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ABSTRACT

The paper considers the problem of joint system identifica-
tion and input signal estimation of an unknown linear system
from noisy observations of the output signal. The input sig-
nal is assumed to be sparse, and each individual input pulse
may affect the system in its own (and unknown) way. Based
on ideas from sparse Bayesian learning, we derive an efficient
expectation maximization (EM) algorithm for jointly estimat-
ing all unknown quantities. Unlike related prior work, the
proposed algorithm does not alternate between estimating the
input signal and estimating the system parameters; instead, all
unknown quantities are jointly updated in each EM step. We
give closed-form expressions for these EM updates, which
can be efficiently computed by Gaussian message passing.

Index Terms— linear state space models, sparse Bayesian
learning, expectation maximization

1. INTRODUCTION

Let y = (y1, . . . , yK) ∈ RK be a given discrete-time signal
of duration K � 1. We wish to “explain” this signal as the
output of a linear state space model (LSSM){

Xk = AXk−1 +Bkuk + εk

yk = CXk + Zk ,
(1)

with states Xk ∈ Rn (with X0 = 0), input signal u =
(u1, . . . uK) ∈ RK , state-transition matrix A ∈ Rn×n, vec-
tors B1, . . . , BK ∈ Rn×1 and C ∈ R1×n, observation noise
Zk

iid∼ N (0, σ2
Z), and state noise εk

iid∼ N (0, σ2
ε I). The input

signal u and all model parameters (A, B1, . . . , BK , C, σ2
Z ,

σ2
ε ) are unknown and to be estimated from y.

As an essential additional condition, we require our es-
timate of u to be sparse, i.e., uk = 0 except for a “small”
fraction of indices k. (Note also that a scale factor can be
moved freely between uk and Bk, which we will address by
suitable normalizations.)

The stated problem is motivated by several applications.
For example, we may want to identify an unknown mechani-
cal system based on its response to multiple impulses of un-

known timing, strength, and orientation. But the stated prob-
lem may also be viewed as parsing the signal y into individual
events (where uk 6= 0), each with individual features Bk, as a
first step in some pattern analysis task (e.g., recovering musi-
cal scores from an audio file).

The stated problem may be viewed as a special case of the
following problem: for given y ∈ RK , minimize ‖y −Hu‖2
(with H ∈ RK×K) by some sparse u ∈ RK . If H is known,
this is a classical compressive sensing problem [1]; if H is
not known, we have a dictionary learning problem. A well-
established approach for the latter (cf. [2–4]) consists in al-
ternating between estimating u for fixed H and estimating H
for fixed u. However, the methods for general H are not well
suited for our problem where only one measurement vector
y is available and the dictionary is strongly coherent (proper
regularization on H must be introduced, cf. [5, 6]). In addi-
tion, those methods often require substantial computational
power since each update has a complexity polynomial in K.

The problem of minimizing ‖y − Hu‖2 by some sparse
vector u has also been addressed in a Bayesian setting. MAP
estimation of u with a sparse prior was used in [7] for blind
source separation with a fixed signal dictionary. More rele-
vant for this paper are sparse Bayesian learning techniques
[8], also known as automatic relevance determination (ARD)
[9,10]. ARD uses compressible priors with hyper-parameters,
which are determined by maximum-likelihood estimation, re-
sulting in an appealing regularization term [11]. In [12], each
element of u and H has its own hyper-parameter. The poste-
rior densities are usually intractable, but amenable to approx-
imative inference using variational Bayesian techniques.

In this paper, building on ideas from [6], we use the basic
idea of ARD and derive an expectation maximization (EM)
algorithm to simultaneously estimate all unknown parame-
ters. Unlike related prior work (including [6]), we do not iter-
ate between estimating the input signal u and estimating the
system parameters: instead, all unknown quantities are jointly
updated in every EM iteration. The computational complex-
ity isO(n2K) per EM iteration, due to efficient computations
of the required quantities by Gaussian message passing and
new closed-form expressions for the EM updates.
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2. LOCAL MAXIMA AT SPARSE SOLUTIONS

As stated in the introduction, we want to estimate the input
vector u and the system model parameters in (1) under the
constraint that u is sparse, i.e., ‖u‖0 � K. Sparse Bayesian
technique considers U as a random vector with ARD param-
eters σ2

U = (σ2
U1
, . . . , σ2

UK
) such that

p(u|σ2
U ) =

K∏
k=1

1√
2πσ2

Uk

exp

(
− u2k
2σ2

Uk

)
, (2)

i.e., Uk ∼ N (0, σ2
Uk

). Then, parameter estimation is per-
formed by maximizing the type-II likelihood (cf. [13])

L(θ) = p(y|θ) =
∫
p(y|θ, u)p(u|θ) du , (3)

with θ = (C,A,B1, . . . , BK , σ
2
Z , σ

2
ε , σ

2
U ) and from (1)

p(y|θ, u) =
∫ K∏

k=1

1√
2πσ2

Z

e
− 1

2σ2
Z

(yk−Cxk)2

· 1

(2πσ2
ε )

n
2
e
− 1

2σ2ε
‖xk−(Axk−1+Bkuk)‖2

dx . (4)

Let θ̂ be a local maximum of L(θ) such that ‖B̂k‖ = 1 for
all k. Note thatL(θ) is insensitive to moving a scale factor be-
tweenBk and σUk . Using the notation of Section 5, let µ̃Xk =
−→mXk −←−mXk and Qk = (AFk−1

−→
VXk−1

AT +
←−
VXk + σ̂2

ε I)
−1

be quantities obtained by Gaussian message passing in the
factor graph in Fig. 1 of the system model (1) with θ̂ plugged-
in (cf. [14, 15]). Then, denoting θ̂k all the parameters in θ̂
except B̂k and σ̂2

Uk
, the marginal log-likelihood with respect

to (σ2
Uk
, Bk) can be expressed as

2 ln p(y|θ̂k, Bk, σ2
Uk

)

=
σ2
Uk

(BT
kQkµ̃Xk)

2

1 + σ2
Uk
BT
kQkBk

− ln(1 + σ2
Uk
BT
kQkBk) + αk , (5)

with αk independent of σ2
Uk

and Bk. Thus, at a local maxi-
mum, p(y|θ̂k, Bk, σ2

Uk
) is maximum, which leads to:

Lemma 1 If

µ̃T
Xk
Qkµ̃Xk > 1 , (6)

then

σ̂2
Uk

=

(
1− 1

µ̃T
Xk
Qkµ̃Xk

)
‖µ̃Xk‖2 > 0 (7)

and

B̂k =
µ̃Xk
‖µ̃Xk‖

. (8)

Else, σ̂2
Uk

= 0 and B̂k is any vector such that ‖B̂k‖ = 1.

· · · A
X ′k−1

+ + =
Xk · · ·

X ′k

C

+

yk

N (0, σ2
Z)

N (0, σ2
ε I)

Bk

Uk

N (0, σ2
Uk

)

Fig. 1. Factor graph representation of the LSSM

An input (i.e., σ̂2
Uk

> 0) is introduced only to compen-
sate a substantial error µ̃T

Xk
Qkµ̃Xk between the forward and

backward state estimates. Indeed, unlike the backward state
estimate←−mXk that is aware of the presence of an input at time
index k, the forward state estimate −→mXk has no evidence of
this specific input. The discrepancy µ̃Xk = −→mXk − ←−mXk is
considerable if an input actually triggers at k. Thus, we ex-
pect that the inequality in (6) holds for few k’s only and thus
a lot of σ̂2

Uk
’s are zero. Consequently, at a local maximum of

the likelihood L(θ), σ̂2
U should be sparse.

In the following, we propose two versions of EM for a
joint estimation of the model and ARD parameters, one with
and one without state transition matrix estimation. As EM is
guaranteed to converge to a local maximum, many compo-
nents of σ̂2

U are expected to converge to zero.

3. JOINT EM ALGORITHM: UNKNOWN A

Considering both U = (U1, . . . , UK) and X = (X0, . . . XK)
as hidden variables, the EM algorithm consists in iteratively
computing E [ln p(y, U,X|θ)] with respect to the joint density
p(u, x|y, θ̂) and updating the parameters according to

θ̂ = argmax
θ

E [ln p(y, U,X|θ)] . (9)

We provide the update formulae for all parameters in θ =
(C,A,B1, . . . , BK , σ

2
Z , σ

2
ε , σ

2
U ) even if some of them might

be fixed a priori. The joint density can be expressed as

−2 ln p(y, u, x|θ)

=

K∑
k=1

(
(yk − Cxk)2

σ2
Z

+ ln(2πσ2
Z) +

u2k
σ2
Uk

+ ln(2πσ2
Uk

)

+
‖xk −Axk−1 −Bkuk‖2

σ2
ε

+ n ln(2πσ2
ε )

)
. (10)

Looking at (10) the optimization problem in (9) splits for
(C, σ2

Z), (A,B1, . . . , BK , σ
2
ε ) and each individual σ2

Uk
.
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For k ∈ {1, . . . ,K}, we have

σ̂2
Uk

= argmin
σ2
Uk

1

σ2
Uk

E
[
U2
k

]
+ ln

(
2πσ2

Uk

)
= E

[
U2
k

]
. (11)

Denoting κ =
∑K
k=1 y

2
k, ξC =

∑K
k=1 E[Xk] yk, and VC =∑K

k=1 E
[
XkX

T
k

]
, we have

Ĉ = argmin
C

κ− 2CξC + CVCC
T = ξTCV

−1
C (12)

σ̂2
Z =

1

K

K∑
k=1

E
[
(yk − ĈXk)

2
]
=

1

K

(
κ− ξTCV −1C ξC

)
. (13)

Then, for the remaining parameters we get

B̂k =
E[UkXk]− ÂE[UkXk−1]

E[U2
k ]

, k ∈ {1, . . . ,K} (14)

σ̂2
ε =

1

nK

K∑
k=1

E
[
‖Xk − ÂXk−1 − B̂kUk‖2

]
(15)

Â = argmin
A

Tr
(
AVAA

T − 2AξA
)
, (16)

with

VA =

K∑
k=1

E
[
Xk−1X

T
k−1
]
− E[UkXk−1]E[UkXk−1]

T

E[U2
k ]

(17)

ξA =

K∑
k=1

E
[
Xk−1X

T
k

]
− E[UkXk−1]E[UkXk]

T

E[U2
k ]

. (18)

The cost function (16) is a quadratic form in A and closed-
form expressions can be derived for
• A ∈ Rn×n: Â = ξTAV

−1
A

• A in controllable or observable canonical form
• A in block-Jordan form
Thus, all the parameters in θ can be updated jointly with

closed-form expressions. In addition, all the expectation
quantities can be efficiently computed using Gaussian mes-
sage passing as described in Section 5.

We conclude this section with the following remarks.
1. The observation noise variance σ2

Z controls the spar-
sity level and should be fixed a priori. It also sets the
desired accuracy of the reconstructed signal.

2. The state noise variance σ2
ε corresponds to the LSSM

mismatch and should converge to a low value. At
the same time its value defines the threshold deciding
whether to introduce an input or not. The initial value
of σ2

ε must be chosen big enough to allow changes of
the system model.

3. For numerical stability (i.e., avoiding quantities to
grow to infinity), after each EM iteration, we apply
the following rescaling: Bk ← σUkBk and σUk ← 1.

4. During the EM algorithm, many elements of (σUk ·
‖Bk‖)k∈{1,...,K} will converge to zero but will typi-
cally not become exact zeros. To obtain exact zeros, a

final hard update (e.g., as in Section 4 or the marginal
likelihood update in (7)) can be performed.

5. Restrictions of the admissible input vectors, i.e., Bk ∈
B ⊂ Rn can be incorporated in the EM update at the
price of potentially giving up the closed-form expres-
sions for both Bk and A. In case of linear constraints,
closed-form expressions can still be derived.

6. In case of B1 = · · · = BK , the EM update can easily
be adapted.

4. JOINT EM ALGORITHM: FIXED A

In this section, we assume that the matrixA is known. Instead
of adapting the algorithm of Section 3 accordingly (which is
straightforward), we here consider an interesting alternative
where we use EM with only X as hidden variable. Recall
that the cost function is insensitive to moving a scale factor
between σUk and Bk. Here we enforce ‖Bk‖ = 1 which sim-
plifies the formulae without changing the overall estimation
problem. After marginalizing over u, we have

−2 ln p(y, x|θ) =
K∑
k=1

1

σ2
Z

(yk − Cxk)2 + ln(2πσ2
Z)

+
1

σ2
ε

‖xk −Axk−1‖2 + n ln(2πσ2
ε )

−σ
2
Uk

(
BT
k (xk −Axk−1)

)2
σ2
ε (σ

2
ε + σ2

Uk
)

+ ln

(
σ2
ε + σ2

Uk

σ2
ε

)
. (19)

The EM algorithm consists in computing E [ln p(y,X|θ)]
with respect to the density p(x|y, θ̂) and updating the param-
eters according to

θ̂ = argmax
θ

E [ln p(y,X|θ)] . (20)

The updates for C and σ2
Z are similar to (12) and (13). For

the input vectors, we have

B̂k = argmax
‖Bk‖=1

E
[(
BT
k (Xk −AXk−1)

)2]
. (21)

Thus, B̂k is the unit eigenvector corresponding to the maxi-
mum eigenvalue λk of E

[
(Xk −AXk−1)(Xk −AXk−1)T

]
.

Then, the updates for σ2
Uk

and σ2
ε are

σ̂2
Uk

= max
(
0, λk − σ̂2

ε

)
(22)

σ̂2
ε = argmin

σε

MA

σ2
ε

+ nK ln(σ2
ε )

+
∑
λk>σ2

ε

−λk − σ
2
ε

σ2
ε

+ ln

(
λk
σ2
ε

)
, (23)

where MA =
∑K
k=1 E

[
‖Xk −AXk−1‖2

]
. This last opti-

mization problem can be solved by considering the K + 1
sub-problems of restricting σ2

ε in the interval of consecutive
eigenvalues ranked in decreasing order and selecting the opti-
mum. Unlike the joint EM algorithm of Section 3, the update
of σ̂2

Uk
can create exact zeros.
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5. STABLE AND EFFICIENT MESSAGE PASSING

All required quantities for EM can be efficiently computed by
Gaussian message passing in the factor graph of Fig. 1. The
update rule parameterization must lead to a stable implemen-
tation while σ2

ε and any σ2
Uk

tend to or are exactly zero. The
modified Bryson-Frazier smoother is a suitable choice of up-
date rule and in addition avoids matrix inversions. It proceeds
in two sweeps (cf. [6]). The forward pass for k = 1, . . . ,K

−→mXk = A(−→mXk−1
+ (yk−1− C−→mXk−1

)gk−1
−→
VXk−1

CT) (24)
−→
VXk = σ2

Uk
BkB

T
k + σ2

ε I +AFk−1
−→
VXk−1

AT (25)

gk = (σ2
Z + C

−→
VXkC

T)−1 (26)

Fk = I − gk
−→
VXkC

TC , (27)

with initialization −→mX0 ,
−→
VX0 , and y0 all zeros.

Then, the backward pass for k = K, . . . , 1

W̃Xk µ̃Xk = FT
k A

TW̃Xk+1
µ̃Xk+1

− gk(yk − C−→mXk)CT (28)

W̃Xk = FT
k A

TW̃Xk+1
AFk + gkC

TC , (29)

initialized with W̃XK+1
= 0 and W̃XK+1

µ̃XK+1
= 0. The pos-

terior and joint posterior of Xk, Uk, and Xk−1 are all Gaus-
sian and thus characterized by their mean and covariance ma-
trix. The posterior density of Xk is characterized by

mXk = −→mXk −
−→
VXkW̃Xk µ̃Xk (30)

VXk =
−→
VXk(I − W̃Xk

−→
VXk) . (31)

The joint posterior of Xk−1 and Xk is characterized by

VXk−1,XT
k
= Fk−1

−→
VXk−1

AT(I − W̃Xk
−→
VXk) (32)

E[Xk−1X
T
k ] = VXk−1,XT

k
+mXk−1

mT
Xk

. (33)

The posterior density of Uk is parameterized by

mUk = −σ2
Uk
BT
k W̃Xk µ̃Xk (34)

VUk = σ2
Uk
− (σ2

Uk
)2BT

k W̃XkBk (35)
E[U2

k ]

σ2
Uk

= 1 + σ2
Uk

(
(BT

k W̃Xk µ̃Xk)
2 −BT

k W̃XkBk

)
. (36)

The expected correlations can be expressed as

E[UkXk−1]/σ
2
Uk

= −Fk−1
−→
VXk−1

ATW̃XkBk −BT
k W̃Xk µ̃XkmXk−1

(37)
E[UkXk]/σ

2
Uk

= (I −−→VXkW̃Xk)Bk −BT
k W̃Xk µ̃XkmXk . (38)

6. EXPERIMENTAL RESULTS

To demonstrate the pertinence of the algorithms, we conduct
series of simulations on signals generated using the system

0
1
2
3

In
pu

t True
Estimated

0 200 400 600 800 1,000 1,200

−2
−1
0
1
2

Time

O
ut

pu
t

Measured
Estimated

Fig. 2. Observed and estimated signal (after 300 iterations)

model (1) with K = 104, n = 24, σ2
ε = 0, (C,A) such that

each input generates a sum of exponentially damped cosines
of different attenuation and frequency as illustrated in Fig. 2.
The input vector is randomly generated such that the spar-
sity level (i.e., ‖u‖0/K) is 0.12% and each non-zero compo-
nent is uniformly drawn from [0.75, 1.25]. The simulations
are repeated 100 times at 3 different observation noise vari-
ances σ2

N ∈ {10−4, 10−3, 10−2}. Subsequently, the desired
sparsity level is controlled by tuning the parameter σ2

Z of the
algorithm (or equivalently the ratio η = σ2

Z/σ
2
N ).

Tables 1 and 2 show the estimated sparsity level (to be
compared with 0.12% ) and the percentage of correctly de-
tected inputs for the algorithms of Sections 3 and 4 respec-
tively, after 1000 iterations (and a final hard update). We ob-
serve that a bigger η generally enforces a sparser estimate.
The shaded values emphasize the regimes of interest where
the algorithm outputs both a good detection ability and a spar-
sity level close to the actual one. Note that to achieve such
accuracy the estimated system model has to be sufficiently
good. A finer tuning of η would improve the estimates.

However, note that the hatched values in Table 1 empha-
size cases where the algorithm must output a better data fit
than expected (i.e., σ2

Z � σ2
N ). Thus, Â ≈ 0 and the esti-

mated input cannot be sparse. As a result, the final hard up-
date fails and these results must be interpreted with caution.

σ2N

η 10−2 10−1 1 3 10

10−4 4.6 0.01 13.5 0.02 71.4 0.09 100 0.13 96.9 0.12
10−3 5.2 0.01 90.6 0.24 99.0 0.18 83.6 0.11 90.9 0.12
10−2 100 7.15 100 6.56 78.9 0.68 30.0 0.06 26.7 0.04

Table 1. Estimated sparsity level (blue, right) and correctly
detected inputs (black), in % for A unknown, cf. Section 3

σ2N

η 10−1 1 3 10 102

10−4 99.8 0.12 99.8 0.12 99.9 0.12 99.7 0.12 96.6 0.12
10−3 99.8 2.47 99.2 1.20 98.8 0.18 96.6 0.12 88.8 0.11
10−2 98.1 2.07 98.4 1.65 95.2 0.60 89.7 0.11 30.8 0.04

Table 2. Estimated sparsity level (blue, right) and correctly
detected inputs (black), in % for A fixed, cf. Section 4

4197



7. REFERENCES

[1] E. J. Candès and M. B. Wakin, “An introduction to com-
pressive sampling,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 21–30, 2008.

[2] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan,
T. W. Lee, and T. J. Sejnowski, “Dictionary learning
algorithms for sparse representation,” Neural Computa-
tion, vol. 15, no. 2, pp. 349–396, 2003.

[3] S. D. Babacan, R. Molina, M. N. Do, and A. K. Kat-
saggelos, “Bayesian blind deconvolution with general
sparse image priors,” in Computer Vision–ECCV 2012,
pp. 341–355. Springer, 2012.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An
algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Transactions on Signal
Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[5] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman,
“Understanding and evaluating blind deconvolution al-
gorithms,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2009, pp. 1964–
1971.

[6] L. Bruderer, H. Malmberg, and H.-A. Loeliger, “De-
convolution of weakly-sparse signals and dynamical-
system identification by Gaussian message passing,” in
IEEE International Symposium on Information Theory
(ISIT), 2015.

[7] M. Zibulevsky and B. Pearlmutter, “Blind source sep-
aration by sparse decomposition in a signal dictionary,”
Neural Computation, vol. 13, no. 4, pp. 863–882, 2001.

[8] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning
for basis selection,” IEEE Transactions on Signal Pro-
cessing, vol. 52, no. 8, pp. 2153–2164, 2004.

[9] D. P. Wipf and S. S. Nagarajan, “A new view of auto-
matic relevance determination,” in Advances in Neural
Information Processing Systems, 2008, pp. 1625–1632.

[10] M. E. Tipping, “Sparse Bayesian learning and the rele-
vance vector machine,” The Journal of Machine Learn-
ing Research, vol. 1, pp. 211–244, 2001.

[11] D. P. Wipf, B. D. Rao, and S. S. Nagarajan, “Latent
variable Bayesian models for promoting sparsity,” IEEE
Transactions on Information Theory, vol. 57, no. 9, pp.
6236–6255, 2011.
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