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ABSTRACT

The ability to perform distributed estimation across a neigh-
borhood of nodes when the impulse responses present at each
node are related by an unknown time delay and scaling is pre-
sented in this work. The time delay estimation is performed
by correlating estimates of the unknown impulse response
from neighboring nodes. The estimated time delay corre-
sponds to the shift associated with the peak of this correla-
tion. Next combination of neighboring nodes is performed by
reweighting node estimates. This reweighting factor is calcu-
lated by forming the ratio of the norm of estimated impulse
response in a reference node with the norm of the estimated
impulse response in a neighboring node. Simulation results
demonstrating improved convergence performance for a co-
operative network when estimating the time delay and ampli-
tude weights relative to the performance of a non-cooperative
network are depicted.

Index Terms— Adaptive filtering, convergence, distributed
algorithms, least mean square algorithms.

1. INTRODUCTION

Distributed estimation and adaptation over networks has been
an area of active research in recent years [1] [2] [3] [4]. These
research efforts have focused on learning a single or cluster
[5] [6] of unknown impulse response by cooperation across a
network of nodes. The most often assumed condition that the
unknown impulse response is the same at each node restricts
the class of problems that can be solved using distributed esti-
mation. In this work, the restriction of an identical impulse re-
sponse at each node is relaxed. Instead, the impulse response
being estimated at each node is assumed to have an unknown
time-delay and amplitude weighting relative to other nodes
in the network. Schemes are presented to estimate these un-
known time delays and amplitude weightings that enable co-
operation across the network.

In order to incorporate estimates from other nodes, each
reference node needs to initially align information sent from
neightbor nodes. Several alignment strategies are examined in
this work. In particular alignment using correlation between
the reference and neighbor weight deviations are examined.

After alignment is performed, a methodology estimating the
unknown amplitudes is presented. Once the amplitudes are
estimated the nodes are reweighted prior to combination. This
reweighting and alignment enables the distributed network es-
timation to achieve improved steady-state convergence rela-
tive to non-cooperative networks.

A summary of each section follows next. In section 2,
the distributed network estimation framework is presented.
Section 3 briefly reviews distributed minimum mean square
weight deviation algorithms and the associated notation. Next,
sections 4 and 5 describe time delay estimation and ampli-
tude renormalization that occurs in each node, respectively.
Finally, simulation results are presented in section 6.

2. DISTRIBUTED ESTIMATION PROBLEM
FRAMEWORK

2.1. Network Model

Assume a network with N nodes, where each node has an
agent. The neighborhood of any particular agent, k, is de-
noted by Nk and consists of all nodes that are connected to
node k. Node l is connected to node k if node k receives in-
formation from node l. Node k is assumed to be in Nk. Two
nodes are said to be two-way connected if they can share in-
formation directly with each other. Let {akl(i), alk(i)} repre-
sent the set of combination coefficients between agents k and
l at time i. The scalar alk(i) is used by agent k to scale the
estimate it receives from agent l, while akl(i) is used by agent
l to scale the estimate received from agent k. If alk(i) 6= 0
node l is said to be connected to node k. Define

ak(i) = [a1k(i), a2k(i), . . . , aNk(i)]
T

where (·)T represents the transpose operation. If the lth node
is not connected to the kth node at time i then alk(i) = 0. It
is assumed that aTk (i)1 = 1, where 1 is the vector of all ones.

2.2. Adaptation Framework

Consider the situation in which the N agents are attempting
to estimate N unknown impulse response vectors. Each im-
pulse response has length L. Let the impulse response at the
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kth node be represented by wo,k. Each unknown impulse re-
sponse is a delayed and scaled version of the shape defining
vector wo. For instance, let

wo = [wo(1), wo(2), . . . , wo(M)]T ,

whereM represents the length of the unknown shape defining
vector. Then

wo,k = ck[0
T
δk
,wT

o ,0
T
L−M−δk ]

T ,

where 0p is a vector of zeros with length p. The delay and
scaling at the kth node are unknown apriori and denoted as
δk ∈ {0, 1, . . . ,M} and ck ∈ (0, 1], respectively. Let δ =
[δ1, . . . , δN ]T and c = [c1, . . . , cN ]T represent the unknown
delays and amplitudes at each node in the network. Each
node attempts to estimate the impulse response using the least
mean square (LMS) algorithm [7]. Each agent k interrogates
the unknown impulse response at time i by sending an input
sequence xk(i) where xk(i) = [xk(i), xk(i− 1), . . . , xk(i−
L+1)]T . Let the received response be represented by dk(i) =
xTk (i)wo,k + vk(i) where vk(i) is the measurement noise.
The impulse response of the system is estimated with the
adaptive filter coefficient vector, wk(i), which has length L
also. The output of the adaptive filter is given by yk(i) =
xTk (i)wk(i− 1). The error signal ek(i) is equal to difference
of the measured output, dk(i) and the output of the adaptive
filter yk(i). Define the weight deviation at time i for the kth

node as
zk(i) = wo,k −wk(i). (1)

Each agent employs step size µk in its LMS algorithms. The
step size µk is sufficiently small such that the weight deviation
can be considered independent of the input signal for all times
and nodes.

2.3. Signal Assumptions

Real-valued signals are assumed in this manuscript. The input
signal xk(i) is a zero-mean stationary random process with
covariance matrix given by E{xk(i)xTk (i)} =Rk. The noise
process is white with variance E{v2k(i) } = σ2

v,k, assumed to
be independent of the input signal at all nodes, and indepen-
dent of all measurement noises at nodes l 6= k. The input
signals are independent of each other at different nodes im-
plying E{xk(i)xTl (i)} = 0 for l 6= k.

3. MINIMUM MEAN SQUARE WEIGHT DEVIATION
COMBINATION COEFFICIENT ALGORITHM

The implementation of the quadratic programming (QPOCC)
and unconstrained optimal combination coefficient (UOCC)
algorithms were initially presented in [8] [9]. For the sake of
brevity, relevant variables are defined next.

The adapt-then-combine (ATC) diffusion strategy is given
by

ψk(i) = wk(i− 1) + µxk(i)[dk(i)− xTk (i)wk(i− 1)]

wk(i) =
∑
l∈Nk

alk(i)ψl(i). (2)

Next the adapted weight deviation (AWD) yk is defined as

yk(i) = wo,k −ψk(i).

In [8], the block versions of ψk(i) and estimates yk(i) de-
noted by ψBk (i) and ŷk(i) are generated every P time steps
and exchanged between neighbors at time i = mP+P−1 for
each node k. Otherwise, when i 6= mP + P − 1 each node
adapts and stores its local estimate of the unknown impulse
response for usage during the block update.

4. IMPULSE RESPONSE DELAY ESTIMATION

In order to exploit information from neighboring nodes, each
node must initially align its estimates of the adapted weight
devitation, ŷk(i), and block updated weights, ψBk (i), with
its neighbors’ estimates prior to combining these estimates.
ŷk(i) are needed for calculation of minimum mean square
weight deviation combination coefficients, ak(i), and ψBk (i)
are the objects that are combined. The correlation between the
reference node’s estimate and its neighbors’ estimates is used
to perform this alignment. Care must be taken to ensure that
the alignment does not degrade the ability of the adaptive filter
to track time varying changes in the impulse responses. Next
a strategy that builds upon the correlation metric and enables
tracking of time varying impulse responses is presented.

Initially, the correlation between the reference node’s esti-
mate and its neighbors’ estimates are calculated. For arbitrary
vectors pk and pj let

rpk,pj
(l) =

min{L,L−l}∑
n=max{1,1−l}

[pk]n[pj ]n+l (3)

where l ∈ {−L+ 1, . . . , L− 1} and [pk]n is the nth entry of
vector pk. Define the correlation vector

rpk,pj
= [rpk,pj

(−L+ 1), . . . , rpk,pj
(L− 1)]. (4)

Assume that rŷk,ŷj
and rψB

k ,ψ
B
j

are calculated using (3)
and (4). Next the maximum value of rŷk,ŷj

is compared to the
maximum value of rψB

k ,ψ
B
j

. If max{rŷk,ŷj
}>max{rψB

k ,ψ
B
j
}

then alignment of node j relative to node k is performed using
l, denoted l∗k,j , that corresponds to the value max{rŷk,ŷj

}.
Otherwise alignment is performed using l corresponding to
the value max{rψB

k ,ψ
B
j
}. This logic allows the adaptive filter

to track changes in the unknown impulse response.
During the initial stages of convergence the estimates ψBk

are close to zero for all nodes as they are initialized to be zero
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vectors. Therefore, attempting to perform alignment using
these estimates results in erroneous alignment and poor con-
vergence performance. To the contrary, the estimates ŷk have
values that are nearer the unknown impulse response during
the initial stages of convergence. Therefore it is preferable to
use the estimate ŷk in this stage.

Once the adaptive filter starts to converge, the estimates
ŷk approach zero for all nodes and become a poor choice to
perform alignment. At this point the estimatesψBk are a better
choice to perform alignment. If the impulse response starts to
change, ŷk(i) can again become more informative for align-
ment.

A second strategy to perform alignment attempts to com-
pare the sparsity of the estimates rŷk,ŷj

and rψB
k ,ψ

B
j

. This
methodolgy resulted in poor convergence results and there-
fore is omitted.

5. AMPLITUDE NORMALIZATION

Prior to calculating the combination coefficients alk(i) and
performing the combination step in (2) each node’s estimates
of ψBl (i) and ŷl(i) need to be normalized relative to the kth

node for all l ∈ Nk. Note that the adapted weights can be
approximated in steady state by

ψBl (i) ≈ wo,l = cl[0
T
δk
,wT

o ,0
T
L−M−δk ]

T . (5)

Therefore it is reasonable to reweight the estimatesψBl (i) and
ŷl(i) using the ratio

γkl =
||ψBk (i)||2
||ψBl (i)||2

≈ ck
cl

(6)

where || · ||2 denotes the L2 norm.
In practice the estimates ψBl (i) can be close to zero in

the initial stages of adaptation which may cause very poor
reweighting coefficients γkl which may lead to algorithm in-
stability. Two strategies are proposed to overcome this poten-
tial issue. The first strategy consists of increasing the block
size P to delay the start of combining until weights are no
longer close to zero. The second strategy introduces the fol-
lowing logic:

γkl =

{ ||ŷk(i)||2
||ŷl(i)||2 if ||ŷk(i)||2 > ||ψBk (i)||2
||ψB

k (i)||2
||ψB

l (i)||2
if ||ŷk(i)||2 ≤ ||ψBk (i)||2.

Once the amplitude and time delays are estimated the AWD
and adapted weights are modified to calculate combination
coefficients and perform combination in node k as follows:

y∗k,l(i) = γkl S
l∗k,l ŷl(i)

ψ∗k,l(i) = γkl S
l∗k,l ψBl (i) (7)

where l∗k,l is the estimated relative time delay and S is the
shift matrix given by

S =


S+ =

[
0T 0

IL−1×L−1 0

]
if l∗k,l > 0

IL×L if l∗k,l = 0

ST+ if l∗k,l < 0.

6. SIMULATION RESULTS

In this section the arithmetic mean of the MSWD across all
nodes in the network was calculated versus iteration for differ-
ent diffusion strategies. The combination-coefficient methods
employed consisted of the non-cooperative network (NCN),
unconstrained optimal combination coefficients solution (U-
OCC), quadratic programming optimal combination coeffi-
cients solution (QPOCC). These methods were implemented
within the ATC network diffusion strategy.

The following parameters were used in all simulations.
The network had seven nodes and the topology is depicted in
Figure 1. Blue lines indicate that both nodes are connected
to each other. Red lines indicate that a connection exists only
in one direction. The arrow heads on the red lines indicate in
which direction information is being sent. The circle around
nodes indicate that the nodes are connected to themselves.
Each node is labeled and the number in parenthesis indicates
the signal to noise ratio in decibels at the measurement point
at that node. The impulse response had length fifty. The im-
pulse response is depicted in Figure 2. The initial delay at
each node, measurement noise variance and input signal vari-
ance were given by

δ = [6, 6, 2, 9, 1, 6, 3]T ,

σ2
v = [0.001, 0.009, 0.004, 0.002, 0.018, 0.010, 0.023]T ,

σ2
x = [2.775, 2.085, 0.768, 0.833, 1.712, 1.670, 0.108]T ,

respectively. When used the scaling on each impulse response
was given by

c = [0.422, 0.410, 0.648, 0.051, 0.826, 0.667, 0.313]T .

The step size was given by

µk =
2

(100Lσ2
x,k)

.

The block size P = 150 was used in Figures 3. In Figure
4 the value P = 350 was employed. The steps observed in
the convergence curves are due to updates occuring in blocks.
We considered white real-valued input signals. A total of 100
Monte Carlo trials were used to generate all figures.

At time k = 25000 the impulse response is changed at
each node by multipling the initial impulse responses by -1
and delaying each impulse response by an additional 10 sam-
ples.
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In Figure 3 the learning curves when using the maximum
of the correlation to estimate the unknown time-delay are de-
picted. The unknown impulses responses each had cl = 1 for
all l = 1, . . . , N . The algorithm using the maximum of the
correlation to perform alignment converges and can handle
time-varying impulse responses.

In Figure 4 the learning curves when using the maximum
of the correlation to calculate the unknown time-delay of each
impulse response and amplitude renormalization to remove
the effects of the unknown amplitude weights c are depicted.
The transient regime convergence is on par with the NCN al-
gorithm, but the steady-state convergence is greatly improved.

7. CONCLUSION

A novel strategy has developed and shown to handle the case
of distributed learning across a network when the impulse re-
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Fig. 3. ATC Distributed Estimation Strategy Learning Curve
Comparison Using Maximum of Correlation for Switching

ITERATIONS ×10
4

0 1 2 3 4 5 6

d
B

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
MSWD

Noncooperative Network (NCN)

UOCC

QPOCC

Fig. 4. ATC Distributed Estimation Strategy Learning Curve
Comparison Using Maximum of Correlation for Switching
and Amplitude Renormalization

sponse at each node has same shape with an unknown time
delay and unknown scaling. In order to take advantage of
information across the network, time alignment needs to oc-
cur across the separate nodes. A strategy for implementing
this time alignment was developed and demonstrated. Prior
to combination each estimated impulse response of neighbor-
ing nodes should be normalized to the scale of the estimated
impulse response of the node performing combinations. The
renormalization is performed by forming the ratio of the norm
of a reference nodes estimated weights relative to the norm of
neighbor nodes estimated weights. The renormalization pro-
cess enables improved steady-state convergence performance.
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