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ABSTRACT

We study severely quantized received signal strength (RSS)-

based cooperative localization in wireless sensor networks.

We adopt the well-known ‘sum-product algorithm over a

wireless network’ (SPAWN) framework in our study. To

address the challenge brought by severely quantized mea-

surements, we adopt the principle of importance sampling

and design appropriate proposal distributions. Moreover, we

propose a parametric SPAWN in order to reduce both the

communication overhead and the computational complexity.

Experiments with real data corroborate that the proposed al-

gorithms can achieve satisfactory localization accuracy for

severely quantized RSS measurements. In particular, the pro-

posed parametric SPAWN outperforms its competitors by far

in terms of communication cost. We further demonstrate that

knowledge about non-connected sensors can further improve

the localization accuracy of the proposed algorithms.

Index Terms— Distributed cooperative localization,

quantized RSS, SPAWN, wireless sensor network

1. INTRODUCTION

Position information is crucial to various wireless sensor net-

work (WSN) applications, where position related measure-

ments, such as time-of-arrival, RSS, and angle-of-arrival, are

often severely quantized due to limited sensor readings, stor-

age and bandwidth shortage, etc.

In this paper, we consider distributed cooperative lo-

calization based on severely quantized RSS measurements.

Among different types of methods as surveyed in [1], the

SPAWN algorithm [2] is a promising solution. To reduce

computational complexity and communication load, many

variants have been built upon it. For instance, [3–6] intro-

duce parametric representation of local belief messages and

internal messages and [7] introduces censoring policies into

the SPAWN framework. To increase localization accuracy

in loopy networks, additional variants of the nonparametric

belief propagation (NBP) have been proposed in [8,9], where

RSS measurements are first converted into relative distances

between sensor nodes and then used in the NBP. To the best

of our knowledge, the existing algorithms only consider the

case when measurements in the SPAWN or the NBP are rel-

ative distances contaminated with additive errors. We focus

on the SPAWN and aim to develop SPAWN-type algorithms

specifically for severely quantized RSS measurements.

Our contributions are as follows. First, we propose a sam-

pling scheme that is crucial to apply SPAWN-type algorithms

to quantized RSS measurements. Second, we develop a para-

metric SPAWN. Third, we evaluate the proposed algorithms

using real data.

The remainder of this paper is organized as follows. Sec-

tion 2 formulates the problem at hand. In Section 3, we ex-

plain in depth several strategies proposed by us in order to

solve the quantized RSS-based cooperative localization prob-

lem using the SPAWN and its parametric variant. The pro-

posed algorithms are evaluated in Section 4 with real data.

Finally, the paper is concluded in Section 5.

2. PROBLEM FORMULATION

We consider a WSN with N stationary sensor nodes in a

two-dimensional (2-D) space (although extension to 3-D is

straightforward). Let Nu = {1, 2, ..., Nu} be the index set

of the agents, whose positions are unknown, and let Na =
{Nu + 1, Nu + 2, ..., N} be the index set of the anchors with

known positions. The position of node i is denoted by xi =
[xi, yi]

T and it is modelled stochastically with a prior proba-

bility pi(xi). Node i can communicate with a subset of sen-

sors, which are called its neighbors and whose index set is de-

noted by N→i. If we have k ∈ N→j , k /∈ N→i and j ∈ N→i,

then node k is a 2-hop neighbor of node i.
Adopting the commonly used log-distance pathloss model,

the continuous-valued RSS, rji, w.r.t. nodes j and i, is repre-

sented as

rji = A0 − 10nplog10 (dji/d0)
︸ ︷︷ ︸

gji(xi,xj)

+vji, (1)

where A0 denotes the received power at a predefined refer-
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ence distance d0, np denotes the propagation pathloss expo-

nent, dji , ||xi − xj ||2 is the Euclidean distance between

nodes j and i, and the error terms vji ∼ N (0, σ2
ji), j ∈

N→i, i = 1, 2, . . . , N , account for the propagation shadow-

ing effect and are assumed to be mutually independent. We

assume that the parameters A0, d0, np, σji are known.

The measurement zji, measured at sensor i, is obtained by

quantizing rji using an S-levelled quantization operatorQ(·),

zji = Q(rji) =







0 if P0 ≤ rji < P1,
1 if P1 ≤ rji < P2,
...

...

S − 1 if PS−1 ≤ rji < PS ,

(2)

where P0, P1, . . . , PS are the quantization levels with P0 =
−∞, PS = +∞. The collection of all quantized RSS mea-

surements is denoted by z. In light of Eq. (1) and Eq. (2), it

is easy to verify that

Pr(zji = s|xi,xj) = Φ

(
Ps+1 − gji

σji

)

− Φ

(
Ps − gji

σji

)

,

(3)

where Φ(·) is the standard Gaussian cumulative distribution

function, s = 0, 1, . . . , S − 1, and gji is used as a short-

hand notation for gji(xi,xj). Our objective is to estimate the

marginal posterior probability density function (pdf) of each

agent’s position p (xi|z), and the corresponding position xi,

∀i ∈ Nu.

3. COOPERATIVE LOCALIZATION ALGORITHMS

We adapt two SPAWN-type algorithms to severely quantized

RSS data. Given the signal model in Section 2, the internal

message as well as the belief message of agent i’s position are

updated in the (η + 1)th iteration as follows:

Iηji(xi) =

∫

Pr(zji|xi,xj)B
η
j (xj)dxj , (4a)

Bη+1
i (xi) ∝ pi(xi)

∏

j∈N→i

Iηji(xi), (4b)

where Bη
j (xj), j ∈ N→i are the old belief messages from

agent i’s neighbors, Iηji(xi) is the internal message in accor-

dance to sensor j, and Bη+1
i (xi) is the updated belief mes-

sage of agent i’s position. After a sufficient number of itera-

tions, the belief message Bi(xi) can be regarded as a good ap-

proximation of the marginal posterior pdf p̂ (xi|z) , ∀i ∈ Nu.

3.1. Particle Based SPAWN

As suggested by its name, particle based SPAWN algorithm

utilizes weighted particles to represent both the internal mes-

sages and the belief messages. Due to the use of quantized

RSS measurements, we propose a novel way of generating

weighted particles for the internal message. Generation of

weighted particles
{

x
r,η+1
i , wr,η+1

i

}R

r=1
of the updated be-

lief message Bη+1
i (xi) follows the principle of mixture im-

portance sampling given in [10].

Given a set of weighted particles,
{
x
r,η
j , wr,η

j

}R

r=1
, of the

belief message Bη
j (xj) received from neighbor j, we wish

to generate weighted particles,
{
x
r,η
ji , wr,η

ji

}R

r=1
, of the inter-

nal message Iηji(xi) according to the formula given in [10],

namely,

x
r,η
ji = x

r,η
j + dr,ηji [cos (θr,η) , sin (θr,η)]

T
, (5)

where
{
dr,ηji

}R

r=1
is a set of distances drawn from the like-

lihood function Pr(zji = s|dji), and {θr,η}Rr=1 is a set of

angles drawn from the uniform distribution U [0, 2π). For no-

tational brevity in the sequel, the iteration index η and the

subscript ji will be omitted.

Since direct sampling from Pr(z = s|d) is not straightfor-

ward, we resort to importance sampling [11]. The profiles of

Pr(z = s|d) for different s can be classified into three cases

as explained in Fig. 1. Based on this observation, we dis-

tinguish these cases and design the proposal distributions for

Pr(z = s|d) independently. The dashed lines in Fig. 1 corre-

spond to the proposal distributions in different cases.

In the first and second cases, we propose to construct a

proposal distribution using a mixture of a uniform distribution

and a triangle distribution. Concretely, the proposal distribu-

tion q(d) for the case s = 0 is given by

q(d) =
1

1 + Ca

U [dh, dthres) +
Ca

1 + Ca

∆(dl, dh, dl), (6a)

dl = d010
A0−P1−3σ

10np , dh = d010
A0−P1+3σ

10np , (6b)

whereCa is a scaling factor that makes q(d) continuous, dthres

can be set to the communication range, and ∆(a, b, c) stands

for a triangle distribution and its definition will be given later.

While for the case s = S − 1, we have

q(d) =
1

1 + Ca

U [0, dl) +
Ca

1 + Ca

∆(dl, dh, dl), (7a)

dl = d010
A0−PS−1−3σ

10np , dh = d010
A0−PS−1+3σ

10np . (7b)

The triangle distribution d ∼ ∆(a, b, c) is defined as

p∆(d) =







2(d−a)
(c−a)(b−a) if a ≤ d < c,

2(b−d)
(b−c)(b−a) if c ≤ d ≤ b,

0 otherwise.

Both dl and dh are chosen such that Pr(z = s|d) approaches

to 1 at dl and to 0 at dh. For the third case, i.e., when s =
1, 2, . . . , S − 2, we use a log-normal distribution as the pro-

posal distribution,
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Fig. 1: The likelihood function Pr(z = s|d) and the proposal distri-

bution q(d) are indicated by the solid and dashed lines, respectively.

From left to right, the black lines correspond to the case s = S − 1,

the red lines for s = 1, 2, . . . , S − 2, and the blue lines for s = 0.

q(d) =
C

d
exp




−

(

10nplog10(
d
d0
)− P0 + Ps

)2

2σ2
new




 , (8a)

σ2
new = σ2 +

(Ps+1 − Ps)
2

3
, C =

10np√
2πσnewlog(10)

, (8b)

are chosen so that the proposal distribution q(d) matches the

target distribution Pr(z = s|d) well.

Up to this point, a distance sample, dr, can be generated

according to Eq. (6), or Eq. (7) or Eq. (8), depending on the

quantized RSS measurement. The weight is simply the ratio

of the target distribution and the proposal distribution

wr
d ∝ Pr(z = s|dr)

q(dr)
,

with {wr
d}

R

r=1 that sum up to 1.

In contrast, generating angle samples from a uniform dis-

tribution is fairly simple. Eventually, a particle representation

of the internal message can be generated using Eq.(5) and the

corresponding weights are simply calculated by

wr
ji ∝ wr

jw
r
d,

where
{
wr

j

}R

r=1
are the weights assigned to

{
x
r
j

}R

r=1
. The

analytical approximation of the internal message is required

in the SPAWN-type algorithms. Based on the weighted parti-

cles, Iji(xi) is approximated by

Iji(xi) ≈
R∑

r=1

wr
jipN (xi;x

r
ji,Σji), (9)

where pN
(
xi;x

r
ji,Σji

)
stands for the pdf of a Gaussian dis-

tribution with mean x
r
ji and appropriately chosen covariance

matrix Σji.

3.2. Parametric SPAWN

Our next aim is to design a parametric SPAWN algorithm for

severely quantized RSS measurements. Primarily, update of

Algorithm 1 SPAWN-type Algorithms for Quantized RSS

1: Broadcast Bη
i (xi), {xr,η

i , wr,η
i } (particle-based SPAWN)

or
{

αk,η
i ,µk,η

i ,Σk,η
i

}K
η
i

k=1
(parametric SPAWN).

2: Receive Bη
j (xj) from neighbors , ∀j ∈ N→i .

3: Draw R
|N→i|

particles from each Iηji(xi), ∀j ∈ N→i,

− x
r,η+1
i = x

r,η
j + dr,ηji [cos(θr,η), sin(θr,η)]T

− Draw dr,ηji from Eq. (6) or Eq. (7) or Eq. (8).

4: Calculate weights wr,η+1
i ∝

∏
j∈N→i

I
η
ji(x

r,η+1

i )
∑

j∈N→i
I
η
ji(x

r,η+1

i )
,

where Iηji(xi) is according to Eq. (9) or Eq. (12).

5: Calculate
{

αk,η+1
i ,µk,η+1

i ,Σk,η+1
i

}K
η+1

i

k=1
based on

{

x
r,η+1
i , wr,η+1

i

}

(for parametric SPAWN).

the belief messages still relies on particles. Introducing ap-

propriate parametric models for the belief messages and inter-

nal messages is for the sake of reducing communication load

and computational complexity, respectively. Similar to our

previous work in [12], we approximate the belief message by

a finite mode Gaussian mixture model, i.e.,

Bj(xj) ≈
Kj∑

k=1

αk
j pN

(

xj ;µ
k
j ,Σ

k
j

)

, (10)

where αk
j , k = 1, 2, . . . ,Kj , are the mixture coefficients that

sum up to 1, and Kj is the number of Gaussian components.

Inserting Eq. (10) into Eq. (4a) gives

Iji(xi) =

Kj∑

k=1

αk
j

∫

Pr (zji|xi,xj) pN

(

xj ;µ
k
j ,Σ

k
j

)

dxj

︸ ︷︷ ︸

Gk
ji(xi)

.

(11)

It is apparent from Eq. (11) that each integral Gk
ji(xi) is the

convolution of a nonlinear function with a Gaussian density

function. We propose to approximate the convolution result

by replacing the Gaussian with its mean parameter and by

expanding the resulting function appropriately, i.e., the non-

linear function itself with tunable parameters. Therefore, we

propose a parametric model G(xi;µ, σ̂)

G(xi;µ, σ̂) = Φ

(
Ps+1 − gji(xi,µ)

σ̂

)

− Φ

(
Ps − gji(xi,µ)

σ̂

)

,

where Ps, Ps+1, A0, np, d0 are the parameters of this model,

but ignored here for notational brevity. With this model, the

convolution result is estimated using

Gk
ji(xi) ≈ G(xi;µ

k
j , σ̂

k
ji),

where σ̂k
ji =

√

σ2
ji + Tr(Σk

j ). Finally, the parametric model

of the internal message Iji(xi) is given by

Iji(xi) ≈
Kj∑

k=1

αk
jG(xi;µ

k
j , σ̂

k
ji). (12)
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Fig. 2: RMSE of the distributed MLE in (a) and that of the SPAWN-

type algorithms in (b). In (b), the dashed lines and solid lines corre-

spond to the particle based and parametric SPAWN, respectively.

For completeness, the SPAWN-type algorithms are out-

line in Algorithm 1 w.r.t. node i in ηth iteration.

4. EXPERIMENTAL RESULTS

The proposed algorithms are evaluated using the real sen-

sor network and RSS measurements in [13]. The RSS mea-

surements are uniformly quantized with different quantiza-

tion levels, S ∈ {2, 4, 8}, giving rise to quantized RSS mea-

surements. The environmental parameters, A0, np, d0, σ
2 are

chosen according to [13]. The distributed maximum likeli-

hood estimator (MLE) from Algorithm 1 in [2] is used as

a competitor. For the distributed MLE, the initial position

of each agent is randomly chosen over the space. For the

SPAWN-type algorithms, pi(xi) is simply a uniform distribu-

tion. In the SPAWN-type algorithms, R = 1000 particles are

used and the maximum number of Gaussian components is 5.

The SPAWN-type algorithms find the final position estimates

using the minimum mean squared error (MMSE) estimator

based on the estimated posterior marginal pdfs.

The overall root mean squared errors (RMSEs) of the dis-

tributed MLE and the SPAWN-type algorithms over different

quantization levels are shown in Fig. 2. To keep the range

of y axis in both figures as close as possible, the result of the

distributed MLE in the first 2000 iterations are omitted. First,

for each quantization level, the proposed algorithms achieve

higher localization accuracy than the distributed MLE. In

the proposed algorithms, the uncertainty about a position is

communicated between neighbors and it contains more infor-

mation than one point estimate that is shared in the distributed

MLE. Second, the proposed algorithms require several iter-

ation steps to achieve a satisfactory localization accuracy;

while the distributed MLE needs hundreds. In each iteration,

the amount of parameters broadcast by each node in the para-

metric SPAWN is comparable to that in the distributed MLE.

Therefore, the parametric SPAWN requires a profoundly

lighter communication load than the distributed MLE. Third,

the parametric SPAWN is inferior to the SPAWN in terms
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Fig. 3: The performance of the parametric SPAWN with and with-

out knowledge about 2-hop neighbors: (a) RMSE (b) estimated po-

sitions using the parametric SPAWN based on proximity measure-

ments and knowledge about 2-hop neighbors.

of localization accuracy, since the parametric model can not

approximate the messages as accurate as the particle-based

approximation. Further investigations have shown that both

SPAWN-type algorithms do not perform well in the case of

S = 2, since the proximity measurements gives too much

freedom to the localization problem.

It is clear that the distance between a node and its 2-

hop neighbor should be larger than the communication range.

Simply speaking, the particles of a node’s position located

too close to its 2-hop neighbors should be punished. The

knowledge about its 2-hop neighbors can be obtained from

its neighbors, while at the cost of additional communication

load. Next, we investigate the influence of the information

from 2-hop neighbors on the localization performance. Due

to the large simulation time of the SPAWN, only the paramet-

ric SPAWN is considered here. The RMSEs of the parametric

SPAWN with and without knowledge about the 2-hop neigh-

bors are depicted in Fig. 3a. It is apparent that the knowledge

about 2-hop neighbors improve the localization performance

of the parametric SPAWN. Thanks to the additional informa-

tion from the 2-hop neighbors, more constraints are added

to the localization problem and the localization accuracy is

improved. Accordingly, for proximity measurements, the po-

sition estimate using the parametric SPAWN with additional

knowledge about the 2-hop neighbors is illustrated in Fig. 3b.

Apparently, based on proximity measurements, the paramet-

ric SPAWN provides satisfactory localization accuracy.

5. CONCLUSION

We have studied severely quantized RSS-based coopera-

tive localization. To fit quantized RSS measurements in the

SPAWN framework, we have proposed novel proposal dis-

tributions. Furthermore, we have proposed the parametric

SPAWN by designing an appropriate parametric model. Our

evaluation results have shown that the proposed algorithms

demonstrate satisfactory localization performance. In partic-

ular, further knowledge about 2-hop neighbors enhances the

localization accuracy of the parametric SPAWN.
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