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ABSTRACT

We study a distributed node-specific parameter estimation prob-
lem where each node in a wireless sensor network is interested in
the simultaneous estimation of different vectors of parameters that
can be of local interest, of common interest to a subset of nodes, or
of global interest to the whole network. We assume a setting where
the nodes do not know which other nodes share the same estimation
interests. First, we conduct a theoretical analysis on the asymptotic
bias that results in case the nodes blindly process all the local esti-
mates of all their neighbors to solve their own node-specific parame-
ter estimation problem. Next, we propose an unsupervised diffusion-
based LMS algorithm that allows each node to obtain unbiased esti-
mates of its node-specific vector of parameters by continuously iden-
tifying which of the neighboring local estimates correspond to each
of its own estimation tasks. Finally, simulation experiments illustrate
the efficiency of the proposed strategy.

Index Terms— Distributed node-specific parameter estimation,
wireless sensor networks, diffusion algorithm, adaptive clustering.

1. INTRODUCTION

In most distributed estimation problems, it is generally assumed
that the nodes in a wireless sensor network (WSN) are interested in
the same network-wide signal or parameter (e.g. [1]-[5]). However,
some applications such as speech enhancement in acoustic sensor
networks [6]-[8], beamforming [9], or cooperative spectrum sensing
in cognitive radio networks [10]-[11] are multi-task oriented. In
these cases, special attention is required to more general distributed
estimation techniques where the nodes cooperate although they have
different but still partially-overlapping estimation interests and their
observations may arise from different models.

In the growing literature on node-specific parameter estimation
(NSPE) problems over adaptive WSNs, two major groups of works
can be identified. The first group assumes that all nodes know a
priori the relationship between their estimation tasks and the esti-
mation tasks of their neighbors. Within this category, the aforemen-
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Fig. 1. A wireless network of K nodes with NSPE interests.

tioned prior information is leveraged to derive strategies that pro-
vide asymptotically unbiased solutions in an NSPE setting where the
nodes have both overlapping and arbitrarily different estimation in-
terests [12]-[16]. Additionally, this prior information is leveraged by
different diffusion-based algorithms that apply different spatial reg-
ularizers to let each node solve its estimation task by using the local
estimates of neighboring nodes with numerically similar estimation
interests [17]-[18]. To avoid the bias that results from the combi-
nation of local estimates associated with different tasks [19]-[20],
the second group of algorithms implement an inference algorithm
together with an adaptive clustering technique that allows the nodes
to infer which of their neighbors have the same interest [20]-[24].
However, since the proposed strategies run over diffusion networks
where each node is only interested in one vector of parameters, the
cooperation is finally limited to nodes that have exactly the same
objectives once the clustering technique has converged.

To the best of our knowledge, there are no unsupervised strate-
gies that solve an NSPE problem where the nodes simultaneously
estimate parameter vectors of local, common and/or global interest
and where there is no prior information about the relationship be-
tween the NSPE tasks. Motivated by this fact, we propose an un-
supervised diffusion-based LMS for NSPE with combination coef-
ficients determined through a multi-task clustering technique in an
adaptive fashion. In this clustering technique, each node solves a
hypothesis testing problem to determine which of the local estimates
of its neighbors correspond to each of its estimation tasks. Unlike
the existing algorithms [20]-[24], the proposed scheme can yield
asymptotically unbiased solutions and allows a beneficial coopera-
tion among the nodes although they have different interests. Indeed,
due to the exponential rate of decay for the probabilities of erroneous
clustering, as the computer simulations show, the proposed scheme
achieves the same steady-state mean square deviation (MSD) as the
diffusion-based NSPE LMS (D-NSPE) algorithm that knows a priori
the relationship between the node-specific tasks.
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2. PROBLEM FORMULATION

We consider a network consisting of K nodes randomly deployed
over some region. Nodes that are able to exchange information in
one hop are said to be neighbors. The neighborhood of any particular
node k, including node k itself, is denoted asNk. To ensure that the
network is connected (see Fig. 1), the neighborhoods are set so that
there is a path between any pair of nodes in the network.

In the considered network, each node k, at discrete time i, has
access to data {dk,i, Uk,i}, which are realizations related to events
that coexist in the monitored area and which follow the relation

dk,i = Uk,iw
o
k + vk,i (1)

where

- wok equals the vector of dimensionMk that gathers all param-
eters of interest for node k,

- vk,i denotes measurement and/or model noise with zero
mean and covariance matrix Rvk,i of dimensions Lk × Lk,

- dk,i and Uk,i are zero-mean random variables with dimen-
sions Lk × 1 and Lk ×Mk, respectively.

By processing the data set {dk,i, Uk,i}Kk=1, the objective of the
network consists in finding the node-specific estimators {wk}Kk=1

that minimize the following cost function

Jglob({wk}Kk=1) =

K∑
k=1

E
{
‖dk,i −Uk,iwk‖2

}
. (2)

Unlike in papers addressing a single-task estimation problem,
e.g., [3]-[4], here the parameter estimation interests may vary from
node to node in (1), i.e., wok 6= wo` if k 6= `. Indeed, following
the novel node-specific observation model considered in [14], [16],
it is assumed that each node-specific vector wok may consist of a
sub-vector of parameters of global interest to the whole network,
sub-vectors of parameters of common interest to subsets of nodes
including node k, and a sub-vector of local parameters for node k.
In particular, it is considered that

wok = col{qot}t∈Tk (3)

where col{·} denotes a column operator stacking arguments on top
of each other and where qot denotes an (Mt×1) vector of parameters
associated with the global, common or local estimation task t and
where Tk equals an ordered set of indices t associated with the nk =
|Tk| vectors qot that are of interest for node k. It is noted that Mk =∑
t∈Tk

Mt and that Tk ∈ T where T is the set of all parameter
estimation tasks in the entire network. As a result, the observation
model in (1) can now be rewritten as

dk,i =
∑
t∈Tk

Ukt,iq
o
t + vk,i (4)

where Ukt,i, equals a matrix of dimensions Lk ×Mt that consists
of the columns of Uk,i associated with qot . From (4), also note that
the considered NSPE problem can be cast as minimizing

K∑
k=1

E ‖dk,i −
∑
t∈Tk

Ukt,iqt‖
2 (5)

with respect to variables {qt}t∈T .
The algorithms derived in [14] and [16] yield unbiased estimates

of the node-specific vector of parameters by seeking the minimizer

of the cost function in (5) under an incremental or diffusion mode of
cooperation, respectively. However, to do so, each node should know
a priori which of its neighbors share the same parameter estimation
interests, i.e., are interested in estimating {qot}t∈Tk . Unfortunately,
this prior information might not be available in many scenarios. In
this paper, we consider the more challenging problem of deriving a
diffusion-based LMS algorithm that is able to solve the NSPE prob-
lem stated in (5) when the nodes do not know a priori which of their
neighbors share the same NSPE interests.

3. PERFORMANCE OF THE D-NSPE LMS IN A SETTING
WITH UNKNOWN RELATIONSHIPS BETWEEN TASKS

In this section, in order to motivate the derivation of the proposed
algorithm, we briefly analyze the performance of the diffusion-based
solution derived in [16] when a node does not know which of the
local estimates of its neighbors correspond to each of its tasks. For
the sake of an easy exposition and without loss of generality, we
assume that Mt = M for all t ∈ T .

In brief, the D-NSPE LMS algorithm [16] is able to minimize (5)
by implementing the following recursion at each node k:

Adaptation step. For each task t ∈ Tk execute
ψ

(i)
k,t = φ

(i−1)
k,t + µkU

H
kt,i

[
dk,i −

∑
p∈Tk

Ukp,iφ
(i−1)
k,p

]
Combination step. For each task t ∈ Tk execute
φ

(i)
k,t =

∑
`∈Nk

∑
p∈T`

ck`,tp(i)ψ
(i)
`,p.

(6)

where φ(i)
k,t is the local estimate of qot at node k and time instant

i and {ck`,tp(i)} are time-varying convex combination coefficients
that satisfy{

ck`,tp(i) > 0 if ` ∈ Nk ∩ Ct and p = t,
ck`,tp(i) = 0 otherwise. (7)

and ∑
`∈Nk

∑
p∈T`

ck`,tp(i) = 1 (8)

with Ct denoting the set of nodes interested in estimating qot . Note
that there are several policies to select the combination coefficients.
On the one hand, the combination rule can be static, e.g., as in the
uniform, Metropolis or relative-degree rule [25]. On the other hand,
the coefficients can be adapted over time (e.g, see [21]).

Independently of the selected combination policy, from (6)
and (7), it can be noticed that the combination step associated with
the estimation of qot at node k can only process local estimates of the
same vector of parameters, i.e., p = t, transmitted by neighboring
nodes, i.e., ` ∈ Nk. This particular constraint on the set of possible
combination policies ensures asymptotical unbiasedness [16], i.e.,
limi→∞E{q̃(i)k,t} = 0 with q̃

(i)
k,t = qot − col{φ(i)

k,t}t∈Tk and wok
defined in (3). However, it requires each node to know a priori
which of the local estimates exchanged by its neighbors correspond
to each of its parameter estimation tasks.

When the nodes do not know a priori the relationship between
the tasks, each node could implement a stand-alone LMS to solve
its NSPE problem, which is equivalent to the implementation of (6)-
(8) with ckk,tt(i) = 1. Although this approach would again allow to
find unbiased estimates of the node-specific vector of parameters that
minimize (5), the nodes cannot take advantage of the well-known
benefits provided by the cooperation. Alternatively, each node could
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blindly fuse all the local estimates exchanged by all its neighbors,
which yields an implementation of (6) where the convex combina-
tion coefficients satisfy (8) and{

ck`,tp(i) = αk`,tp > 0 if ` ∈ Nk,
ck`,tp(i) = 0 otherwise. (9)

with αk`,tp equal to a positive constant for all k ∈ {1, 2, . . . ,K},
` ∈ Nk, t ∈ Tk and p ∈ T`. However, under this approach the
estimates at the nodes will be biased. In particular, assuming that

A1) vk,i is temporally and spatially white noise that is indepen-
dent of U`,i′ for all ` and i′, with k, ` ∈ {1, 2, . . . ,K}.

A2) Uk,i is temporally stationary, white and spatially independent
with RUk = E{Uk,iU

H
k,i};

A3) Ukt,i and Ukp,i are independent for all k ∈ {1, 2, . . . ,K}
and t 6= p,

the asymptotic bias of the estimates resulting from this cooperative
approach is given by the following theorem (the proof is omitted due
to space constraints).

Theorem 1. For any initial conditions and under assumptions A1-
A3, if the positive step-size of each node satisfies

µk < 2/λmax({RUkt
}t∈Tk ), (10)

then the estimates generated by the D-NSPE LMS algorithm sum-
marized in (6) converge in the mean when the convex combination
coefficients satisfy (8) and (9). Furthermore, the estimation bias in
the steady-state tends to

E{q̃(∞)} =
[
I − C̆[I −MD]

]−1
[I − C̆] qo (11)

with q̃(i) = col{col{q̃(i)
k,t}t∈Tk}

K
k=1, qo = col{col{qot}t∈Tk}

K
k=1

D = diag{RUk}
K
k=1, M = diag{µkIMk}

K
k=1 and C̆ = C ⊗ IM

where

C =
[
c1,T1(1) · · · c1,T1(n1) c2,T2(1) · · · cK,TK(nK)

]T (12)

and ck,Tk(t) = col
{
{col{ck`,Tk(t)p}p∈T`}

K
`=1

}
.

From Theorem 1, we can deduce that the steady-state MSD in
the estimation of qot at node k, i.e., limi→∞‖q̃ik,t‖2, can be very
large when node k estimates qot by using a blind convex combina-
tion of all the local estimates of all its neighbors. As a result, the
attained performance might be worse than the one achieved by the
non-cooperative scheme. Note that (11) reduces to zero if ckk,tt = 1
for all k and t ∈ Tk, i.e., the non-cooperative case is indeed unbi-
ased. Next, we will propose a scheme that combines the D-NSPE
LMS algorithm and an adaptive multi-task clustering technique to
avoid such a performance degradation and still leverage the cooper-
ation among nodes interested in estimating different but overlapping
vectors of parameters simultaneously.

4. UNSUPERVISED DIFFUSION-BASED LMS FOR NSPE

Since the nodes do not know a priori the relationship between the
NSPE tasks, they can initially focus on solving the NSPE problem
of Section 2 by implementing the non-cooperative strategy. In par-
ticular, each agent can implement (6)-(8) with ckk,tt(i) = 1 for all
k ∈ {1, 2, . . . ,K} and t ∈ Tk, which corresponds to the following
stand-alone LMS-type adaptation step

ς
(i)
k,t = ς

(i−1)
k,t + µkU

H
kt,i

[
dk,i −

∑
p∈Tk

Ukp,iς
(i−1)
k,p

]
(13)
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Fig. 2. Topology with all the initial cooperation links (a) and the
resulting cooperation links after multi-task clustering (b).

where ς(i)k,t denotes the estimate of qot resulting from the non-
cooperative LMS performed by node k at time instant i with t ∈ Tk.

Following similar arguments to [22], for sufficiently small step
sizes, i.e., µk � 1, and after sufficient iterations, i.e., i → ∞, it
can be shown that the difference between ς(i)k,t and ς(i)`,p follows a
Gaussian distribution:

ς
(i)
k,t − ς

(i)
`,p ∼ N(qot − qop, µmax∆k`,tp) (14)

where µmax = max
k

µk and ∆k`,tp is anM×M symmetric, positive

semi-definite matrix with k, ` ∈ {1, 2, . . . ,K}, t ∈ Tk and p ∈ T`.
If both estimates are associated with the same task, which is denoted
as qot = qop from now on, from (14) note that with high probability
‖ς(i)k,t − ς

(i)
`,p‖

2 = O(µmax). On the contrary, if the local estimates
are associated with different tasks, which will be denoted as qot 6=
qop, then ‖ς(i)k,t − ς

(i)
`,p‖

2 = O(1) will hold with high probability.

Thus, if node ` transmits ς(i)`,p to node k with ` ∈ Nk \ {k} and
p ∈ T`, node k can perform a hypothesis test to determine whether
the local estimate ς(i)`,p at node ` corresponds to the estimation of the
vector of parameters qot with t ∈ Tk:

‖ς(i)k,t − ς
(i)
`,p‖

2
H0

≷
H1

τk`,tp (15)

where H0 equals the hypothesis qot = qop, H1 denotes the hypothesis
qot 6= qop and τk`,tp is a predefined threshold.

A similar reasoning to [22] shows that the probabilities of false
alarm and misdetection decay at exponential rates, i.e.,

P
[
‖ς(i)k,t − ς

(i)
`,p‖

2 > τk`,tp | qot = qop
]
≤ O(e−c1/µmax) (16)

P
[
‖ς(i)k,t − ς

(i)
`,p‖

2 < τk`,tp | qot 6= qop
]
≤ O(e−c2/µmax) (17)
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where c1, c2 > 0 denotes some positive constants and τk`,tp ∈
(0, dk`,tp) with dk`,tp = ‖qot − qop‖2. Thus, if τk`,tp and µmax

are sufficiently small, as i approaches infinity, node k can know with
high probability if a local estimate ς(i)`,p at node ` is associated with
the estimation of qot . This information can be used by node k to si-
multaneously cluster the local estimates of the nodes according to
the task that they aim to solve. In particular, from the following set

N k,t(i) =
{

(`, p) : ` ∈ Nk, p ∈ T`, ‖ς(i)k,t − ς
(i)
`,p‖

2 < τk`,tp
}
(18)

node k can dynamically infer the set of indices ` ∈ N` and p ∈ T`
for which ck`,tp(i) > 0 should be verified. At the same time, these
task-specific neighborhoods can be used by each node k to perform
the following diffusion-based NSPE strategy for each task t ∈ Tk ψ

(i)
k,t = φ

(i−1)
k,t + µkU

H
kt,i

[
dk,i −

∑
p∈Tk

Ukp,iφ
(i−1)
k,p

]
φ

(i)
k,t =

∑
(`,p)∈Nk,t(i−1) ck`,tp(i− 1)ψ

(i)
`,p.

(19)

where
∑

(`,p)∈Nk,t(i−1) ck`,tp(i− 1) = 1.
This leads to the following algorithm:

Unsupervised Diffusion-based LMS for NSPE (UD-NSPE)

• Start with any initial guesses ς(0)k,t , φ(0)
k,t and N k,t(−1) =

{(k, t)} for all k ∈ {1, 2, . . . ,K} and t ∈ Tk.

• At each time i and each node k ∈ {1, 2, . . . ,K}:

1. Update ς(i)k,t by executing (13) for each t ∈ Tk.

2. Update φ(i)
k,t by executing recursion (19) over the set

N k,t(i− 1) for each t ∈ Tk.

3. Update the set N k,t(i) for each t ∈ Tk by using (18)
with {ς(i)`,p; ` ∈ Nk, p ∈ T`} from Step 1.

Based on the multi-task clustering information resulting from (13)
and (18), at each time instant i the proposed UD-NSPE LMS is able
to leverage the cooperation among nodes with different but over-
lapping estimation interests. Despite this fact, from (17), note that
UD-NSPE LMS still yields asymptotically unbiased estimates if the
limi→∞ µk = 0 for all k ∈ {1, 2, . . . ,K}.

5. SIMULATIONS

To illustrate the effectiveness of the proposed algorithm, we con-
sider a network formed by K = 10 nodes whose initial topology
with all possible cooperation links is shown in Fig. 2(a). The red
circles denote the nodes and the colored balls inside represent dif-
ferent tasks within each node. In the considered network, each node
k is interested in estimating a vector of global parameters qo11 ∈ R3

and a vector of local parameters qok ∈ R3 with k ∈ {1, . . . ,K},
denoted with green and magenta balls, respectively. Additionally,
two different vectors of common parameters coexist, i.e., qo12 ∈ R3

and qo13 ∈ R3, represented by blue and orange balls, respectively.
Each entry of the global, common or local vector of parameters is
randomly drawn from an uniform distribution defined in the interval
(0,1). Moreover, the data observed by node k follows the observation
model given in (1) with Lk = 1. Both the the background noise vk,i
and the regressors uk,i are independently drawn from a Gaussian
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Fig. 3. Temporal evolution of the network MSD for the estimation
of the different vectors of parameters.

distribution that is spatially and temporally independent. In particu-
lar, vk,i follows a Gaussian distribution with zero mean and variance
σ2
vk = 10−3 for all k. Similarly, the regressors uk,i are zero mean

(1× 3nk) random vectors governed by a Gaussian distribution with
zero mean and covariance matrix Ruk,i = σ2

uk
I3nk . The variance

σ2
uk

is randomly chosen in (0, 1) so that the Signal-to-Noise-Ratio
(SNR) at each node ranges from 10 dB to 20 dB. Furthermore, each
step-size µk is set equal to 4·10−3 and a uniform combination policy
has been selected to generate the combination coefficients.

Fig. 2(b) shows the estimated cooperation links in the steady-
state for one of the experiments. Note that cooperation links between
local estimates of the same vector of parameters at different neigh-
boring nodes remain active. On the contrary, cooperation links be-
tween local estimates of different vectors of parameters are dropped.
For the UD-NSPE algorithm, the D-NSPE algorithm derived in [16]
and the non-cooperative LMS, Fig. 3 plots the learning behaviour
in terms of the network MSD associated with the estimation of the
vectors of global, common and local parameters. To generate each
plot, we have averaged the results over 100 randomly initialized in-
dependent experiments. Since the multi-task clustering technique
correctly determines the links between local estimates of the same
vector of parameters at different neighboring nodes, the UD-NSPE
algorithm outperforms the non-cooperative LMS and achieves the
same steady-state network MSD as the D-NSPE algorithm.

6. CONCLUSION

We have considered an NSPE problem where the nodes simulta-
neously estimate vectors of local, common and global interest in
a setting where the nodes do not know a priori which of the local
estimates of their neighbors correspond to which estimation task.
To solve this problem, we have presented an algorithm based on a
diffusion-based NSPE LMS and a multi-task clustering technique
that lets each node infer which of the local estimates of its neighbors
correspond to each of its own estimation tasks. Unlike the exist-
ing schemes, the proposed algorithm can yield unbiased estimates
for the NSPE problem while still leveraging the cooperation among
nodes with different interests. Finally, the effectiveness of the pro-
posed algorithm has been illustrated through computer simulations.
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