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ABSTRACT

In this paper, we present an improved set-membership partial-
update affine projection (I-SM-PUAP) algorithm, aiming at
accelerating the convergence, and decreasing the update rates
and the computational complexity of the set-membership
partial-update affine projection (SM-PUAP) algorithm. To
meet these targets, we constrain the weight vector perturba-
tion to be bounded by a hypersphere instead of the threshold
hyperplanes as in the standard algorithm. We use the distance
between the present weight vector and the expected update
in the standard set-membership affine projection (SM-AP)
algorithm to construct the hypersphere. With this strategy,
the new algorithm shows better behavior in the early itera-
tions. Simulation results verify the excellent performance of
the proposed algorithm related to the convergence rate and
the required number of updates.

Index Terms— adaptive filtering, set-membership filter-
ing, partial-update, identification problem

1. INTRODUCTION

Adaptive filters have applications in a wide range of areas
such as noise cancellation, signal prediction, echo cancel-
lation, communications, radar, and speech processing. In
several applications, the large number of coefficients to be
updated leads to high computational complexity, turning the
adaptation of the filter coefficients prohibitive in terms of
hardware requirements. In some cases, like acoustic echo
cancellation, the adaptive filter might use a few thousands of
coefficients in order to model the underlying physical system
with sufficient accuracy. In these applications, the conver-
gence would entail a large number of iterations, calling for
more sophisticated updating rule which is inherently more
computationally intensive. For a given adaptive filter, the
computational complexity can be reduced by updating only
part of the filter coefficients at each iteration, forming a fam-
ily of algorithms called partial-update (PU) algorithms. In
the literature, several variants of adaptive filtering algorithms
with partial-update have been proposed [1–14].

Another powerful approach to decrease the computational
complexity of an adaptive filter is to employ set-membership

filtering (SMF) approach [2, 15]. The SMF allows the re-
duction in computational complexity, since the filter coeffi-
cients are updated only when the estimation error is higher
than a pre-determined threshold. Algorithms developed from
the SMF framework employ a deterministic objective func-
tion related to a bounded error constraint on the filter output,
such that the updates belong to a set of feasible solutions. Im-
plementation of SMF algorithms involves two main steps: 1)
information evaluation, 2) parameter update. As compared
with the standard normalized least mean square (NLMS) and
affine projection (AP) algorithms, the set-membership nor-
malized least mean square and affine projection (SM-NLMS
and SM-AP) algorithms lead to reduced computational com-
plexity chiefly due to data-selective updates [15–22].

The use of PU strategy decreases the computational com-
plexity while reducing convergence speed. We employ SMF
technique to reduce further the computational load due to
lower number of updates. However applying the SMF and PU
strategies together might result in slow convergence speed.
One approach to accelerate the convergence speed is choos-
ing a smaller error estimation bound but it might increase
the number of updates. Also, if we adopt a higher error
estimation threshold to reduce the number of updates, the
convergence rate decreases. Therefore, convergence speed
and computational complexity are conflicting requirements.

In this paper, we introduce an interesting algorithm which
can accelerate the convergence speed and simultaneously re-
duce the number of updates (and as a result decrease the com-
putational complexity) in the SM-PUAP algorithm. In the
SM-PUAP algorithm, some updates move too far from their
SM-AP update; especially when the angle between the updat-
ing direction and the threshold hyperplane is small. In this
case we might have a large disturbance in the coefficient up-
date while attempting to reach the feasibility set. Therefore,
to limit the distance between two consecutive updates, first
we will construct a hypersphere centered at the present weight
vector whose radius equals the distance between the present
weight vector and the weight vector that would be obtained
with the SM-AP algorithm. This radius is an upper bound
on the Euclidean norm of the coefficient disturbance that is
allowed in the proposed I-SM-PUAP algorithm.

The organization of the paper is as follows. In Section 2,
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the concept of SMF is briefly described. Section 3 reviews
the SM-PUAP algorithm. In Section 4, we derive the M-SM-
PUAP algorithm. Section 5 presents simulations of the algo-
rithms. Section 6 contains the conclusions.

2. SET-MEMBERSHIP FILTERING (SMF)

The goal of the SMF [2] is to find the filter coefficient vec-
torw such that the magnitude of the estimation error is upper
bounded by a prescribed parameterγ. Several valid estimates
of w satisfy the chosen boundγ for the estimation error at
instantk. Let theconstraint set H(k) denote the set consist-
ing of all vectorsw such that their estimation errors at time
instantk are upper bounded in magnitude byγ, i.e.,

H(k) = {w ∈ R
N : |d(k)−w

T
x(k)| ≤ γ}, (1)

whereR and the superscriptT denote the real numbers and
transpose operator, respectively. The quantitiesx(k), w, and
d(k) are input vector, weight vector, and desired signal, re-
spectively. Themembership set ψ(k) is defined as

ψ(k) =
k
⋂

i=0

H(i). (2)

The idea of set-membership recursion techniques is to
adapt the coefficient vector such that it will always remain
within the feasibility set. Due to difficulties to compute
ψ(k), we calculate a point estimate using, for example, the
information provided by the constraint setH(k) like in the
set-membership NLMS algorithm [15], or several previous
constraint sets as is done in the set-membership affine projec-
tion algorithm [17].

3. SET-MEMBERSHIP PARTIAL-UPDATE AFFINE
PROJECTION ALGORITHM

In this section we introduce the SM-PUAP algorithm [2].
The main objective in the partial-update adaptation is to
perform updates inM out of N adaptive filter coefficients,
whereN is the order of adaptive filter. TheM coefficients
to be updated at time instantk are specified by an index set
IM (k) = {i1(k), · · · , iM (k)} with {ij(k)}

M
j=1 chosen from

the set{1, · · · , N}. Note thatIM (k) varies with the time
instantk. As a result, theM coefficients to be updated can
change according to the time instant. The choice of whichM

coefficients should be updated is related to the optimization
criterion chosen for algorithm derivation. The SM-PUAP
algorithm [2] takes the update vectorw(k + 1) as the vector
minimizing the Euclidean distance‖w(k + 1) − w(k)‖2

subject to the constraintw(k + 1) ∈ H(k) in such a way that
onlyM coefficients are updated.

The optimization criterion in the SM-PUAP algorithm is
following described. LetψL(k) indicate the intersection of

the lastL constraint sets. A coefficient update is implemented
wheneverw(k) 6∈ ψL(k) as follows

min ‖w(k + 1)−w(k)‖2

subject to :

dap(k)−X
T
ap(k)w(k + 1) = γ̄(k)

C̃IM (k)[w(k + 1)−w(k)] = 0

(3)

where
dap(k) ∈ R

L×1 contains the desired output
from theL last time
instants;

γ̄(k) ∈ R
L×1 specifies the point inψL(k);

Xap(k) ∈ R
N×L contains the corresponding

input vectors, i.e.,

dap(k) = [d(k) d(k − 1) · · · d(k − L+ 1)]T ,

γ̄(k) = [γ0(k) γ1(k) · · · γL−1(k)]
T ,

Xap(k) = [x(k) x(k − 1) · · · x(k − L+ 1)],

(4)

with x(k) being the input-signal vector

x(k) = [x(k) x(k − 1) · · · x(k −N + 1)]T . (5)

Moreover, the matrixC̃IM (k) = I − CIM (k) is a comple-
mentary matrix that gives̃CIM (k)w(k + 1) = C̃IM(k)w(k),
which means that onlyM coefficients are updated. The
threshold vector elements are such that|γi(k)| ≤ γ, for
i = 0, · · · , L − 1. The matrixCIM(k) is a diagonal matrix
that identifies the coefficients to be updated at instantk, if
an update is required. This matrix hasM nonzero elements
equal to one located at positions declared byIM (k).

The updating equation of the SM-PUAP algorithm is
given by

w(k + 1) =

{

w(k) +P(k) if |e0(k)| > γ

w(k) otherwise
, (6)

where

P(k) = CIM(k)Xap(k)P
′(k)(eap(k)− γ̄(k)), (7)

P
′(k) = (XT

ap(k)CIM (k)Xap(k) + δI)−1, (8)

eap(k) = [e0(k) · · · eL−1(k)]
T , (9)

with ei(k) = d(k− i)−w
T (k)x(k− i) for i = 0, · · · , L−1.

In the equation (8),δ andI are a small positive constant and
an L × L identity matrix, respectively. The diagonal ma-
trix δI is added to the matrix to be inverted in order to avoid
numerical problems in the inversion operation in the cases
X

T
ap(k)CIM (k)Xap(k) is ill conditioned.

We can observe that for a fixed value of‖eap(k)−γ̄(k)‖2,
the value of‖w(k + 1)−w(k)‖2 is minimized if‖P′(k)‖ is
minimized. As a consequence, a natural choice for theM

coefficients to be updated are those that will be multiplied
by the elements ofXap(k) with the largest norm. Figure 1
illustrates the update in SM-PUAP algorithm inR2 forL = 1.
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Fig. 1. Update in SM-PUAP algorithm inR2 for L = 1.

4. IMPROVED SET-MEMBERSHIP
PARTIAL-UPDATE AFFINE PROJECTION

ALGORITHM

In this section we propose the I-SM-PUAP algorithm aiming
at accelerating the convergence speed of SM-PUAP algorithm
and decreasing the number of updates.

Since the partial update strategy deviates the updating di-
rection from the one determined by the input signal vector
x(k) utilized by the SM-PUAP algorithm, it is natural that
the size of the step for a partial update algorithm should be
smaller than the corresponding algorithm that updates all co-
efficients. A solution to this problem is to constrain the Eu-
clidean norm of the coefficient disturbance of the partial up-
date algorithm to the disturbance implemented by the origi-
nating non partial updating algorithm, in our case the SM-AP
algorithm. For that we build hypersphere,S(k), whose radius
is the distance between thew(k) and SM-AP update. The
SM-AP update takes a step towards the hyperplanesd(k) −
w

T
x(k) = ±γ with the minimum disturbance, i.e., when the

step in the directionx(k) touches perpendicularly the hyper-
plane. Therefore, the radius of the hypersphereS(k) is given
by

µ(k) = min
( |wT (k)x(k) − d(k)± γ|

‖x(k)‖2

)

, (10)

where‖.‖2 is the Euclidean norm inRN . The equation de-
scribing the hypersphereS(k) with the radiusµ(k) and cen-
tered atw(k) is as follows

(w1 − w1(k))
2 + · · ·+ (wN − wN (k))2 = µ2(k). (11)

As can be observed in Figure 1,w(k + 1) is the point
where, starting fromw(k), the vector representing thew(k+
1) direction touches the hyperplaned(k)−w

T
x(k) = γ. Un-

like the SM-PUAP algorithm, in the I-SM-PUAP algorithm
w(k + 1) is the point where, starting fromw(k), the vector
representing the partial direction touches the definedN di-
mensional hypersphereS(k) and points at a sparse version of

x(k). The process of deriving the I-SM-PUAP algorithm is
described in Figure 2.

Define ŵ(k) as the update result of equation (6) with
γ̄(k) = [0 · · · 0]T . In order to find the update ofw(k) to the
boundary of hypersphereS(k) such thatC̃IM̄ (k)w(k + 1) =

C̃IM̄(k)w(k) we have to find the intersection of hyper-
sphereS(k) with the line l(k) passing throughw(k) and
ŵ(k). This line, shown in Figure 2, is parallel to the vector
u(k) = a(k)

‖a(k)‖2

, wherea(k) = [ŵ1(k)−w1(k) · · · ŵN (k)−

wN (k)]T . Hence, the equation of the linel(k) is given as fol-
lows











w1−w1(k)
u1(k)

= · · · = wi−wi(k)
ui(k)

= · · · = wN−wN (k)
uN (k) , for i ∈ IM̄ (k)

wi = wi(k) for i 6∈ IM̄ (k)

. (12)

In order to find the intersection of the linel(k) with the hy-
persphereS(k), we should replace equation (12) in equation
(11). Thus, we will attainwi = wi(k) for i 6∈ IM̄ (k), and for
i ∈ IM̄ (k) we have

u21(k)

u2i (k)
(wi − wi(k))

2 + · · ·+ (wi − wi(k))
2+

· · ·+
u2N (k)

u2i (k)
(wi − wi(k))

2 = µ2(k). (13)

Then,

(wi − wi(k))
2 = u2i (k)µ

2(k), (14)

where we obtained the last equality owing to‖u(k)‖2 = 1.
Therefore, the intersections of the linel(k) and the hyper-
sphereS(k) are given by

wi = wi(k)± ui(k)µ(k). (15)

We will choose the positive sign in equation (15) since the
direction of the vectora(k) is fromw(k) to ŵ(k). As a result,
the vectorw(k + 1) becomes as below

w(k + 1) = w(k) + µ(k)u(k). (16)

Also, as an alternative method, we can getw(k + 1)
through an elegant geometrical view. Denotew(k + 1) in
equation (6) aŝw(k) while takingγ̄(k) = [0 · · · 0]T . Define
a(k) as,

a(k) = ŵ(k)−w(k) = CIM̄(k)Xap(k)P
′(k)eap(k). (17)

Since we want the update up to the boundary of hypersphere
S(k) centered atw(k) with radiusµ(k) in the direction of
a(k), we get the update equation as follows

w(k + 1) = w(k) + µ(k)
a(k)

‖a(k)‖2

= w(k) + µ(k)u(k). (18)

Table 1 summarizes the I-SM-PUAP algorithm.
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Fig. 2. Update in I-SM-PUAP algorithm inR2 for L = 1.

Table 1. Improved Set-Membership Partial-Update Affine
Projection(I-SM-PUAP) Algorithm.

I-SM-PUAP Algorithm

Initialization
x(−1) = w(0) = [0 · · · 0]T

δ = small positive constant
chooseγ
Do for k ≥ 0
eap(k) = dap(k)−X

T
ap(k)w(k)

if |e0(k)| > γ

µ(k) = min
(

|−e0(k)±γ|
‖x(k)‖2

)

a(k) = CI
M̄

(k)Xap(k)[XT
ap(k)CI

M̄
(k)Xap(k) + δI]−1

eap(k)

w(k + 1) = w(k) +
µ(k)

‖a(k)‖2
a(k)

else
w(k + 1) = w(k)

end
end

5. SIMULATIONS

In this section, the SM-PUAP algorithm [2] and the proposed
I-SM-PUAP algorithm are applied to a system identification
problem. The unknown system has orderN = 80 and its co-
efficients are random scalars drawn from the standard normal
distribution. The input signal is zero-mean Gaussian noise
with σ2

x = 1. The signal-to-noise ratio (SNR) is set to 20
dB, i.e.,σ2

n = 0.01. The bound on the output estimation er-
ror is chosen asγ =

√

25σ2
n. Also, we adopt the threshold

bound vector̄γ(k) asγ0(k) =
γe0(k)
|e0(k)|

andγi(k) = d(k− i)−

w
T (k)x(k − i), for i = 1, · · · , L − 1 [2, 23]. The regular-

ization constant,δ, is 10−12 andw(0) = [1 · · · 1]T which
is not close to the unknown system. All learning curves av-
eraged over 200 trials. We are updating 50 percent of the
components randomly chosen of the filter to illustrate the par-
tial updating, i.e., half of the elements ofIM (k) are nonzero
at each time instantk. Figure 3 shows the learning curves
for the I-SM-PUAP algorithm withL = 2, 5, and 70, and the
learning curves for the SM-PUAP algorithm withL = 65 and
70. Also, in Figure 3 a blue curve is depicted using correlated
inputs andL = 2. In fact, for the blue curve all of the spec-
ifications of the system are the same as explained above and
the only difference is the input signal. The correlated input
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Fig. 3. Learning curves of the I-SM-PUAP algorithm applied
on system identification problem.

signal is chosen asx(k) = 0.95x(k − 1) + 0.19x(k − 2) +
0.09x(k − 3) − 0.5x(k − 1) + m(k − 4), wherem(k) is a
zero-mean Gaussian noise with unit variance.

The average number of updates performed by the I-SM-
PUAP algorithm are 8.3%, 6.5%, and 2% for L = 2, 5, and
70, respectively, and 20% in the case of correlated input sig-
nal. The average number of updates implemented by the SM-
PUAP algorithm are 14% and 25% forL = 70 and 65, respec-
tively. Note that in both algorithms we have to find the inverse
of anL × L matrix, thus largeL implies high computational
complexity. Therefore, the I-SM-PUAP algorithm has lower
computational complexity since it presents fast convergence
even for small value ofL. Also, it is worth mentioning that
forL < 65 the SM-PUAP algorithm does not reach its steady-
state in 10000 iterations. From the results, we can observe
that the proposed algorithm, I-SM-PUAP, has faster conver-
gence speed, lower number of updates, and lower computa-
tional complexity as compared to the SM-PUAP algorithm.

6. CONCLUSIONS

We have introduced an improved set-membership partial-
update affine projection (I-SM-PUAP) algorithm aiming at
accelerating the convergence rate of the set-membership
partial-update affine projection (SM-PUAP) algorithm, with
lower computational complexity and reduced number of up-
dates. In order to achieve this goal, we use the distance
between the present weight vector and the one obtained with
the SM-AP update, in order to provide a hypersphere that up-
perbounds the coefficient disturbance. Numerical simulations
for system identification problem have confirmed that the I-
SM-PUAP algorithm has not only faster convergence rate, but
also lower computational complexity and lower number of
updates as compared with the previously proposed SM-PUAP
algorithm.
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