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ABSTRACT
In this paper, Bayesian quickest change-point detection prob-
lem with incomplete post-change information is considered.
In particular, the observer knows that the post-change distri-
bution belongs to a parametric distribution family, but he does
not know the true value of the post-change parameter. Two
problem formulations are considered in this paper. In the first
formulation, we assume no additional prior information about
the post-change parameter. In this case, the observer aims to
design a detection algorithm to minimize the average (over
the change-point) detection delay for all possible post-change
parameters simultaneously subject to a worst case false alarm
constraint. In the second formulation, we assume that there
is a prior distribution on the possible value of the unknown
parameter. For this case, we propose another formulation that
minimizes the average (over both the change-point and the
post-change parameter) detection delay subject to an average
false alarm constraint. We propose a noval algorithm, which
is termed as M-Shiryaev procedure, and show that the pro-
posed algorithm is first order asymptotically optimal for both
formulations considered in this paper.

Index Terms— Bayesian quickest change detection; M-
Shiryaev procedure; sequential detection; unknown post-
change parameter

1. INTRODUCTION

Quickest change-point detection problem aims to detect the
abrupt change in the probability distribution of a random se-
quence as quickly and reliably as possible [1, 2, 3]. This tech-
nique has found a lot of applications in wireless sensor net-
works for network intrusion detection [4], seismic sensing,
structural health monitoring, etc. In classic quickest change-
point detection problem, it assumes that both pre-change and
post-change distributions are known by the observer. In prac-
tice, the pre-change distribution is likely to be known by the
observer as he can collect a large amount of data to make an
accurate estimation of the pre-change distribution. However,
the post-change distribution is often unknown or known only
to belong to a parametric distribution family. Hence, to ex-
plore the quickest detection algorithm for the problem with
incomplete post-change information is of practical interest.

In this paper, we consider the Bayesian quickest detection
problem with an unknown post-change parameter. In partic-
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ular, the observer sequentially obtains a sequence of random
observations whose distribution changes at an unknown time.
The observer knows the pre-change distribution completely
but the post-change distribution incompletely. Specifically,
we assume that the post-change distribution belongs to a para-
metric distribution family, but the true post-change parame-
ter, which comes from a known finite set Ξ, is unknown to
the observer. The goal of the observer is to design an on-
line algorithm to quickly detect the change in the observation
sequence. Two problem formulations are considered in this
paper. If there is no prior distribution over Ξ, then we aim
to design an algorithm that minimizes the average (only over
change-point) detection delay simultaneously for all possible
post-change parameters subject to a worst case false alarm
constraint. On the other hand, if the prior distribution of Ξ
is available, then we aim to design an algorithm to minimize
the average (over both post-change parameter and the change-
point) detection delay subject to an average false alarm con-
straint. In this paper, we also propose a new multi-chart de-
tection algorithm termed as M-Shiryaev procedure. In the
proposed algorithm, for each possible post-change parameter,
the observer runs a Shiryaev detection procedure; hence the
observer runs multiple Shiryaev procedures simultaneously.
The observer declares that a change has occurred when any
one of these parallelled procedures stops. We show that this
proposed algorithm is first order asymptotically optimal for
both formulations.

There have been several works on the quickest change-
point detection problems that take the unknown post-change
parameter into consideration. To authors best knowledge, all
these existing works are in the context of non-Bayesian quick-
est detection [2, 5, 6, 7, 8, 9]. In particular, [2, 5, 8] show
that the generalized likelihood ratio (GLR) based CUSUM is
asymptotically optimal over all post-change parameters. [7]
adopted a shrinkage estimator to estimate the unknown post-
change parameter. [9] considered a distributed sensor net-
work setup. One may refer to a recent book [10] for more
detailed results of this topic.

The remainder of the paper is organized as follows. The
mathematical model is given in Section 2. Section 3 proposes
the M-Shiryaev procedure and shows its asymptotic optimal-
ity. Numerical examples are given in Section 4. Section 5
offers concluding remarks.

2. PROBLEM FORMULATION

We consider a random observation sequence {Xk, k = 1, 2, . . .}
whose distribution changes at an unknown time t. Before
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the change-point t, X1, X2, . . . , Xt−1 are independent and
identically distributed (i.i.d.) with probability density func-
tion (pdf) f(x; ξ0); after the change-point t, the density of
Xt, Xt+1, . . . changes to f(x; ξ). In the Bayesian quick-
est detection, the change-point t is modeled as a geometric
random variable with parameter ρ, i.e., for 0 < ρ < 1,

P (t = k) = ρ(1− ρ)k−1, k = 1, 2, . . . . (1)

Observations Xk’s generate the filtration {Fk}k∈N with

Fk = σ({t = 0}, X1, · · · , Xk), k = 1, 2, . . . ,

and F0 contains the sample space Ω.
In the classic Bayesian quickest detection problem, both

the pre-change distribution and the post-change distribution
are perfectly known by the observer. However, in this paper,
we consider the case that the observer only knows partial in-
formation of the post-change distribution. Specifically, the
post-change distribution f(x; ξ) contains an unknown param-
eter ξ. The observer knows that ξ is taken from a finite set
Ξ = {ξ1, ξ2, . . . , ξM} but he does not know the true value of
ξ. The pre-change distribution f(x; ξ0) is perfectly known by
the observer, i.e., ξ0 is a known parameter, and ξ0 /∈ Ξ. In this
paper, f(x; ξ) and fξ(x) are used interchangeably.

To facilitate the presentation, we denote Pk,ξi as the
conditional probability measure of the observation sequence
given {t = k; ξ = ξi}. For a measurable event F , we define
probability measure Pπ,ξi as

Pπ,ξi(F ) :=

∞∑
k=1

Pk,ξi(F )P (t = k).

We use Ek,ξi and Eπ,ξi to denote the expectations with respect
to probability measures Pk,ξi and Pπ,ξi , respectively.

The observer aims to detect the change as quickly and ac-
curately as possible. Let T be the set of all finite stopping
times with respect to filtration {Fk}. The observer wants to
find a stopping time τ ∈ T , at which the observer declares the
change, to minimize the average detection delay (ADD) sub-
ject to certain false alarm constraints. Based on the availabil-
ity of the prior information on Ξ, we consider two problem
formulations in this paper. Specifically, if the observer has no
prior information on Ξ, we consider the following problem
setup

(P1) inf
τ∈T

Eπ,ξ[(τ − t)+] for all ξ ∈ Ξ,

subject to sup
ξ∈Ξ

Pπ,ξ(τ < t) ≤ α. (2)

That is, the observer aims to find a stopping time τ that min-
imizes ADDs simultaneously for all possible post-change pa-
rameters. In the mean while, τ should achieve a small proba-
bility of false alarm (PFA) for all possible post-change param-
eters. In general, there is no optimal solution for this multi-
objective optimization problem. However, in the sequel, we
will propose an algorithm that is simultaneously asymptoti-
cally optimal for all ξ ∈ Ξ.

The second problem formulation considers the case that
the observer knows the prior distribution of Ξ. In particular,
the prior distribution is denoted as

ϖi = P (ξ = ξi), (3)

with 0 < ϖi < 1 for all i = 1, . . . ,M . We further assume
that ξ is independent of t. For measurable event F , we define
probability measure Pπ,ϖ as

Pπ,ϖ(F ) :=
M∑
i=1

Pπ,ξi(F )P (ξ = ξi),

and denote Eπ,ϖ as the expectations with respect to Pπ,ϖ.
The following formulation is of interest:

(P2) inf
τ∈T

Eπ,ϖ[(τ − t)+],

subject to Pπ,ϖ(τ < t) ≤ α. (4)

We note that both ADD and PFA in (P2) are measured under
Pπ,ϖ, which takes average over both the change-point and the
post-change parameter.

3. THE M-SHIRYAEV PROCEDURE AND ITS
ASYMPTOTIC OPTIMALITY

3.1. M-Shiryaev Procedure

For i = 1, . . . ,M , let

Rρ,n,i :=

n∑
k=1

n∏
j=k

1

1− ρ

fξi(Xj)

fξ0(Xj)
(5)

be the detection statistic, we propose the following multi-
chart detection procedure:

τS,i = inf{n ≥ 1| logRρ,n,i > logBi}, (6)
τMS = min τS,i. (7)

In the proposed algorithm, the observer updates M statistics
Rρ,n,i for i = 1, . . . ,M at each time slot, and each statistic
is compared with its own threshold Bi. The procedure stops
when either of statistics exceeds its threshold. Since Rρ,n,i

is the statistic used in the Shiryaev procedure, we term this
proposed procedure as M-Shiryaev procedure.

Shiryaev’s statistic is related to the posterior probability.
For (P1), we define the posterior probability as

πi,n := Pπ,ξi(t ≤ n|Fn), i = 1, . . . ,M.

it is easy to verify

πi,n =
ϱi,n(X1, . . . , Xn)

ϱ0,n(X1, . . . , Xn) + ϱi,n(X1, . . . , Xn)
, (8)

where

ϱ0,n(X1, . . . , Xn) = (1− ρ)n
n∏

j=1

fξ0(Xj),

ϱi,n(X1, . . . , Xn) = ρ

n∑
k=1

(1− ρ)k−1
k−1∏
j=1

fξ0(Xj)

n∏
j=k

fξi(Xj).

Then, it is easy to verify that

Λ
(1)
n,i := log

πi,n

1− πi,n
= log ρ+ logRρ,n,i. (9)
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For (P2), with a little abuse of notations, we define the
posterior probability as

πi,k := Pπ,ϖ(t ≤ k, ξ = ξi|Fk), i = 1, . . . ,M,

π0,k := Pπ,ϖ(t > k|Fk) = 1−
M∑
i=1

πi,k.

It is easy to verify that

πi,n =
ϱi,n(X1, . . . , Xn)∑M
j=0 ϱj,n(X1, . . . , Xn)

, (10)

where

ϱ0,n(X1, . . . , Xn) = (1− ρ)n
n∏

j=1

fξ0(Xj),

ϱi,n(X1, . . . , Xn) = ρϖi

n∑
k=1

(1− ρ)k−1
k−1∏
j=1

fξ0(Xj)

n∏
j=k

fξi(Xj).

In this case, we have

Λ
(2)
n,i := log

πi,n

π0,n
= logϖiρ+ logRρ,n,i. (11)

Hence, τS,i in (6) can be equivalently expressed in terms of
Λ
(1)
n,i and Λ

(2)
n,i for (P1) and (P2), respectively.

3.2. Asymptotic optimality

We first present asymptotic lower bounds of detection delays
for all possible post-change parameters as the worst case PFA
or the average PFA vanishes. In particular, we have the fol-
lowing result:

Lemma 3.1. As α → 0,

inf
τ∈T

{Eπ,ξ[(τ − t)+] : sup
ξ∈Ξ

Pπ,ξ(τ < t) ≤ α}

≥ | logα|
D(fξ||fξ0) + | log(1− ρ)| (1 + o(1)), (12)

and

inf
τ∈T

{Eπ,ξ[(τ − t)+] : Pπ,ϖ(τ < t) ≤ α}

≥ | logα|
D(fξ||fξ0) + | log(1− ρ)| (1 + o(1)), (13)

where D(fξ||fξ0) is the KL divergence between f(x; ξ) and
f(x; ξ0).

Proof. (12) can be proved as follows:

inf
τ∈T

{Eπ,ξi [(τ − t)+] : sup
ξ∈Ξ

Pπ,ξ(τ < t) ≤ α}

≥ inf
τ∈T

{
Eπ,ξi [(τ − t)+] : Pπ,ξi(τ < t) ≤ α

}
≥ | logα|

D(fξi ||f0) + | log(1− ρ)| (1 + o(1)). (14)

The last inequality is from the lower bound of the average
detection delay in the classic Bayesian quickest detection (see
Theorem 1 in [11]).

(13) can be proved similarly. In particular, the condition
Pπ,ϖ(τ < t) ≤ α can be relaxed to ϖiPπ,ξi(τ < t) ≤
α, then (13) follow the facts that α/ϖi → 0 for all i =
1, . . . ,M .

The achieveability of the M-Shiryaev procedure is pre-
sented in Theorem 3.2 and Theorem 3.4.

Theorem 3.2. For (P1), the M-Shiryaev procedure defined in
(7) is asymptotically optimal as α → 0 by setting B1 = . . . =
BM = M(ρα)−1.

Eπ,ξi

[
(τMS − t)+

]
≤ | logα|

D(fξi ||fξ0) + | log(1− ρ)| (1 + o(1)). (15)

Proof. Since τS,i is asymptotically optimal for the Bayesian
quickest detection when fξi(x) is the true post-change distri-
bution, we have

Eπ,ξi

[
(τS,i − t)+

]
=

| logB|
D(fξi ||fξ0) + | log(1− ρ)| (1 + o(1)).

Since τMS ≤ τS,i and | logB| = | logα|(1+o(1)), we know
that τMS satisfies (15).

We then show that τMS satisfies the false alarm constraint.
By setting Bi = M(ρα)−1 and using (9), (6) can be equiva-
lently written as

τS,i = inf

{
n ≥ 1

∣∣∣πi,n > 1−
(
1 +

α

M

)−1 α

M

}
. (16)

Hence

Pπ,ξi(τS,i < t) = Eπ,ξi [1− πi,τS,i
] ≤ α/M.

Further, Pπ,ξi(τMS < t; τMS = τS,i) ≤ α/M. We note that

Pπ,ξj (τMS < t; τMS = τS,i) = Pπ,ξi(τMS < t; τMS = τS,i).

This is true because all observations are generated from
fξ0(x), regardless of the true post-change parameter, on the
event {τMS < t}. As a result, we have

Pπ,ξj (τMS < t) =

M∑
i=1

Pπ,ξj (τMS < t; τMS = τS,i) ≤ α. (17)

Since ξj in (17) is arbitrarily selected in Ξ, then we have
supξ∈Ξ Pπ,ξ(τMS < t) ≤ α. That ends the proof.

To show the proposed algorithm is asymptotically optimal
for (P2), we first present the following lemma:

Lemma 3.3. (Lemma 2.3 in [12]) Let τ be a stopping time
with respect to {Fk}. Let F be an Fτ measurable event, we
have

Pπ,ϖ(F ∩ {τ < t}) = ϖiEπ,ξi

[
1F∩{t≤τ<∞}e

−Λ
(2)
τ,i

]
. (18)
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Proof. To make the paper self-contain, we rewrite the proof
as follows:

Pπ,ϖ(F ∩ {τ < t}) =
∞∑

n=0

Eπ,ϖ

[
1F∩{τ=n;n<t}

]
=

∞∑
n=0

Eπ,ϖ

[
1F∩{τ=n}π0,n

]
=

∞∑
n=0

Eπ,ϖ

[
1F∩{τ=n}πi,n

π0,n

πi,n

]

=

∞∑
n=0

Eπ,ϖ

[
1F∩{τ=n,t≤n;ξ=ξi}

π0,n

πi,n

]
=ϖiEπ,ξi

[
1F∩{t≤τ<∞}

π0,τ

πi,τ

]
.

Theorem 3.4. For (P2), the M-Shiryaev procedure is asymp-
totically optimal as α → 0 by setting Bi = (ραϖi)

−1.

Eπ,ξi

[
(τMS − t)+

]
≤ | logα|

D(fξi ||fξ0) + | log(1− ρ)| (1 + o(1)). (19)

Proof. (19) can be shown by using the same argument of
proving (15). We then show that τMS satisfies the false alarm
constraint. By setting Bi = (ραϖi)

−1 and using (11), (6)
can be written equivalently as

τS,i = inf
{
n ≥ 1|Λ(2)

n,i > − logα
}
. (20)

Hence we have

Pπ,ϖ(τMS < t; τ = τS,i)

(a)
= ϖiEπ,ξi

[
1{τMS=τS,i}∩{t≤τMS<∞}e

−Λ
(2)
τMS,i

]
≤ ϖiEπ,ξi

[
1{τMS=τS,i}∩{t≤τ<∞}α

]
≤ αϖi, (21)

where (a) is because of Lemma 3.3. Hence, Pπ,ϖ(τMS ≤
t) =

∑M
i=1 Pπ,ϖ(τMS < t; τMS = τi) ≤ α.

From (13) in Lemma 3.1 and (19), we conclude that the
proposed M-Shiryaev procedure is asymptotically optimal for
(P2) since τMS achieves the lower bound of detection delay
for every individual post-change parameter ξ ∈ Ξ.

4. NUMERICAL SIMULATION

In this section, we provide two numerical examples to il-
lustrate the results obtained in this paper. In these numeri-
cal examples, we assume that the pre-change distribution fξ0
is N (0, 1) and the post-change distribution fξ is N (0, ξ2),
where ξ takes value in Ξ = {1.5, 2, 2.5}. The geometrically
distributed change-point has parameter ρ = 0.01.

We first illustrate the performance of the M-Shiryaev pro-
cedure for (P1). The simulation result is shown in Figure 1.
In this simulation, ξ = 1.5 is set to be the true post-change
parameter. The black dot line is the theoretical asymptotic
lower bound calculated by (12). The blue solid line is the
performance of the M-Shiryaev procedure. We can see that
ADD scales linearly with respect to | logα|. Moreover, the
performance of the M-Shiryaev procedure is parallel to the
lower bound, which indicates that the M-Shiryaev procedure
is asymptotically optimal since the constant difference is neg-
ligible when the detection delay goes to infinity. Actually,

we can obtain similar simulation results when we change the
post-change parameter to ξ = 2 and ξ = 2.5. This confirms
our analysis that the proposed M-Shiryaev procedure is simul-
taneously optimal for all possible post-change parameters.
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Fig. 1. ADD vs. PFA under ξ = 1.5

In the second simulation, we examine the asymptotic op-
timality of the M-Shiryaev procedure for (P2). In the simu-
lation, the prior distribution on Ξ is set to be {0.1, 0.5, 0.4}.
The simulation result is shown in Figure 2. In the figure, the
black dot line is the theoretical lower bound of Eπ,ϖ[(τ−t)+],
which is the average of the lower bounds presented in (13).
The blue solid line is the performance of the M-Shiryaev pro-
cedure. We can see that the performance of the M-Shiryaev
procedure is parallel to the lower bound, which indicates that
the proposed procedure is asymptotically optimal for (P2) .

log α
-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5

av
er

ag
e 

de
te

ct
io

n 
de

la
y

6

8

10

12

14

16

18

20

22
M-Shiryeav procedure
Asympotic lower bound

Fig. 2. ADD vs. PFA under (P2)

5. CONCLUSION

In this paper, we have studied the Bayesian quickest detection
problem with an unknown post-change parameter. We have
proposed the M-Shiryaev procedure, and have shown the pro-
posed procedure is first order asymptotically optimal for both
formulations studied in this paper.
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