaptation in each time-step.

A parametric representation of the nonlinear subsystem f(x)
can be defined via basis functions Φ(x) = [φ1(x), . . . , φP (x)]

T of

order P , such that the output of the nonlinear subsystem reads

u[k] = f(x[k]) = Φ
T(x[k]) a , (1)

with coefficient vector a = [a1, . . . , aP ]
T

. The unobserved signal

u[k] is then fed to the FIR filter to form the overall output signal

y[k] = wκ ∗ u[k] =

N−1∑

κ=0

wκ u[k − κ] = u
T [k]w , (2)

via convolution. Here, u[k] = [u[k], . . . , u[k −N + 1]]T and w=

[w0, . . . , wN−1]
T

are employed as short-hand notation.

In this paper, we do not focus on particular algorithms for the

identification or adaptation of ŵ and â. We rather look into the

methodology how to evaluate system parameters and output signals

delivered by any algorithm. Generally, coefficient vectors w and a,

although not explicitly denoted, could be time-varying. Estimated

coefficients ŵ and â will typically adapt with time, but the time in-

dex k is omitted for the sake of brevity, too. Actual and estimated

subsystems are assumed to be of the same structure and model order,

while model order mismatches could be resolved by zero padding.

2.2. Performance Measures for Hammerstein Identification

For the assessment of the quality of a particular identification pro-

cess, especially with systems of relatively high model order, one is

frequently interested in the evolution of single-number metrics re-

lated to either ŵ, â, or in most of the cases both quantities.

On the one hand, output-signal distances can be formed on the

basis of the output error e[k], typically square-error metrics, that are

supposed to vanish in case of perfect system identification. Those

measures are often normalized to a reference signal, see for instance

the normalized mean-square error (NMSE) as shown by [1] or the

echo return loss enhancement (ERLE) known in acoustic signal pro-

cessing [31]. In what follows, those types of measures are together

referred to as normalized output error (NOE) metrics denoted by

η =
E{e2[k]}

E{d2[k]}
, (3)

with E{·} being the statistical expectation operator.

On the other hand, in system identification one is naturally inter-

ested in the misalignment of system parameters, e.g., FIR filter co-

efficients. The filter misalignment is frequently expressed in linear

adaptive systems in terms of the normalized system distance (NSD)

ζw =
‖w − ŵ‖2

‖w‖2
, (4)

with ‖·‖ denoting the l2 vector norm (Euclidean norm).

In linear systems, where f(x) = f̂(x) = x, and when n[k] = 0,

an equality η = ζw can be proven for broadband white-noise excita-

tion x[k] via E{d2[k]} = ‖w‖2 σ2

x and E{e2[k]} = ‖w − ŵ‖2 σ2

x,

e.g., [30]. In case of non-white excitation both measures are differ-

ent since NOE can only judge the system identification at frequen-

cies that are actually excited (hence, NOE has to be used with care

regarding the actual system identification performance). In contrast,

NSD always assesses the actual system identification regardless of

the input signals. NSD thus is an independent and unfailing metric

regarding system identification, while the clear link between NOE

and NSD under the full-excitation condition, however, makes both

of their definitions particularly reasonable.

Considering the Hammerstein model, where generally f(x) 6=

f̂(x) 6=x, the equality of NOE and NSD is lost. ζw=0, for instance,

is never sufficient for η=0. Thus, the meaning of the plain NSD ap-

plied to the nonlinear system is already very limited. Moreover, due

to the cascade of linear and nonlinear subsystems, a Hammerstein in-

herent gain ambiguity exists, i.e., a linear factor can be interchanged

and mutually compensated between both subsystems. This results

in an infinite solution space regarding a quasi perfect system iden-

tification status and may even lead to numerical problems in prac-

tice [32]. Therefore both, the presence of the nonlinearity, and the

gain ambiguity related to the cascaded model, have to be addressed

in a suitable definition of system distances for the subsystems and

for the overall Hammerstein cascade.

A previous instance of an overall Hammerstein system distance,

which supposedly absorbs the issue of gain ambiguity, was already

stated in [18],

ζjoint =
‖w ⊗ a− ŵ ⊗ â‖2

‖w ⊗ a‖2
, (5)

where ⊗ is the Kronecker product. However, a desired relationship

with the output error does not exist according to the authors of [18].

In other words, the measure does not support a clear prediction from

the parameter estimation error to the output error and vice versa.

Our aspiration for the remainder of this paper, hence, is the de-

velopment of Hammerstein evaluation tools

• to comprise output-error-based and parameter-based system

distance measures known from linear systems,

• such that individual inspection of linear and nonlinear sub-

systems can be achieved,

• thereby absorbing the aforementioned gain ambiguity of the

cascaded model arrangement,

• and supporting an output-error prediction from the parameter

distances in case of sufficient excitation of the system.

3. PROPOSED HAMMERSTEIN SYSTEM DISTANCES

3.1. Application of NPM to the Linear Subsystem

The normalized projection misalignment (NPM),

ξw = min
β

‖w − β ŵ‖2

‖w‖2
= min

β

‖∆w‖2

‖w‖2
, (6)
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first introduced in [29], is a system distance measure which absorbs

a gain ambiguity of linear subsystems. The optimal factor β that

minimizes (6) can easily be computed as

β =
ŵ

T
w

‖ŵ‖2
=

〈ŵ,w〉

‖ŵ‖2
, (7)

where 〈· , ·〉 denotes the inner vector product. In (6), a system model

is implied in which the actual system is split into a scaled estimate

and a residual, i.e., w=βŵ+∆w, and the components are orthog-

onalized through β, i.e., 〈∆w, ŵ〉=0.

A straightforward alternative to the previous NPM definition is

ξ̃w = min
β̃

‖ŵ − β̃w‖2

‖ŵ‖2
= min

β̃

‖∆̃w‖2

‖ŵ‖2
, (8)

where the estimated system is now split according to the alternative

model ŵ= β̃w+∆̃w. We find a new minimization factor

β̃ =
w

T
ŵ

‖w‖2
=

〈w, ŵ〉

‖w‖2
(9)

and by analogy with the previous NPM definition the different or-

thogonality 〈∆̃w,w〉= 0. The main attention, however, should be

devoted to the fact that (8) and (9) eventually yield the same NPM

value ξ̃w = ξw as the previous pair of equations (6) and (7). We

find the alternative representation of the same NPM more intuitive

regarding further utilization and generalization.

By rearranging (6) and (8), i.e., for either model, and by exploit-

ing orthogonalities, we find expressions for the filter-norm ratio

‖ŵ‖2

‖w‖2
=

(1− ξw)

β2
=

β̃2

(1− ξw)
, (10)

each of which confirms the effect of gain ambiguity even in a well-

estimated system, i.e., when ξw small. Eq. (10) will turn out useful.

3.2. Application of NPM to the Nonlinear Subsystem

In order to account for arbitrary nonlinear basis functions, our def-

inition of a performance measure for the nonlinear subsystem will

be accomplished in the global f(x) domain, rather than evaluat-

ing performance on the expansion parameter level. This leads to

an applicability of the proposed metric with any type of nonlinear

expansion used in the adaptation algorithm, such as polynomial [5],

Fourier [33,34], or spline [35]. Furthermore we can achieve an anal-

ogy in notation with equations (8) and (9) of the linear subsystem.

In contrast to the l2 vector-norm used before, we rely on the L2

function-norm ‖·‖ in this context, as shown by the definition

ξf = min
α̃

∫ b

a

(
f̂(x)− α̃f(x)

)
2

dx
∫ b

a
f̂2(x)dx

= min
α̃

‖∆̃f‖2

‖f̂‖2
, (11)

where a system model of the form f̂(x)= α̃f(x)+∆̃f(x) is implied,

and the integral is evaluated only over the support of the input signal

x[k]∈ [a, b]. The scale factor for minimization is then obtained as

α̃ =

∫ b

a
f(x)f̂(x)dx

∫ b

a
f2(x)dx

=
〈f, f̂〉

‖f‖2
(12)

based on the inner product 〈· , ·〉 in the L2-norm regime. The factor

α̃ is the counterpart of the scale constant β̃ for the linear subsys-

tem. Hence, we expect α̃β̃ ≈ 1 in case of successful adaptation of

α̃ β̃

û[k]x[k]

f(x)

∆̃f(x)

wk

∆̃wk

ŷ[k]

d[k]

e[k]
f̂(x)= α̃f(x)+∆̃f(x) ŵ = β̃w+∆̃w

Fig. 2: Decomposition of the Hammerstein model in an NPM-sense.

both subsystems. By analogy with the linear subsystem, we can now

prove an orthogonality 〈∆̃f, f〉=0 and a function-norm ratio

‖f̂‖2

‖f‖2
=

α̃2

(1− ξf )
. (13)

Fig. 2 revisits the estimated Hammerstein model, but substitutes

f̂ and ŵ entities of the previous Fig. 1 with the misalignment mod-

els of linear and nonlinear subsystems introduced here. The upper

signal path in Fig. 2 will then cancel with the upper signal path in

Fig. 1, when α̃β̃=1. Fig. 2 further clarifies that generally four mis-

alignment paths extend from the input x[k] to the output error e[k]
between the actual and the estimated Hammerstein system. It can

thus be expected that the individual NPMs of linear and nonlinear

subsystems will contribute to the NOE of the Hammerstein system.

3.3. Expressing NOE with System Parameters and NPM

In order to establish the formal relationship of NOE and NPM, we

rewrite both numerator and denominator of (3). When n[k]=0,

E{d2[k]} = E{(wκ ∗ f(x[k]))2}

= E{

N−1∑

κ=0

N−1∑

ν=0

wκwνf(x[k−κ])f(x[k−ν])} .
(14)

Then reusing the previously made assumption of a stationary white-

noise excitation x[k], i.e., E{x[k]x[k−λ]}=0, ∀λ 6=0,

E{d2[k]} =

N−1∑

κ=0

N−1∑

ν=0

wκ wν E{f(x[k − κ])f(x[k − ν])}

=

N−1∑

κ=0

w2

κ

∫
−∞

−∞

p(x)f2(x[k])dx ,

(15)

where the second moment E{f2(x)}=
∫

∞

−∞
p(x)f2(x)dx based on

the probability density function (PDF) p(x) of x[k] has been used.

When x[k] is uniformly distributed, the PDF is given as p(x)= 1

b−a

for x[k]∈ [a, b] and zero otherwise, while the limits can still be ad-

justed. In practice, limiting x[k]∈ [−1, 1], without loss of generality,

is reasonable for a polynomial expansion model since the powers of

x[k] are getting large for inputs |x[k]|>1. Note that uniform ampli-

tude distribution is a straightforward counterpart and extension of the

previous, say “uniform”, white-noise excitation of all frequencies of

a linear system. Then using l2-vector and L2-function norms,

E{d2[k]} =
1

2

∫
1

−1

f2(x)dx

N−1∑

κ=0

w2

κ =
1

2
‖f‖2 ‖w‖2 . (16)

Since e2[k]=(d[k]− ŷ [k])2=d 2[k] + ŷ 2[k]− 2 d[k] ŷ [k], see

Fig. 1, the NOE numerator is similarly found, when n[k]=0, as

E{e2[k]} =
1

2
‖f‖2 ‖w‖2 +

1

2
‖f̂‖2 ‖ŵ‖2 − 〈w, ŵ〉〈f, f̂〉 . (17)
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Now forming the NOE quotient according to (3), and immedi-

ately substituting filter- and function-norm ratios, (10) and (13), we

arrive at the desired relationship between the Hammerstein normal-

ized output-error and our projection-misalignment quantities,

η̂ = 1 +
α̃2

(1− ξf )

β̃2

(1− ξw)
− 2α̃β̃

=
(α̃β̃ − 1)2 + (2α̃β̃ − 1)(ξw + ξf − ξwξf )

(1− ξf ) (1− ξw)
, (18)

where symbol η̂ is used to depict a prediction of NOE from the in-

volved NPMs and their associated scale factors, when looking at

the reference case with uniformly-distributed white-noise excitation.

Since 0<ξw/f <1, we always have ξw + ξf − ξwξf > 0. Thus, to-

wards successful Hammerstein identification in the NPM-sense, i.e.,

with α̃β̃→1 and both ξw and ξf small, we can further approximate

η̂ ≈ (α̃β̃ − 1)2 + ξw + ξf . (19)

This expression cannot be simplified further, unless trivial, and signi-

fies the effect of residual scale error α̃β̃ 6=1 and individual projection

misalignments ξw and ξf on the Hammerstein output error η.

4. EXPERIMENTAL RESULTS

We use uniformly distributed white excitation noise x[k] ∈ [−1, 1],
and, if not stated otherwise, the nonlinear function in the experi-

ments is f(x) = atan(2x)/2. The linear subsystem wk is given by

N=256 normally distributed random coefficients. In order to depict

the utility of the Hammerstein system distance measures, we rely

on the NLMS/LMS configuration of the adaptation algorithm (with-

out Gram-Schmidt orthogonalization) in [18]. Regarding the iden-

tification of the linear subsystem, the FIR model order is matched

to the Hammerstein system, while the identification of the nonlin-

ear subsystem utilizes polynomial basis functions φi(x) = x2i−1,

i = 1, 2, .., P with only odd powers and model order P =5.

Fig. 3 shows the evolution of established and proposed distance

metrics as a function of time, where a sampling frequency of 16 kHz

was assumed to render the continuous time axis. From the top, the

plain system distance ζw indicates moderate identification of the lin-

ear part of the Hammerstein system in the order of -10 dB, while

the normalized output error η suggests much more accurate identi-

fication in the order of -20 dB. The new tools of this paper resolve

the contradiction and reveal a contribution of different effects over

time. In the beginning of the adaptation process, the initial status of

the nonlinear subsystem is well accurate according to the projection-

misalignment ξf , while high projection-misalignment ξw of the ini-

tial linear subsystem explains the high Hammerstein output-error. As

time goes, the algorithm adapts the linear subsystem very accurately,

i.e., with ξw in the order of -30 dB, while ξf depicts the limiting fac-

tor for the output error η in the nonlinear subsystem. A snapshot of

the estimated nonlinear function f̂(x) =Φ
T(x) â at the end of the

adaptation is found for illustration in Fig. 4. The graph also signifies

the expected alignment of f(x) and f̂(x) via the NPM-based scale

factor α̃. Our expectation of α̃β̃ ≈ 1 is confirmed in Fig. 3.

Relationship (19) between subsystem misalignments and output

error is eventually confirmed in Fig. 5. Here we present for two dif-

ferent nonlinear functions (model-match and model mismatch) that

the actual output error η is well predicted by the η̂ compound.

5. CONCLUSIONS

A set of advanced system distance measures was proposed for

deep inspection of estimated Hammerstein systems. We found that
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both the established and our slight redefinition of the normalized

projection-misalignment (the latter preferred) will provide accurate

insight into the estimation quality of the subsystems, which has

not been achieved with conventional mean-square error distances

before. The utilization of the proposed output-error and system-

misalignment metrics for nonlinear Hammerstein systems is even-

tually simple, intuitive, and nicely compatible with the procedures

known from the evaluation of estimated linear systems.
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