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ABSTRACT

The Hawkes process is the workhorse of dynamic point process
modelling - the point process version of the autoregression. It has
been applied, for example, in high frequency finance, electricity
price spike modelling and gene regulatory network modelling. But,
in all these and other applications, it is assumed the parameters are
time invariant. However, it is becoming clear that in many appli-
cations the parameters vary with time. Here, we develop for the
first time, a very simple local likelihood approach to estimation of
time-variant Hawkes processes. The new algorithm is tested on
simulations and then applied to data from the Australian electricity
market.

Index Terms— Point processes, time-variant parameters, sys-
tem identification, local likelihood, EM algorithm.

1. INTRODUCTION

Point processes have gained increased attention from the system
identification community in the last few decades. They have been
used to describe random phenomena in seismology [1], finance [2,
3], neuroscience [4, 5], and genomics [6]. This wide range of ap-
plications was only possible due to the rigorous development of the
concept of intensity function, see e.g [7, 8]. Further extension was
done by [9] in the early 70s, where the likelihood function was de-
rived based on the intensity function concept. For more applica-
tions of point processes, the reader can refer to e.g [10, chap.1],
[11, 12, 13].

There are two assumptions that dominate the applied literature
on point processes. One is no-memory or independent increments
i.e. no dynamics. The other is that most of the models assume that
the intensity function is parametrized by time-invariant parameters.
We briefly discuss each of these in turn.

In electricity markets, the spot price can be subject to sud-
den changes due to unexpected increases in demand, unexpected
shortfalls in supply and failures of transmission infrastructure, see
[14]. Most of the literature in forecasting spikes for the electricity
spot price is based on traditional autoregressive time-series models,
Bernoulli and Poisson jump processes, and a variety of heavy-tailed
error processes. They have in common that no memory (i.e. no
dynamics) is considered in the modelling. However, accumulating
evidence shows that there is an historical component (i.e. memory)
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in explaining spiking processes, see [15]. The most common ap-
proach to modelling point processes with memory is via Hawkes
processes [16].

More recently two groups [17, 18] have combined history and
time-variant behaviour by developing time-variant Hawkes process
models for modelling electricity spot prices. The approach in [17] is
based on so-called duration models and is a kind of inverse model of
the stochastic intensity. The approach in [18] models the parameter
time-variation as regressions on covariates. Both these approaches
are valid but cumbersome, and a comparison with each of them goes
beyond the purpose of this paper. Here, we develop a new and simple
approach based on local likelihood.

Local likelihood [19] is a development of the sliding window ap-
proach. This is a very old idea which has been repeatedly rediscov-
ered. Some history can be found in [19] but the approach goes back
at least to the 1930s. However a thorough theoretical understand-
ing of the method was not developed until the 1990s in the statistics
literature [19, 20] under the name local least squares or local poly-
nomial modelling. This theory has not, however, diffused outside the
statistics literature and so a number of basic insights are ignored in
other literatures.

The idea is to take a window of data and fit a time-invariant pa-
rameter model in the window. Then the window is moved along by
a fixed amount and the modelling is repeated and so on. In this way
time-variant parameter estimates are traced out. One of the funda-
mental insights from the statistical literature is that rectangular win-
dows induce a kind of Gibbs-ringing (familiar from Fourier analysis)
which produces (severe) estimator bias. Thus, only smooth windows
should be used. Unfortunately, in a lot of applied literature this basic
insight is unknown and rectangular windows are still very common.

To estimate the parameters of time-variant Hawkes models, at
each time t, we optimize a windowed predictable likelihood (see
e.g. [13, chap.7]) to obtain the maximum likelihood estimates for
the unknown parameters.

We illustrate our new approach on both simulated data and real
electricity price data.

The remainder of this paper is as follows: in section 2 we give
background on modelling of Hawkes processes; In section 3 we pose
the time-variant maximum likelihood estimation problem; in section
4, we give the updates for the parameters. Section 5 presents numer-
ical examples. Finally, section 6 gives conclusions.
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2. TIME-VARIANT HAWKES MODELS

2.1. Hawkes

The intensity function for the time-invariant Hawkes model - see e.g
[16], can be converted into a time-variant intensity function as

λ(t) = c(t) +

∫ t

−∞
g(t− u)dNu (1)

where g(u) ≥ 0, c > 0, Nu: number of counts up to u, t ∈ R+, and
(1) is an integral of the Riemann-Stieltjes type.

For practical use, the integral (1) must be truncated; the simplest
truncation gives the simple finite Hawkes process (sFHP).

λ(t) = c(t) +

∫ t

0

g(t− u)dNu (2)

For the case of time-variant parameters, there are two common
ways to represent the impulse response (IR) h(u):

• Hawkes-exponential (HE)

g(t− u) =

p∑
j=1

αj(t)φj(t− u), φj(u) = e−βjuβj (3)

One of the advantages of this representation is that simula-
tion is easy, but model fitting is difficult since βj appears non
linearly.
There is an alternative, and it is the so-called HaL model1,
which is given in (4).

• Hawkes-Laguerre (HaL), first used by [21]

g(t−u) =

p∑
j=1

αj(t)φj(t−u), φj(u) = e−βou
(βou)j−1

(j − 1)!
βo

(4)

The advantage of this representation is that the stochastic in-
tensity function is linear in the parameters (aside from βo), but the
likelihood function is nonlinear, thus requiring nonlinear optimiza-
tion methods. The basis is valid for any βo > 0, where τo = 1/βo
and τo : time constant of the system. This value βo can, in principle,
be chosen by the user. However, as we will show later in this work,
this parameter can also be estimated by selecting a grid, and then
optimizing a marginalized maximum likelihood problem.

Remark 1 Note that our parametrization differs from that in [21].
Our scaling ensures the stability (or stationarity) condition dis-
cussed below has a very simple form.

3. LOCAL MAXIMUM LIKELIHOOD ESTIMATION FOR
HAWKES MODELS WITH TIME-VARIANT PARAMETERS

We introduce the ’predictable’ likelihood function for time-invariant
parameters given by [10]

L(θ) =

∫ T

0

lnλ(t, θ)dNt −
∫ T

0

λ(t, θ)dt+ T (5)

1introduced in [21] much earlier than in the system identification commu-
nity [22]

This function can be optimized, and an algorithm can be derived to
estimate the parameters of the intensity function.

However, in this work, we are interested to optimize a likelihood
function which is time-variant, that is, the parameter vector θ in (5)
has the form θ = θ(t).

One way to optimize this time-variant likelihood function is by
using a local (or windowed) likelihood centred at time t. This is car-
ried out by introducing a weight K(u−t

h
). Here, the idea is to use a

window (of nominated span and time point) to estimate the param-
eters that maximize the log-likelihood function within the window.
We should note that the parameter estimates correspond to the mid-
dle of the window. The estimation algorithm continues when the
time points are increased by one unit. The estimation algorithm fin-
ishes when the last data point is included in the window.

Different windows can be used. However, it is important to use
smooth windows to minimize the effects caused by the Gibbs ringing
phenomenon, which is achieved by creating a window with rounded
edges, see e.g. [23]. Examples of such windows are given in (6) and
(7).

K(v) =

{
3
4
(1− |v|2), if|v| ≤ 1,

0, otherwise
(6)

K(v) =

{
5
8
(1− |v|4), if|v| ≤ 1,

0, otherwise
(7)

where K(v) ≥ 0 with
∫

∞
−∞K(v)dv = 1

We also introduce a window width h = hoT where ho << 1.
Some trial and error is needed in order to choose ho. For example,
ho = 0.1 may be a good starting point.

3.1. Maximum Likelihood (ML) equations at time t

The windowed log-likelihood function is essentially the point wise
product of the log-likelihood and the window function in time do-
main, thus, the log-likelihood function centred at time t is given by:

Lt(θ) =

∫ T

0

K(
u− t
h

) lnλ(u, θ)dNu

−
∫ T

0

K(
u− t
h

)(λ(u, θ)− 1)du

where the subscript t in Lt refers to the time dependancy of the
log-likelihood. Note that the idea here is that the parameter is fixed
within the window. But the imposition of the kernel delivers a time-
variant parameter estimate.

If we now differentiate Lt(θ) with respect to θ, and define v =
(u− t)/h, we obtain

∂Lt
∂θ

=

∫ T

0

K(v)

λ(u)

∂λ(u, θ)

∂θ
dNu −

∫ T

0

K(v)
∂λ(u, θ)

∂θ
du (8)

For the time-variant HaL (tv-HaL) model in (4), we have that the
intensity function can be written as:

λ(t, θ) = ζT (t)θ (9)

where θ = [c α1 . . . αp]
T , ζ(t) = [1, x1(t), . . . , xp(t)]

T , and

xl(t) =

∫ t

0

φl(t− u)dNu =
∑

j:Tj<t−

φl(t− Tj). (10)
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We can omit the dependance of λ on θ, and given that within the win-
dow K(v), parameter θ is considered to be constant, the derivatives
of λ(t, θ) take the form

∂λ(t)

∂c
= 1,

∂λ(t)

∂αl
= xl(t) (11)

Replacing (11) in (8), and setting to zero, we obtain

At =

∫ T

0

K(
u− t
h

)du (12)

=

∫ T

0

K(
u− t
h

)
dNu
λ(u)

=

NT∑
i=1

1

λ(Ti)
K(

Ti − t
h

)

Blt =

∫ T

0

K(
u− t
h

)xl(u)du =

∫ T

0

K(
u− t
h

)
xl(u)

λ(u)
dNu (13)

=

NT∑
i=1

K(
Ti − t
h

)
xl(Ti)

λ(Ti)

where NT is the number of events in the interval (0, T ]

4. THE EM ALGORITHM

The Expectation Maximization (EM) algorithm is an iterative algo-
rithm that has been used to optimize the (log-) likelihood function.
For this kind of processes, the EM algorithm can intuitively be de-
rived from the ML equations (12) and (13), which can now be re-
written as:

1 =
1

At

NT∑
1

K(
Ti − t
h

)
1

λ(Ti)
(14)

1 =
1

Blt

NT∑
1

K(
Ti − t
h

)
x(Ti)

λ(Ti)
. (15)

Thus, from (14) and (15), we can find that the EM iterations at time
t are given by:

ck+1(t) = ck(t)
1

At

NT∑
i=1

K(
Ti − t
h

)
1

λk(Ti)
(16)

αk+1
l (t) = αkl (t)

1

Blt

NT∑
i=1

K(
Ti − t
h

)
xl(Ti)

λk(Ti)
(17)

λk(u) = ck(t) +

p∑
l=1

αkl (t)xl(u), 0 ≤ u ≤ T (18)

These iterations ensure that both αk(t) and ck(t) are positive. They
can be computed on a grid of time points e.g., we can pick n, set
δ = T/n, then we have the grid kδ, k = 1, . . . , n.

The integrals At and Bt can be pre-computed at each time t
being approximated as Riemann sums on a similar (preferably finer)
grid.

4.1. Likelihood at time t

Iterations should be monitored by plotting the log-likelihood, which
is given by the following expression:

Lk+1
t =

NT∑
i=1

K(
Ti − t
h

) ln(λk+1(Ti))

−
∫ T

0

K(
u− t
h

)λk+1(u)du+At

=

NT∑
1

ln(λk+1(Ti))− ck+1(t)At −
p∑
l=1

αk+1
l (t)Blt +At

(19)

Substituting the updates (16) and (17) in (19), we have

Lk+1
t =

NT∑
i=1

K(
Ti − t
h

) ln(λk+1(Ti))− ck(t)

NT∑
1

K(
Ti − t
h

)×

1

λk(Ti)
−

p∑
l=1

αkl (t)

NT∑
i=1

K(
Ti − t
h

)
xl(Ti)

λk(Ti)
+At

=

NT∑
i=1

K(
Ti − t
h

) ln(λk+1(Ti))

−
NT∑
i=1

K(
Ti − t
h

)
ck(t) +

∑p
l=1 α

k
l (t)xl(Ti)

λk(Ti)
+At

=

NT∑
i=1

K(
Ti − t
h

) ln(λk+1(Ti))− Āt +At

(20)

where Āt :=
∑Nt

1 K(
Ti − t
h

) can be pre-computed.

5. EXAMPLES

We apply our algorithm to two cases. The first one is on simulated
data, where we exactly know the parameters that generate the data;
and the second application of the algorithm is on modelling of the
spot price spikes in the Australian electricity market.

5.1. Simulated data

We consider the system given by the following intensity function:

λ(t) = c(t) + α(t)
∑
Ti<t

e−β(t−Ti)β,

where c(t) = c0+c1(1−cos(ω0t)), α(t) = α0+α1(1−cos(ω1t))
with ω0 = 2π/T0, and ω1 = 2π/T1. The value for T0 and T1

are chosen to be T0 = T1 = 0.5T , where T is the time interval
where the process occurs, and co = 0.2, c1 = 0.5co, αo = 0.1562,
α1 = 0.5αo.

To generate the data, we run the thinning algorithm [24], and to
check we generated the correct data, we rescale it [25]. After rescal-
ing the data, and compare it to data from a exponential distribution,
we obtain a quantile-quantile (Q-Q) plot of the two distributions. For
lack of space, this is not shown here. The results of a 100 replicates
of the estimation are given below in Fig. 1. Here, we can see that
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Fig. 1. Parameter estimation of time-variant Hawkes-
Laguerre model. Upper plot shows the comparison of lower,
median, and upper quartile with the real value of c(t). Lower
plot shows the comparison of lower, median, and upper quar-
tile with the real value of α(t).

the algorithm can estimate the time-variant nature of the parameters.
In this figure, we compare the lower quartile, the median, and the
upper quartile with the real value for each of the parameters. The
time-variant estimation of βo is given in Fig. 2.

0 500 1000 1500 2000 2500 3000
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0.5

0.55

Time

`

Fig. 2. Estimation of βo

5.2. Spikes in electricity spot price data

We now use data for the spikes in Australian electricity spot price. In
particular, we use data from the state of South Australia. Spikes are
produced when the price of 1 MWh increases over a threshold pre-
viously defined. In particular, we define that threshold to be $ AUD
300 per MWh. A helpful and interesting discussion on determining
appropriate threshold levels can be found in [26].

The result of the time-variant parameter estimation of a first or-
der model is given in Fig. 3. With these parameters, we calculate
the QQ-plot of the estimated model. We then compare it to the QQ-
plot obtained by estimating time-invariant parameters2. The param-
eters for a first order time-invariant model are given by: ĉ = 1.21,
α̂1 = 0.7135, and β̂ = 66. In Fig. 4, we show the comparison of
both QQ- plots. As we observe, the time-variant case (Fig. 4 - right
plot) overperforms the fitting of a time-invariant parameter estima-
tion algorithm (Fig, 3 - left plot). The latter is an indication of the
potential of the approach described in this paper.

2See e.g [27] for details about time-invariant parameter estimation in
Hawkes models.
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Fig. 3. Estimation of time-variant parameters for modelling
spikes in the South Australian electricity spot price.
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Fig. 4. Left: QQ-plot for time-invariant parameters.
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6. CONCLUSIONS

In this work, we have proposed a time-variant parameter estimation
algorithm for Hawkes processes. To the best of the authors’ knowl-
edge, this is the first time such an algorithm is proposed for point
processes.

Our algorithm works by selecting a window of the data, and
estimating the parameters within that window, in which parameters
are considered to be constant. The estimation process is repeated
until the last data point is included in the window.

Simulation results have shown that the estimation algorithm per-
forms well to recover the parameters of interest.

The proposed algorithm has also shown to have a comparative
advantage for modelling spikes in the Australian electricity market
with respect to our earlier time-invariant estimation algorithm. In
particular, we have used data from the state of South Australia to ob-
tain time-variant parameters. When comparing both kind of models,
a better fit is obtained for the time-variant case. The use of more
complex models to model the Australian electricity market is a topic
of current research.
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