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ABSTRACT

This paper proposes a detector of multi-component non-stationary
signals based on the matched signal transform (MST). In the MST
domain, a non-stationary signal is localized at its frequency modula-
tion rate with the transform’s basis modulation function. The MST
can be numerically implemented either as a freestanding discrete
version of an integral transform, or for faster computation, as a time
resampled version of the original signal followed by a fast Fourier
transform. We analyze the noise statistics in the MST domain and
derive the analytical forms of the probability density function for
both implementations, considering the non-stationary signal embed-
ded in white Gaussian noise. We propose a detector based on the
squared magnitude of the MST and show how its detection perfor-
mances depend on the chosen implementation. All the theoretical
derivations are validated through Monte Carlo simulations.

Index Terms— Detection; Non-stationary signals; Time resam-
pling; Time-frequency analysis.

1. INTRODUCTION

The spectral content of signals acquired in real applications like
radar or under-water acoustics is usually non-stationary in the sense
that the instantaneous frequencies vary in time. This type of signals
require specific analysis tools in order to estimate and detect their
specific time-frequency structure.

When there is no prior information about the phase law of a non-
stationary signal, a widely used model is the polynomial phase sig-
nal (PPS). A classical parameters estimation method for the polyno-
mial parameters of PPSs is based on the high-order ambiguity func-
tion (HAF) [1, 2] and its upgraded versions more suited for multi-
component signals -the product HAF [3] and the warped HAF [4].
If the time-frequency shape of each component is known and can
be described by a certain basis function, the modulation rates of
the components can be obtained by employing the matched signal
transform (MST) [5, 6] or, equivalently, applying a time warping of
the signal with the basis function followed by a Fourier transform
(FT). In the MST domain, non-stationary signals are localized at
their frequency modulation (FM) rates in a similar manner as a si-
nusoid is localized at its frequency by a spectral representation. For
the case when the phase law is partially known, we have proposed in
[7] a model-based parameters estimation method designed for non-
stationary components having the basis function described by the
same model with a few unknown parameters.

While the representation and parameters estimation of non-
stationary signals are analyzed in several works, the matter of
detecting a non-stationary signal embedded in noise, after applying

a certain signal-adapted processing tool is usually addressed in liter-
ature only as an extension to the posed representation or estimation
problem. For instance, in [8] is proposed an adaptive detection
method of PPSs embedded in white Gaussian noise that uses the
product HAF, whereas several PPSs detection methods based on
time-frequency representations are presented in [9, 10, 11, 12].

In the case of the MST, or time warping followed by an FT, there
is no discussion in the literature about the statistical detection of sig-
nals in this transformed representation domain. Therefore, in this
paper we analyze the noise statistics in the MST domain and propose
a detection scheme for non-stationary signals embedded in complex
white Gaussian noise processed through two discrete implementa-
tions of the MST -direct computation and time resampling. We par-
ticularize the results for real and circular noises, which in practical
terms correspond to signals obtained from receivers with one chan-
nel and two channels in quadrature, respectively. The upgrade of the
MST processing technique with a statistically characterized detector
is essential for its applications in radar [13] and communications [6].

The remainder of the paper is structured as follows. Section
II shows in several steps the analytical derivation of the probabil-
ity density function of the noise in the discrete MST domain, while
Section III presents the detection scheme. In Section IV we present a
numerical validation of the theoretical developments, whereas Sec-
tion V concludes the paper.

2. ANALYTICAL DEVELOPMENT

2.1. Time warping and the matched signal transform

We consider a deterministic signal consisting of a sum of M non-
stationary components, each having the same time-frequency shape
described by a monotonic one-to-one function of time θ(t) (a basis
function) defined on the interval [0, T ]. Such a signal can be ex-
pressed as

s(t) =
M∑
m=1

Am exp (j2παmθ(t)) , (1)

whereAm and αm are respectively the complex amplitude and mod-
ulation rate of component m. There is no weighing window consid-
ered for derivations simplicity. If the signal in (1) is viewed in a
warped time axis θ = θ(t), it will appear as a signal composed of a
sum of complex sinusoids

swarp(θ) =

M∑
m=1

Am exp (j2παmθ) . (2)

The Fourier transform of (2)

S(α) =

θ(T )∫
θ(0)

swarp(θ) exp (−j2παθ) dθ (3)
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will give peaks at the modulation rates αm of the M components.
The transform in (3) can also be computed in terms of the initial
time axis t as a modified form of the MST defined in [6] applied for
the function θ(t)

SMST (α) =

T∫
0

|θ′(t)|s(t) exp (−j2παθ(t)) dt. (4)

In the following sections we will show that from the implementation
point of view, the two ways of evaluating the Fourier transform of
a time warped signal may deliver different results in the presence of
noise.

2.2. Discrete signal model

The discrete form s[n] of the signal in (1), uniformly sampled at N
time instants t0, t1, ..., tN−1 embedded in a complex white Gaussian
noise w[n] = wR[n] + jwI [n] is expressed as

x[n] = s[n] + w[n] =
M∑
m=1

Am exp (j2παmθ(tn)) + w[n]. (5)

Both wR[n] and wI [n] are zero-mean real Gaussian noises that have
the probability density function (PDF)

f
(R/I)
1 (u) =

1
√

2πσR,I
exp

(
−

u2

2σ2
R/I

)
, (6)

where σ2
R/I are the variances. The characteristic function (CF) [14]

of a continuous random variable having the PDF in (6) is

F
(R/I)
1 (v) = exp

(
−
σ2
R/I

v2

2

)
. (7)

Although x[n] is complex, in the following derivations we also an-
alyze the case of a real noise, for which s[n] will be considered the
real part of the sum of complex exponentials from (5).

2.3. Direct MST implementation

We compute the discrete MST of x[n] at K modulation rates
α0, α1, ..., αK−1 as

XMST [k] =
1

Θ

N−1∑
n=0

|θ′(tn)|x[n] exp (−j2παkθ(tn)) , (8)

where Θ =
N−1∑
n=0

|θ′(tn)| is used to compensate the effect of the am-

plitude weighing of x[n] (to obtain peak values equal to the actual
amplitudes). Since the result of applying the MST to the determin-
istic signal s[n] was previously explained, in the following we focus
on its effect on the noise samples. The MST of the complex noise
can be written as follows

WMST [k] =

N−1∑
n=0

wR[n]
1

Θ
|θ′(tn)|cos (2παkθ(tn))

+

N−1∑
n=0

wI [n]
1

Θ
|θ′(tn)|sin (2παkθ(tn))

− j
N−1∑
n=0

wR[n]
1

Θ
|θ′(tn)|sin (2παkθ(tn))

+ j

N−1∑
n=0

wI [n]
1

Θ
|θ′(tn)|cos (2παkθ(tn)) .

(9)

Note that the real and imaginary parts of a sample WMST [k] are a
weighted sum of the initial noise samples. Each summation term

is a noise sample (a realization of a random variable) multiplied by
a different value at every time instant tn. In order to compute the
PDF of the resulting variable WMST [k], we employ two classical
results from random variable theory [15, 16] given in the following
lines. First, the PDF of the variable obtained by multiplying a ran-
dom variable having the PDF f(u) and CF F (v) with a certain real
constant a is given by

fa(u) =
1

|a|
fw
(u
a

)
, (10)

and the corresponding CF is
Fa(v) = F (av). (11)

Second, the CF of a sum of independent random variables is given
by the product of their CFs. Therefore, the CFs of the real and imag-
inary parts of the variable WMST [k] are

F
(R/I)
MST (v, k) = exp

{
− v2

2

N−1∑
n=0

|θ′(tn)|2

×
[
σ2
R,I

Θ2
cos2 (2παkθ(tn)) +

σ2
I,R

Θ2
sin2 (2παkθ(tn))

]}
.

(12)

By analyzing the structure of (12), we can see that WR,MST [k] and
WI,MST [k] have a Gaussian distribution with the variance depend-
ing on the index k. Next, we compute the variances of the result-
ing variables for two particular cases. If we consider a real noise
(σR = σ and σI = 0), the variance of the MST samples (real and
imaginary) is expressed as

σ2
MST,R/I [k] =

σ2

Θ2

N−1∑
n=0

|θ′(tn)|2 {cos/sin}2 (2παkθ(tn)) , (13)

while for a circular noise (σR = σI = σ) the variances of the real
and imaginary parts are equal and do not depend on the index k:

σ2
MST,C =

σ2

Θ2

N−1∑
n=0

|θ′(tn)|2. (14)

Note that when θ′(t) = t the MST transforms in a Fourier transform
and the variances for both noise types become σ2

FFT = σ2/N .

2.4. Time resampling MST implementation

In the warped time axis θ, the samples of x[n] are related to the
time instants θ(tn), which leads to a non-uniformly sampled signal.
Hence, the computation of the Fourier transform of x[n] in the θ
time axis can be efficiently implemented by a resampling of the ini-
tial signal (to obtain a uniformly sampled signal) followed by a Fast
Fourier Transform (FFT). The MST of signal x[n] computed by time
resampling will be denoted as XRS [k].

In this subsection we compute the PDF of the MST samples for
the noise w[n] using the discrete version of (1) and considering that
the resampling is employed by the nearest neighbor interpolation.
Although the high-order spline functions are more suited for resam-
pling [17], the nearest neighbor suffices for the theoretical purpose
of the paper and was chosen due to analytical calculation simplicity.

We denote with ζ[n] the resampled noise signal at the moments
θ0, θ1, ..., θN−1. The Fourier transform of the resampled noise is

WRS [k] =
1

N

N−1∑
n=0

ζ[n]exp (−j2παkθn) . (15)
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In the case of nearest neighbor interpolation, each ζ[n] will be one
of the original samples w[n]. The linking between the two sets of
samples depends on the actual basis function θ(t). Some of the sam-
ples w[n] may be left out and some may appear for more than one
index n, so two random variables whose realizations are ζR[n1] and
ζR[n2] (or ζI [n1] and ζI [n2]) are either identical or independent.

We define an indexing matrix β[n, l] which links the N original
samples to the N resampled ones. Matrix β has N lines, and the
number of columns is given by the maximum number of repetitions
of an original sample in the resampled signal. The number of repeti-
tions of sample n is denoted ι[n], and therefore line n of the matrix
will have ι[n] indices followed by zeros. With these notations, equa-
tion (15) can be rewritten as

WRS [k] =

N−1∑
n=0

wR[n]
1

N

ι[n]−1∑
l=0

cos
(
2παkθβ[n,l]

)

+

N−1∑
n=0

wI [n]
1

N

ι[n]−1∑
l=0

sin
(
2παkθβ[n,l]

)

− j
N−1∑
n=0

wR[n]
1

N

ι[n]−1∑
l=0

sin
(
2παkθβ[n,l]

)

+ j

N−1∑
n=0

wI [n]
1

N

ι[n]−1∑
l=0

cos
(
2παkθβ[n,l]

)
.

(16)

Notice that β[n, l] has to be numerically evaluated from case to case
because it comes from the actual linking between the initial and re-
sampled set of samples for the given θ(t). Additionally, it can be
shown using (16) that the peak values of the MST computed by re-
sampling may be biased relative to the actual amplitude Am of the
matched signal in the time domain. For a more accurate type of inter-
polation, an interpolated sample is a weighted sum of a few original
samples and consequently an analytic expression like (16) is much
more difficult to derive.

Using the same approach as in the previous section, the real and
imaginary parts of WRS [k] will have the CFs:

F
(R/I)
RS (v, k) = exp

{
−
v2

2

N−1∑
n=0

σ2
R,I

N2

( ι[n]−1∑
l=0

cos
(
2παkθβ[n,l]

))2

+
σ2
I,R

N2

( ι[n]−1∑
l=0

sin
(
2παkθβ[n,l]

))2}
.

(17)

For the particular cases of real noise and circular noise the variances
are

σ2
RS,R/I [k] =

σ2

N2

N−1∑
n=0

( ι[n]−1∑
l=0

{cos/sin}
(
2παkθβ[n,l]

))2

, (18)

and respectively

σ2
RS,C [k] =

σ2

N2

N−1∑
n=0

( ι[n]−1∑
l=0

cos
(
2παkθβ[n,l]

))2

+

( ι[n]−1∑
l=0

sin
(
2παkθβ[n,l]

))2

.

(19)

3. DETECTION IN THE MST DOMAIN

The actual detection in the MST domain is done by peak picking the
squared magnitude of XMST [k] or XRS [k] (generically denoted by

X[k]) and comparing it to a certain threshold. The approach is simi-
lar to the detection of sinusoidal signals using the Fourier transform
[18]. The expected value of a peak placed at bin k of the MST do-
main can have two values according to the presence (hypothesisH1)
or absence (hypothesis H0) of a non-stationary signal with modula-
tion rate αk:

H1 : E
{
|X[k]|2

}
= |∆k|2 + σ2

W,R[k] + σ2
W,I [k],

H0 : E
{
|X[k]|2

}
= σ2

W,R[k] + σ2
W,I [k],

(20)

where E{} is the statistical expectation operator and ∆k is the com-
plex signal’s amplitude in the MST domain (that may be inherently
biased relative to Am for the resampling-based implementation).
σ2
W,R[k] and σ2

W,I [k] are the variances computed in (13), (14), (18)
or (19), depending on the implementation and noise type. To obtain
a constant false alarm rate (CFAR) detector, the threshold level γ[k]
has to be adjusted according to the noise statistics in each bin. The
envisaged detection scheme is given in Fig. 1.

x[n] MST |  |2 Peak picking

Compute local 

variances

Bin k

PF

Compute 

threshold

Decision

Fig. 1. MST-based detection scheme.

To compute the probability of false alarm (PF ), the PDFs of
|WRS [k]|2 and |WMST [k]|2 in each considered case have to be eval-
uated. It can be shown that the real and imaginary parts of the MST
samples of noise are uncorrelated for both WMST [k] and WRS [k]
(onwards denoted W [k] = WR[k] + jWI [k] when referring to a
common characteristic). Next, we consider two results regarding
random variables [19]. First, the lack of correlation between two
Gaussian variables implies the independence of the two variables.
Therefore the noise contribution to E

{
|X[k]|2

}
comes from a sum

of two squared independent Gaussian variables (the real and imagi-
nary part ofW [k]). Second, the sum of n squared independent Gaus-
sian variables with variance σ2

W has a Gamma distribution with the
shape factor n/2 and the scale factor 2σ2

W :

f
(
u|n

2
, 2σ2

W

)
=

1

Γ
(
n
2

)
2σ2

W

(
u

2σ2
W

)n
2
−1

exp

(
− u

2σ2
W

)
,

(21)
where Γ(x) is the Gamma function.

In the case of a circular noise, when the variances σ2
W,R[k] and

σ2
W,I [k] are equal to σ2

W [k], and n = 2, the PDF of |W [k]|2 is

fc(u, k) = f
(
u|1, 2σ2

W [k]
)

=
1

2σ2
W [k]

exp

(
− u

2σ2
W [k]

)
. (22)

For a real noise, the variances σ2
W,R[k] and σ2

W,I [k] are different
and the PDF can be obtained as the convolution between the individ-
ual PDFs of |WR[k]|2 and |WI [k]|2, which are f

(
u|1/2, 2σ2

W,R[k]
)

and f
(
u|1/2, 2σ2

W,I [k]
)
, respectively. This type of convolution is

computed in [16] and the result is:

fr(u, k) =
1

2σW,R[k]σW,I [k]
exp

[
−
u

4

(
1

σ2
W,R[k]

+
1

σ2
W,I [k]

)]

× I0

[
u

4

(
1

σ2
W,R[k]

−
1

σ2
W,I [k]

)]
,

(23)
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Fig. 2. Theoretical and experimental results of noise statistics analysis: noise variance of the real part in the MST domain for circular noise
(a) and real noise (b), PDF of the MST squared magnitude for circular noise (c) and real noise (d) at 1700 Hz/s modulation rate.
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Fig. 3. MST detector - performance evaluation for a signal composed of two chirps embedded in circular noise: (a) PF vs. threshold, (b)
Expected squared magnitude of the MST, (c) Probability of detection vs. SNR for PF = 10−3, (d) ROC for an SNR A2/σ2 = 1/2.

where I0[] is the zero order Bessel function.
With these results the PF can be obtained by numerical integra-

tion, while the detection probability depends on the signal’s ampli-
tude and doesn’t have a straightforward analytic expression.

4. NUMERICAL VALIDATION

In this section we present the results obtained in a set of Monte Carlo
simulations used to validate the theoretical developments. We ob-
tained through simulations the variances of the real and imaginary
parts of the noise processed through the two implementations of the
MST and generated the experimental PDFs of the squared magni-
tude of the noise samples in the MST domain. The following param-
eters were considered in the simulations for both real and circular
noises: basis function θ(t) = t2, variance in time domain σ2 = 1,
1 kHz sampling frequency, 128 samples and 40000 realizations of
each random process. Fig. 2(a) and Fig. 2(b) show the theoretical
and experimental variances of the samples in the MST domain (the
real part), while in Fig. 2(c) and Fig. 2(d) we present the PDFs
for the squared magnitude of the MST. It can be easily noticed that
the simulated variances and PDFs are in keeping with the theoretical
results (the relative error between the plots is around 1%).

In Fig. 3 we emphasize the performances of the MST detector
for two chirp signals with the same amplitude embedded in white
Gaussian circular noise. Due to the fluctuations of the variance, the

false alarm probabilities for the resampling implementation depend
on the modulation rate. Additionally, the amplitude is biased for
the component with higher modulation rate (the effect can be com-
pensated with a correction envelope, but this will also increase the
noise variance). The combined effect of the variance and amplitude
fluctuations on the detection performances can be seen on the plots
of detection probability vs. signal-to-noise ratio (SNR) and receiver
operating characteristic (ROC) in Fig. 3(c) and Fig. 3(d), respec-
tively. The SNR is computed as the squared amplitude of the sig-
nal divided by the noise variance. In the analyzed cases, the direct
implementation has better detection results compared to the nearest
neighbor resampling method.

5. CONCLUSIONS

In this paper we analyzed the noise statistics in the matched sig-
nal transform domain and proposed, for the first time, a detection
scheme for non-stationary signals processed with two implementa-
tions of the discrete MST. The theoretical developments were vali-
dated through numerical simulations. In the considered test cases,
the direct implementation was slightly superior in terms of detec-
tion performances with respect to the resampling approach. In future
work we shall determine the theoretical noise statistics after the MST
for better interpolation methods in terms of signal reconstruction and
apply the results to radar and ultrasound applications.
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