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ABSTRACT filtering (SMF) approach [2,15]. The SMF allows the re-

In this paper, we present an improved set-membership Iaartiaduc’uon in computational complexity, since the filter coeffi

. L . - cients are updated only when the estimation error is higher
update affine projection (I-SM-PUAP) algorithm, aiming at X .
accelerating the convergence, and decreasing the updese r6éhan a pre-determined threshold. Algorithms developeihfro

and the computational complexity of the set-membershi _he SMF framework employ a determi_nistic objet_:tive func-
partial-update affine projection (SM-PUAP) algorithm. To ion related to a bounded error constraint on the filter otJtpu

meet these targets, we constrain the weight vector pe|=turbc511UCh that t.he updates belong to a'set of feasible s.olutmns. !
Pdementatlon of SMF algorithms involves two main steps: 1)

tion t i . .
lon to be bounded by a hypersphere instead of the threshol formation evaluation, 2) parameter update. As compared

hyperplanes as in the standard algorithm. We use the distant" .
between the present weight vector and the expected upda‘?’#h the st.anQard normahzegl least mean square (NLMS) and
ine projection (AP) algorithms, the set-membership nor-

in the standard set- bership affi jecti SM-AP] . . .
ard set-membership affine projection ( >;wallzed least mean square and affine projection (SM-NLMS

algorithm to construct the hypersphere. With this strateg . )
the new algorithm shows better behavior in the early iteraf”lnol SM-AP) algorithms lead to reduced computational com-

tions. Simulation results verify the excellent performainé pleﬁa/ ch|eflyfd|;1e to data-s;:lectlve upd:ues [15_22].' |
the proposed algorithm related to the convergence rate and . euseo U ;trategy ecreases the computational com-
the required number of updates. plexity while reducing convergence speed. We employ SMF

o o technique to reduce further the computational load due to
Index Terms— adaptive filtering, set-membership filter- |ower number of updates. However applying the SMF and PU

ing, partial-update, identification problem strategies together might result in slow convergence speed
One approach to accelerate the convergence speed is choos-
1. INTRODUCTION ing a smaller error estimation bound but it might increase

the number of updates. Also, if we adopt a higher error
Adaptive filters have applications in a wide range of areagstimation threshold to reduce the number of updates, the
such as noise cancellation, signal prediction, echo cancetonvergence rate decreases. Therefore, convergence speed
lation, communications, radar, and speech processing. knd computational complexity are conflicting requirements
several applications, the large number of coefficients to be In this paper, we introduce an interesting algorithm which
updated leads to high computational complexity, turnirg th can accelerate the convergence speed and simultaneously re
adaptation of the filter coefficients prohibitive in terms of duce the number of updates (and as a result decrease the com-
hardware requirements. In some cases, like acoustic echpaitational complexity) in the SM-PUAP algorithm. In the
cancellation, the adaptive filter might use a few thousarfids SM-PUAP algorithm, some updates move too far from their
coefficients in order to model the underlying physical syste SM-AP update; especially when the angle between the updat-
with sufficient accuracy. In these applications, the convering direction and the threshold hyperplane is small. In this
gence would entail a large number of iterations, calling forcase we might have a large disturbance in the coefficient up-
more sophisticated updating rule which is inherently morelate while attempting to reach the feasibility set. Themrefo
computationally intensive. For a given adaptive filter, theto limit the distance between two consecutive updates, first
computational complexity can be reduced by updating onlyve will construct a hypersphere centered at the presenhiveig
part of the filter coefficients at each iteration, forming mfa vector whose radius equals the distance between the present
ily of algorithms called partial-update (PU) algorithmsa | weight vector and the weight vector that would be obtained
the literature, several variants of adaptive filtering aihpons ~ with the SM-AP algorithm. This radius is an upper bound
with partial-update have been proposed [1-14]. on the Euclidean norm of the coefficient disturbance that is

Another powerful approach to decrease the computationalllowed in the proposed I-SM-PUAP algorithm.

complexity of an adaptive filter is to employ set-membership  The organization of the paper is as follows. In Section 2,
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the concept of SMF is briefly described. Section 3 reviewshe lastl constraint sets. A coefficient update is implemented
the SM-PUAP algorithm. In Section 4, we derive the M-SM-whenevew (k) ¢ ¢ (k) as follows
PUAP algorithm. Section 5 presents simulations of the algo-

. 2
rithms. Section 6 contains the conclusions. min [w(k +1) —w(k)|

subject to : @)
2. SET-MEMBERSHIP FILTERING (SMF) dap (k) — sz(k:)w(k +1)=5(k)
C k+1)—w(k)] =0
The goal of the SMF [2] is to find the filter coefficient vec- T [W(k + 1) = w(k)]
tor w such that the magnitude of the estimation error is uppewhere Il ) .
bounded by a prescribed parameteBeveral valid estimates dap (k) € R contains the desired output
of w satisfy the chosen bourf for the estimation error at from theL last time
instantk. Let theconstraint set H (k) denote the set consist- ) L Instants; o
ing of all vectorsw such that their estimation errors at time y(k) eR ol SpeCIf_les the point i (lg_);
instantk are upper bounded in magnitudeyi.e., Xap(k) € R contains the corresponding
input vectors, i.e.,
k)= RN : |d(k) — wlx(k)| <7 1
H(k) = {w e RY : |d(k) - w'x(k)| <7}, (1) dup (k) = [d(k) d(k — 1) -~ d(k — T+ 1],
whereR and the superscript’ denote the real numbers and A(k) = Fo(k) 71 (k) -+ 71 (k)] 4)
transpose operator, respectively. The quantitigs, w, and Xop(k) = [x(k) x(k — 1) - x(k — L +1)]
d(k) are input vector, weight vector, and desired signal, re- P ’
spectively. Thenembership set ¢ (k) is defined as with x(k) being the input-signal vector

x(k) = [w(k) 2k —1) - 2(k—= N+ 1D]T.  (5)

Moreover, the matn)CIM(k) = I - Cg,, ) is a comple-
mentary matrix thatglveéizM(k)w(k:—k 1) = CIM(,C)w(lc)
The idea of set-membership recursion techniques is thich means that only\/ coefficients are updated. The
adapt the coefficient vector such that it will always remainthreshold vector elements are such tigik)| < 7, for
within the feasibility set. Due to difficulties to compute ; — ,... L — 1. The matrixCz,, () is a diagonal matrix
¥(k), we calculate a point estimate using, for example, thehat |dent|f|es the coefficients to be updated at instarit
information provided by the constraint sif(k) like in the  an update is required. This matrix h&s nonzero elements
set-membership NLMS algorithm [15], or several previousequal to one located at positions declarediy(k).
constraint sets as is done in the set-membership affinegroje  The updating equation of the SM-PUAP algorithm is

k
= (A (). )
=0

tion algorithm [17]. given by
k)+P(k) if k)| >%
3. SET-MEMBERSHIP PARTIAL-UPDATE AFFINE w(k +1) —{ zgkg ") OtLeeor(W?S‘e NG
PROJECTION ALGORITHM
where

In this section we introduce the SM-PUAP algorithm [2]. , _
The main objective in the partial-update adaptation is to P(k) = Czy (0 Xap (k)P (k) (€ap (k) — 5(K)),  (7)
perform updates in/ out of N adaptive filter coefficients, P'(k) = (XL, (k)Cz,, (1 Xap(k) + 61) 71, (8)
where N is the order of adaptive filter. Th&/ coefficients eap(k) = [eo(k) -+ er_1(k)]T 9)
to be updated at time instahtare specified by an index set P '
Iy (k) = {in(k), - in(k)} with {i;(k)}}L, chosen from  with e;(k) = d(k—i) —w” (k)x(k—i)fori =0,--- , L—1.

the set{1,--- ,N}. Note thatZ,,(k) varies with the time In the equation (8)y andI are a small positive constant and
instantk. As a result, thel/ coefficients to be updated can an L x L identity matrix, respectively. The diagonal ma-
change according to the time instant. The choice of whith trix 61 is added to the matrix to be inverted in order to avoid
coefficients should be updated is related to the optiminationumerical problems in the inversion operation in the cases
criterion chosen for algorithm derivation. The SM-PUAP X (k)Cz,, 1) Xap(k) is ill conditioned.
algorithm [2] takes the update vecter(k + 1) as the vector We can observe that for a fixed value|ef,, (k) —(k)||?,
minimizing the Euclidean distanckw(k + 1) — w(k)||*>  the value of|w(k + 1) — w(k)||? is minimized if | P’ (k)|| is
subject to the constrairt(k + 1) € H (k) in such a way that minimized. As a consequence, a natural choice forthe
only M coefficients are updated. coefficients to be updated are those that will be multiplied
The optimization criterion in the SM-PUAP algorithm is by the elements oK, (k) with the largest norm. Figure 1
following described. Let)” (k) indicate the intersection of illustrates the update in SM-PUAP algorithmis for L = 1.
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w(k)
>
x(k)

Cr, (k]X(k)

x(k). The process of deriving the [-SM-PUAP algorithm is
(k) =7 described in Figure 2.

Define w(k) as the update result of equation (6) with
(k) =10 --- 0]”. In order to find the update of (k) to the
boundary of hypersphei®(k) such thatlCz _ gy w(k + 1) =
CIM(k)w(k) we have to find the intersection of hyper-
sphereS(k) with the line [(k) passing throughw(k) and
w(k). This line, shown in Figure 2, is parallel to the vector
u(k) = 28 wherea(k) = [ty (k) —wy (k) - - - o (k) —

WSM—AP L

lla(®)[l2"
wy (k)]T. Hence, the equation of the lihgk) is given as fol-
lows
Fig. 1. Update in SM-PUAP algorithm if2 for L = 1. “’1;%(’“) == w"‘;f(“,g)(k)

= 71"%;12%(’“)7 forie (k) - (12)

w; = wl(k) fori ¢ IM(]C)

4. IMPROVED SET-MEMBERSHIP . . . . .
PARTIAL-UPDATE AFEINE PROJECTION In order to find the intersection of the lirigk) with the hy-

ALGORITHM perspheres(k), we should replace equation (12) in equation

(11). Thus, we will attainv; = w; (k) fori & Z;;(k), and for
In this section we propose the I-SM-PUAP algorithm aiming? € Zsz (k) we have
at accelerating the convergence speed of SM-PUAP algorithm 2(k)

and decreasing the number of updates. U (w; —w;(k)* + -+ (w; — wi(k))?+

2
Since the partial update strategy deviates the updating di- ui (k) 2 (k)
rectlon_f_rom the one determined by_the mp_ut signal vector N z2v (w; — w; (k)2 = 12 (k). (13)
x(k) utilized by the SM-PUAP algorithm, it is natural that ug (k)

the size of the step for a partial update algorithm should b
smaller than the corresponding algorithm that updatesoall ¢
efficients. A solution to this problem is to constrain the Eu- (w; — w;(k))? = ui (k)p*(k), (14)
clidean norm of the coefficient disturbance of the partial up ) ] )

date algorithm to the disturbance implemented by the origi¥here we obtained the last equality owing|fa(k)[|> = 1.
nating non partial updating algorithm, in our case the SM-APTherefore, the intersections of the ling:) and the hyper-
algorithm. For that we build hypersphej:), whose radius  SPhereS(k) are given by

is the distance between the(k) and SM-AP update. The w; = w;(k) = s (k) (k). (15)
SM-AP update takes a step towards the hyperplaikes—

wlx(k) = £7 with the minimum disturbance, i.e., when the We will choose the positive sign in equation (15) since the
step in the directiox (k) touches perpendicularly the hyper- direction of the vectoa(k) is fromw (k) tow (k). As aresult,
plane. Therefore, the radius of the hyperspht&ie) is given  the vectorw(k + 1) becomes as below

by

hen,

w(k +1) = w(k) + p(k)u(k). (16)
T _ —
p(k) = min (‘W (k)x(k)k d(k) i7|)7 (10) Also, as an alternative method, we can getk + 1)
(k)12 through an elegant geometrical view. Deneték + 1) in
where|.||s is the Euclidean norm i®Y. The equation de- eduation (6) asv(k) while takingy(k) = [0 --- 0]". Define
scribing the hyperspherg(k) with the radiusu(k) and cen- a(k) as,
tered atw (k) is as follows a(k) = w(k) — w(k) = Cz,, (k) Xap (k)P (k)eap (k). (17)

(w1 —wi (k))* + -+ + (wy —wn(k)® = p*(k). (11)  Since we want the update up to the boundary of hypersphere
S (k) centered aw (k) with radiusu(k) in the direction of

As can be observed in Figure #(k + 1) is the point a(k), we get the update equation as follows

where, starting fronw (%), the vector representing the(k +

1) direction touches the hyperplaidg:) —w”x(k) = 7. Un- B a(k)

like the SM-PUAP algorithm, in the I-SM-PUAP algorithm w(k+1) =w(k) + p(k) lla(k)||2

w(k+1) is the point yvhere, starting frow(k), the.vect_or — w(k) + p(k)u(k). (18)
representing the partial direction touches the defidedi-

mensional hypersphef& k) and points at a sparse version of Table 1 summarizes the I-SM-PUAP algorithm.

4176



40
SM-PUAP: L=70

SM-PUAP: L=65
30

20

I-SM-PUAP: L=2,
Correlated inputs

10

MSE [dB]

Fig. 2. Update in I-SM-PUAP algorithm i? for L = 1.

Table 1. Improved Set-Membership Partial-Update Affine
Projection(I-SM-PUAP) Algorithm.

—10}

|-SM-PUAP: L=70

_20 . . . )
2000 4000 6000 8000 10000
I-SM-PUAP Algorithm Number of iterations, k

Fig. 3. Learning curves of the I-SM-PUAP algorithm applied

Initialization . e .
x(—1) = w(0) = [0 --- 0T on system identification problem.

& = small positive constant
choosey

Do fork > 0 signal is chosen as(k) = 0.95z(k — 1) + 0.19z(k — 2) +
€ap(k) = dap (k) — XL (k)w(k) 0.09z(k — 3) — 0.5z:(k — 1) + m(k — 4), wherem(k) is a
if [eo(k)| >7 B zero-mean Gaussian noise with unit variance.
p(k) = min (%) The average number of updates performed by the [-SM-
a(k) = Cz . (k) Xap (k)[Xap (F)Cz 1 (k) Xap (k) + 61~ eap (k) PUAP algorithm are 8%, 6.5%, and 2% for L = 2,5, and
w(k+1) =w(k)+ %a(k) 70, respectively, and 20 in the case of correlated input sig-
else nal. The average number of updates implemented by the SM-
e:‘;(k +1) = w(k) PUAP algorithm are 1% and 254 for L = 70 and 65, respec-
end tively. Note that in both algorithms we have to find the ineers

of an L x L matrix, thus largd. implies high computational
complexity. Therefore, the I-SM-PUAP algorithm has lower
computational complexity since it presents fast convergen

5. SIMULATIONS even for small value of.. Also, it is worth mentioning that

for L < 65 the SM-PUAP algorithm does not reach its steady-

In this section, the SM-PUAP algorithm [2] and the proposedstate in 10000 iterations. From the results, we can observe
I-SM-PUAP algorithm are applied to a system identificationthat the proposed algorithm, 1-SM-PUAP, has faster conver-
problem. The unknown system has ordeér= 80 and its co-  gence speed, lower number of updates, and lower computa-

efficients are random scalars drawn from the standard normghna| complexity as compared to the SM-PUAP algorithm.
distribution. The input signal is zero-mean Gaussian noise

with 02 = 1. The signal-to-noise ratio (SNR) is set to 20
dB, i.e.,c2 = 0.01. The bound on the output estimation er-

ror is chosen ag = 250%','0"3]?' we adopt the threshold We have introduced an improved set-membership partial-
bound vectory(k) as¥, (k) = Veio((kﬁ andy; (k) =d(k—i)—  update affine projection (I-SM-PUAP) algorithm aiming at
wl(k)x(k — i), fori = 1,---,L — 1[2,23]. The regular- accelerating the convergence rate of the set-membership
ization constanty, is 10712 andw(0) = [1L --- 1]T which  partial-update affine projection (SM-PUAP) algorithm, fwit

is not close to the unknown system. All learning curves aviower computational complexity and reduced number of up-
eraged over 200 trials. We are updating 50 percent of thdates. In order to achieve this goal, we use the distance
components randomly chosen of the filter to illustrate the pa between the present weight vector and the one obtained with
tial updating, i.e., half of the elements Bf; (k) are nonzero the SM-AP update, in order to provide a hypersphere that up-
at each time instant. Figure 3 shows the learning curves perbounds the coefficient disturbance. Numerical simuuati

for the I-SM-PUAP algorithm withl, = 2,5, and 70, and the for system identification problem have confirmed that the I-
learning curves for the SM-PUAP algorithm with= 65and ~ SM-PUAP algorithm has not only faster convergence rate, but
70. Also, in Figure 3 a blue curve is depicted using correlate also lower computational complexity and lower number of
inputs and. = 2. In fact, for the blue curve all of the spec- updates as compared with the previously proposed SM-PUAP
ifications of the system are the same as explained above aatjorithm.

the only difference is the input signal. The correlated inpu

6. CONCLUSIONS
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