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ABSTRACT

This work presents a distributed algorithm for nonlinear

adaptive learning. In particular, a set of nodes obtain mea-

surements, sequentially one per time step, which are related

via a nonlinear function; their goal is to collectively minimize

a cost function by employing a diffusion based Kernel Least

Mean Squares (KLMS). The algorithm follows the Adapt

Then Combine mode of cooperation. Moreover, the theoret-

ical properties of the algorithm are studied and it is proved

that under certain assumptions the algorithm suffers a no re-

gret bound. Finally, comparative experiments verify that the

proposed scheme outperforms other variants of the LMS.

Index Terms— Adaptive Networks, Diffusion, RKHS,

Kernel LMS.

1. INTRODUCTION

In recent years, the interest in the topic of distributed learn-

ing and inference has grown rapidly. This is mainly due to

the constantly increasing requirements for memory and com-

putational resources, demanded by modern applications, so

as to cope with the huge amount of available data. These

data “spring” from several sources/applications, such as com-

munication, imaging, medical platforms as well as social-

networking sites, e.g., [1]. A natural way, to deal with the

large number of data, which need to be processed, is to split

the problem into subproblems and resort to distributed oper-

ations [2, 3]. Thus, the development of algorithms dealing

with such scenarios, where the data are not available in a sin-

gle location but are instead spread out over multiple locations,

becomes essential.

An important application within the distributed learning

context is the one of distributed adaptive learning, [4]. In

a nutshell, this problem considers a decentralized network

consisting of nodes interested in performing a specific task,

which can be, for instance, parameter estimation, classifica-

tion, etc. The nodes constantly obtain new measurements and

they continuously adapt and learn; this gives them the capa-

bility to track and adapt to changes in the environment. On

top of that, it is assumed that there is no central node which

could perform all the necessary operations and, so, the nodes

act as independent learners and perform the computations by

themselves. Finally, the task of interest is considered to be

common or similar across the nodes and, to that direction,

they cooperate with each other. Cooperation has been proved

to be beneficial to the learning process since it improves the

learning performance, [4].

This paper is concerned with the problem of distributed

adaptive learning in Reproducing Kernel Hilbert spaces

(RHKS). To be more specific, we consider an ad–hoc net-

work the nodes of which obtain input/output measurements,

sequentially, one per time step, related via a nonlinear un-

known function. To cope with this nonlinearity we resort to

the family of the kernel–based algorithms for nonlinear adap-

tive filtering. In particular, the proposed algorithm belongs to

the Kernel LMS (KLMS) algorithmic family and follows the

diffusion rationale for cooperation among the nodes.

Related Work: Several studies for distributed adaptive

estimation of linear systems have been proposed in the litera-

ture. These include diffusion based algorithms, e.g., [5, 6, 7],

consensus ones, e.g., [8, 9], as well as algorithms for mul-

titask learning [10, 11]. The problem of non–linear adaptive

estimation in RKHS has been studied, e.g., [12, 13, 14, 15]. A

recent study, which considers the problem of nonlinear adap-

tive filtering in distributed networks, can be found in [16].

The major differences of this paper with our work are sum-

marized in the sequel. First, the authors consider a prede-

fined dictionary, which essentially makes the dimension of

the problem finite and equal to the number of elements of

the dictionary. On the contrary, here, we consider the gen-

eral case, where the dictionary is allowed to grow as time in-

creases, and we present a more general form of the algorithm.

Furthermore, here, we study for the first time the theoretical

properties of the Diffusion Kernel LMS (DKLMS) and we

derive regret bounds for the proposed scheme.

Contributions: In this paper, we propose a novel nonlin-

ear distributed algorithm for adaptive learning. In particular,

we propose a KLMS algorithm, which follows the diffusion

rationale. The Adapt Then Combine mode of cooperation

among the nodes is followed. To be more specific, we assume

that the nodes obtain measurements, which arrive sequentially
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Fig. 1. An ad–hoc Network

and are related via a nonlinear system. The goal is the min-

imization of the expected value of the networkwise discrep-

ancy between the desired output and the estimated one. To

that direction, at each step, the nodes: a) perform a local up-

date step exploiting their most recent measurements, b) co-

operate with each other, in order to enhance their estimates.

Comparative experiments illustrate that the proposed scheme

outperforms other LMS variants and the theoretical properties

of the proposed scheme are discussed.

Notation: Lowercase and uppercase boldfaced letters

stand for vectors and matrices respectively. The symbol

R stands for the set of real numbers and N for the set of

nonnegative integers. H denotes an infinite dimensional

Hilbert space equipped with an inner product denoted by

〈f1, f2〉, ∀f1, f2 ∈ H; the induced norm is given by

‖f‖ =
√

〈f, f〉. Given a set S, with the term |S| we de-

note its cardinality.

2. PROBLEM STATEMENT

We consider an ad–hoc network illustrated in Fig. 1, consist-

ing of K nodes. Each node, k ∈ N := {1, . . . ,K}, at each

discrete time instance n ∈ N, has access to a scalar dk(n) ∈ R

and a vector xk(n) ∈ R
m, which are related via

dk(n) = fo(xk(n)) + vk(n), (1)

where fo : R
m 7→ R is an unknown yet common to all the

nodes function belonging to the Hilbert space H and the term

vk(n) stands for the additive noise process. The overall goal

is the estimation of a function, f , which minimizes the cost:

J(f) =
∑

k∈N

E{(dk(n)− f(xk(n)))
2}, (2)

in a distributed and collaborative fashion; that is the nodes

want to minimize the cost (2) by relying solely on local pro-

cessing as well as interactions with their neighbors.

2.1. Linear Diffusion LMS

In order to help the reader grasp the concept of the diffusion

LMS, in this section we describe the linear scenario, i.e., the

one where the function to be estimated is a vector, say w∗ ∈
R

m, and (1) essentially becomes:

dk(n) = wT
∗ xk(n) + vk(n). (3)

The cost function to be minimized in that case can be written

as follows:

J(w) =
∑

k∈N

E{
(
dk(n)−wTxk(n)

)2}. (4)

The cost (4) includes information coming from the whole net-

work and in order to minimize it, global knowledge is re-

quired. Nevertheless, in distributed and decentralized learn-

ing each node can only interact and exchange information

with its neighborhood which will be denoted by Nk, ∀k ∈
N . A fully distributed algorithm, which can be employed for

the estimation of w∗ is the diffusion LMS (see for example

[4, 7]). The starting point of this scheme is a modification of

the steepest–descent method, which is properly reformulated

so as to enable distributed operations and to avoid any global

computation (the interested reader is referred to [4]). In ad-

dition, the instantaneous approximation is adopted, according

to which the statistical values are substituted by their instanta-

neous ones, e.g., [17]. Each node k ∈ N updates the estimate

wk(n) at each time step according to the following iterative

scheme:

w′
k(n) = wk(n− 1) + µkek(n)xk(n) (5)

wk(n) =
∑

l∈Nk

ak,lw
′
l(n), (6)

where ek(n) := dk(n)−wT
k (n− 1)xk(n) and µk is the step

size. Furthermore, ak,l stand for combination coefficients,

which have the following properties ak,l = 0, l /∈ Nk, ak,l >
0, l ∈ Nk,

∑

l∈N
ak,l = 1. A common choice, among others,

for choosing these coefficients is the Metropolis rule, in which

the weights equal to:

ak,l =







1

max{|Nk|,|Nl|}
, if l ∈ Nk, and l 6= k

1−
∑

l∈Nk\k
ak,l, if l = k

0, otherwise.

The intuition behind the scheme presented in (5), (6), can be

summarized as follows. In the first step, node k updates its

estimate using an LMS based update (adaptation step) ex-

ploiting local information. In the sequel, k cooperates with

its neighborhood by combining their intermediate estimates

to obtain its updated estimate wk(n). The weights ak,l assign

a non–negative weight to the estimates received by the neigh-

borhood, whereas they are equal to zero for the rest of the

nodes. Hence, each node aggregates the information received

by the neighborhood. This scheme is also known as Adapt

Then Combine (ATC) diffusion strategy.

2.2. Centralized Kernel LMS

2.2.1. Preliminaries

Now, let us provide with a few elementary properties of the

RKHS, which will be used in the sequel. Throughout this

section the node subscript will be suppressed since we will
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describe properties of centralized learning. We consider a real

Hilbert space H comprising functions defined on R
m; that is

f : Rm 7→ R. The function κ : R
m×R

m 7→ R will be called

a reproducing kernel of H if the following properties hold:

• ∀x ∈ R
m the function κ(x, ·) belongs to H.

• ∀x ∈ R
m, f ∈ H, it holds that f(x) = 〈f, κ(x, ·)〉.

If these properties hold thenH is called a Reproducing Kernel

Hilbert Space [18, 19]. A typical example is the Gaussian ker-

nel with definition: κ(xi,xj) = exp(−β‖xi−xj‖2), β > 0.
A very important property, which will be exploited in the se-

quel states that points in the RKHS can be written as follows:

f =

∞∑

n=0

αnκ(x(n), ·), (7)

where αn ⊂ R. Finally, the reproducing kernel is continuous,

symmetric and positive-definite.

2.2.2. Kernel LMS

Kernel LMS, which was originally proposed in [20], is a gen-

eralization of the original LMS algorithm, which utilizes the

transformed input, i.e., κ(x(n), ·), at each iteration step. Put

in mathematical terms, the recursion of the KLMS is given

by:

e(n) = d(n)− 〈fn−1, κ(x(n), ·)〉 (8)

fn = fn−1 + µe(n)κ(x(n), ·). (9)

Since the space H may be infinite dimensional, it may be dif-

ficult to have direct access to the transformed input data and

the function fn. However, if we go back to (1) and forget the

distributed aspect for now, we can see that the quantity of in-

terest is f(x(n)), which can be computed exploiting (7). In

particular, following similar steps as in [20] it can be shown

that the KLMS recursion can be equivalently written:

e(n) = d(n)− µ

n−1∑

i=1

e(i)κ(x(n),x(i)) (10)

fn(x(n)) = µ

n∑

i=1

e(i)κ(x(n),x(i)). (11)

Note that this reformulation is very convenient as it computes

the response of the estimated function to the input, without

any need to estimate the function itself.

3. THE DIFFUSION KERNEL LMS

In this section we describe the proposed algorithm together

with its theoretical properties. Recall the problem under con-

sideration, discussed in Section 2. Our goal, here, is to bring

together the tools described in Sections 2.1, 2.2 and derive

a Kernel based LMS algorithm suitable for distributed op-

eration. Our starting point will be the ATC–LMS described

in (5)-(6) and we will employ the non–linear transformation

on the input (similarly to (8), (9)). The resulting recursion

∀k ∈ N is:

f ′
k,n = fk,n−1 + µkek(n)κ(xk(n), ·) (12)

fk,n =
∑

l∈Nk

ak,lf
′
l,n, (13)

where ek(n) is defined similarly to (8). Despite the fact that

this seems a trivial generalization of (5), (6), as we have al-

ready discussed previously, one cannot resort directly to this

form of iterations, since access to the transformed data may

not be possible.

Exploiting the lemma, which will be presented shortly,

we can bypass the aforementioned problem, by deriving the

inner product between the obtained function and the trans-

formed input vector in a closed form. Before we proceed,

let us introduce some notation. The networkwise function at

time n is denoted by f
n
:= [f1,n, . . . , fK,n]

T ∈ H, where

the Cartesian product H := H× . . .×H
︸ ︷︷ ︸

K times

. Similarly, we

define the networkwise input: κ(x(n), ·) = [κ(x1(n), ·), . . . ,
κ(xK(n), ·)]T ∈ H and g(n) = [µ1e1(n), . . . , µKeK(n)]T ∈
R

m. Finally, we gather the combination coefficients to the

K × K matrix A, the k, l–th entry of which contains ak,l.
It can be readily shown that (12)-(13) can be written for the

whole network in the following compact form:

f
n
= A

(

f
n−1

+ g(n)κ(x(n), ·)
)

. (14)

Lemma 1 Assume that fk,0 = 0, ∀k ∈ N . Then equation

(14) can be equivalently written:

f
n
=

n∑

i=1

An−i+1g(i)κ(x(i), ·). (15)

Hence, the vector of responses, d̃(n) := [d̃1(n), . . . , d̃K(n)]T

, at time instance n, is given by d̃(n) = f
n
(κ(x(n), ·)) =

∑n

i=1 A
n−i+1g(i)κ(x(i),x(n)) �

The proof, which follows mathematical induction, is omitted

due to lack of space and will be presented elsewhere.

Remark 1 Coefficient Reduction over Time: If we take

a closer look on (15) it can be seen that the number of

coefficients one has to store as well as the required num-

ber of operations grow as time evolves. Several sophisti-

cated techniques, which set most of the coefficients to zero

while avoiding performance degradation, have been pro-

posed in the literature, e.g., [21]. As it will become ap-

parent in the simulations section, here we adopt a simple

method; that is, we apply a buffer of size L. In that case,

we store the L most recent coefficients and (15) becomes

f
n
=

∑n

i=max(1,n−L+1)A
n−i+1g(i)κ(x(i), ·).
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Fig. 2. Average MSE for the first experiment

Remark 2 Coefficient Reduction over Space: It can be

shown (see [4, Appendix E]) that the k, l–th entry of the i–th

power of the matrix A equals to:

[Ai]kl =
∑K

j1

∑K

j2
. . .

∑K

ji−1
akj1akj2 . . . aji−1l. From the

last relation it is not difficult to obtain that the node k exploits

information from nodes which do not belong to its neighor-

hood. However, this does not break the rules of decentralized

learning, since it also holds that [Ai]kl will be nonzero iff the

distance, measured in hops, between k, l is smaller or equal

than i hops. Hence, the nodes can send their input vectors

to their neighbors, which in turn will forward them to their

neighbors and so on. This increases the network load and

one can avoid it by setting some of the weights to zero, as

discussed on Remark 1. A simple strategy is to set to zero all

the coefficients that belong to nodes which don’t belong to

the neighborhood.

3.1. Theoretical Properties

In the sequel, we will present the regret bound of the pro-

posed scheme and in particular we will show that this grows

sublinearly with the time.

Theorem 1 Under certain assumptions about the boundness

of the input, the step-size and the combination weights, the

networkwise regret is bounded by

N∑

i=1

∑

k∈N

(Jk,i(fk,i−1)− Jk,i(g)) ≤ γ
√
N + δ, ∀g ∈ H (16)

where Jk,n(f) =
1
2 (dk(n)−f(xk(n)))

2 and γ, δ are positive

constants. �

Proof: The proof is omitted due to lack of space and will be

presented elsewhere.

4. SIMULATIONS

In this section, the performance of the proposed algorithm

is validated within the distributed nonlinear adaptive filter-

ing framework. We consider a network comprising K =
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Fig. 3. Average MSE for the second experiment

10 nodes and a distributed version of the problem studied in

[22, 23], for which the input and the output are related via:

yk(n) =
yk(n− 1)

1 + y2k(n− 1)
+ x3

k(n), dk(n) = yk(n) + vk(n),

where vk(n) is Gaussian with variance 10−3 and the input

xk(n) is also Gaussian with variance 0.1χk, where χk ∈
[0.5, 1], ∀k ∈ N with respect to the Uniform distribution.

We compare the proposed algorithm with: a) the linear dif-

fusion LMS, b) the non–cooperative KLMS , i.e., the KLMS

where the nodes do not cooperate with each other. For the

Kernel based algorithms we employ the Gaussian Kernel with

α = 1.1 and we choose a step–size equal to µ = 0.6 for all the

algorithms. Furthermore, the combination weights are chosen

with respect to the Metropolis rule, the buffer size L at each

node equals to 100 and we only take into consideration infor-

mation that is coming from the single hop neighbors. Finally,

the adopted performance metric is the average MSE, with def-

inition MSE(n) = 1/K
∑

k∈N
(dk(n)− fk,n(xk(n)). As it

can be seen from Fig. 2 the KDLMS outperforms the other

LMS variants, since it converges faster to a lower error floor

compared to them. In the second experiment the setup is sim-

ilar to the previous one albeit here we increase the variance

of the noise, which now equals to 10−1. Fig. 3 illustrates that

the enhanced performance of the KDLMS, compared to the

other algorithms, is retained in this scenario as well.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper, a novel Kernel based Diffusion LMS, suitable

for non–linear distributed adaptive filtering was proposed.

The theoretical properties of the algorithm were discussed

and the performance of the scheme was tested against other

adaptive strategies. Future research focuses on accelerating

the convergence speed by utilizing more data per iteration, as

well as investigating sophisticated strategies, which reduce

the number of coefficients by storing the most “informative”

ones.
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