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ABSTRACT
We propose distributed algorithms for high-dimensional sparse
optimization. In many applications, the parameter is sparse but
high-dimensional. This is pathological for existing distributed algo-
rithms as the latter require an information exchange stage involving
transmission of the full parameter, which may not be sparse during
the intermediate steps of optimization. The novelty of this work is
to develop communication efficient algorithms using the stochastic
Frank-Wolfe (sFW) algorithm, where the gradient computation is
inexact but controllable. For star network topology, we propose
an algorithm with low communication cost and establishes its con-
vergence. The proposed algorithm is then extended to perform
decentralized optimization on general network topology. Numerical
experiments are conducted to verify our findings.

Index Terms— decentralized algorithm, sparse optimization,
large-scale optimization, communication efficient algorithm

1. INTRODUCTION

Consider the following constrained optimization problem:

minθ∈Rn F (θ) := 1
T

∑T
s=1 fs(θ), s.t. θ ∈ C. (1)

We assume that F (θ) is convex. While the techniques developed
in this paper are applicable to general problems, we focus on the
sparsity constrained case where the constraint set C is an `1-ball,
i.e.,

C := {θ : ‖θ‖1 ≤ r}. (2)

We are interested in a distributed setting where the sth loss func-
tion fs(θ) is kept privately by the sth agent. We focus on high-
dimensional sparse optimization problems where the parameter to be
estimated is sparse, i.e., ‖θ?‖0 = k � n, but lives in a high dimen-
sional space, i.e., n � 1. As an application example, we consider
fs(θ) to be the squared loss function fs(θ) = (1/2)‖ys −Asθ‖22.
Here, ys is the observation obtained at agent s through its measure-
ment matrixAs. Both ys,As are private data that the agents are not
willing to share. In this case, problem (1) reduces to a distributed
LASSO problem.

Our work is motivated by a growing number of problems in ma-
chine learning and signal processing, e.g., big-data optimization [1]
and large-scale sparse learning [2, 3]. Though Problem (1) is con-
vex, its high dimensionality has driven recent works to consider
solving it using first-order optimization algorithms. Some exam-
ples such as stochastic projected/proximal-gradient methods can be
found in [4–6] and their convergence rates are shown to be as fast as
O(1/t2) [7], where t is the iteration number.
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The aforementioned works focus on the case when F (θ) is
known completely at a central processor. In a distributed setting
where fs(·) is kept privately, recent advances have demonstrated
that the convergence to θ? can be established using an algorithm
with only local communication steps that are constrained by the
topology of the communication network [8–11]. However, existing
works typically require the full parameter θ (and/or the local gra-
dient ∇fs(θ)) to be exchanged during each iteration. While the
optimal solution θ? to (1) is sparse, the intermediate solution during
the algorithm may be dense. In high-dimensional problems, the
incurred communication overhead maybe overwhelming.

This work proposes distributed algorithms for (1) that are com-
munication efficient. Our plan is to exploit the structures in Frank-
Wolfe algorithm [12] to develop distributed methods that only trans-
mit a small number of scalar variables in the network at every itera-
tion. We propose two algorithms: one for the star network topology
and one for the general network topology. Several communication
cost reduction techniques are developed. The proposed schemes se-
lect a small number of agents and coordinates for information ex-
change and provide estimates of the gradient with controllable accu-
racies. Finally, we show that the distributed algorithms converge as
fast as O(log(t)/t), while the communication cost at the tth itera-
tion isO(t) for star network; and isO(t log t) for general networks.
The proposed schemes are suitable when the target solution accuracy
is moderate.

1.1. Relation to Prior Work
The Frank-Wolfe algorithm [12] is recently rediscovered as an ap-
pealing tool to handle large-scale convex optimization and it has
been applied to a number of practical problems [13–16]; see the
surveys [17, 18]. In fact, a communication-efficient distributed al-
gorithm based on Frank-Wolfe algorithm has been studied in [19].
However, a different distributed data model is considered here. This
paper is also related to the CoCoA method in [20]. Under the as-
sumption of a star network topology, [20] focuses on solving the
dual problem of (1) using a dual decomposition like technique [21].
The convergence rate is geometric. Their method, however, involves
a step that transmits the full parameter in the network.

2. STOCHASTIC FRANK-WOLFE ALGORITHM

This section describes the stochastic Frank-Wolfe (sFW) algorithm
for (1) and reports on a recent convergence result. We suppose that
at iteration t, we have access to a noisy estimate of gradient:

∇̂tF (θ) = ∇F (θ) + εt(θ), (3)

where εt(θ) denotes the gradient estimation error. The sFW algo-
rithm is described by the following recursion:
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at ← arg min
a∈C
〈a, ∇̂tF (θt)〉, (4a)

θt+1 ←(1− 1/t)θt + (1/t)at, (4b)

and the algorithm is repeated with t = t + 1. For the constraint set
of interest, i.e., C := {θ : ‖θ‖1 ≤ r}, the linear optimization step
(4a) can be carried out as:

at = −r · sign([∇̂tF (θt)]it) · eit , (5)

where it = arg maxj∈[n] |[∇̂tF (θt)]j | corresponds to the maxi-
mum magnitude coordinate in ∇̂tF (θt). We have used [x]j to de-
note the jth element in the vector x. Moreover, ei is the ith canoni-
cal basis vector in Rn.

We remark that in the above sFW algorithm, the update direction
at is a sparse vector that merely adds a single new coordinate to θt.
In particular, if θ0 = 0, then θt is at most t-sparse. As we shall
see later, this is an important property that enables us to develop
communication-efficient distributed algorithms for (1).

To study the convergence of the sFW algorithm, we introduce
the following assumptions.

Assumption 1 With probability at least 1−∆,

‖εt‖ ≤ σ
√
η∆
t /t, ∀ t ≥ 1 , (6)

for some σ > 0, η∆
t is non-decreasing, η∆

t ≥ 1 and ∆ ∈ [0, 1].
Furthermore, η∆

t /t is non-increasing and limt→∞ η
∆
t /t = 0.

The diameter of the constraint set is denoted by ρ := supθ,θ′∈C ‖θ−
θ′‖1. As C is bounded, ρ is finite. The objective function F is L-
gradient Lipchitz and µ strongly convex. Finally, when µ > 0, there
is a unique optimal solution θ? whose distance to the boundary is
denoted by

δ := infs∈∂C ‖s− θ?‖ , (7)

with ∂C the boundary set of C. Notice that potentially we can have
L = ∞ or µ = 0 or δ = 0. We have the following Theorem that is
borrowed from [22]:

Theorem 1 Consider the sFW algorithm with the gradient estimate
given by (3). Under Assumption 1, the following holds with proba-
bility at least 1−∆ for all t ≥ 2:

F (θt)− F (θ?) ≤ min

{
D′
√

η∆
t
t
, D

η∆
t
t

}
, (8)

where D′ = 2(ρσ + Lρ2/2) and D = 6(ρσ + Lρ2/2)2/(δ2µ).

From Theorem 1, the convergence rate of the sFW algorithm is
at least O(

√
η∆
t /t) (since D′ < ∞ for standard convex problems),

while the rate can be accelerated to O(η∆
t /t) if F (·) is strongly

convex and θ? lies in the interior of C.
A consequence of Theorem 1 is that the sFW algorithm con-

verges even when the gradient estimate is noisy. To develop a com-
munication efficient distributed algorithm, our goal is to repeat the
calculations in sFW using the suitable steps for the in-network oper-
ations to produce local gradient estimates satisfying Assumption 1.

3. DISTRIBUTED FW ALGORITHM

The first proposed distributed algorithm assumes that the agents are
connected through star network topology. In particular, there exists
a hub agent which is connected to all T agents in the network.

Under this setting, at iteration t, it is possible for the hub to
evaluate ∇F (θt) by requesting local gradient ∇fs(θt) from each

agent. Initializing with θ0 = 0, we have the Distributed Frank-
Wolfe (DistFW) algorithm. At the tth iteration, we do:
DistFW Algorithm:

1. Compute ∇F (θt) = (1/T )
∑T
s=1∇fs(θt) by aggregating

the gradient vectors from all agents.
2. Find at using (5) at the hub and broadcast at to the agents.

Each agent computes (4b) to update the parameter.
It is easy to check that the above DistFW algorithm converges to
an optimum solution of (1) at rate O(1/t) since the operations are
identical to the classical Frank-Wolfe algorithm [12].

The Step 1 in DistFW requires the transmission of an n-
dimensional vector from each agent. Moreover, when broadcasting
at to the agents, one only need to broadcast the coordinate number
it together with the associated sign of [∇F (θt)]it . The communi-
cation cost per iteration is nT real numbers and T integers.

3.1. Communication Efficient DistFW
To reduce the communication cost per iteration in Step 1 of Dis-
tFW, we perform sampling on both the number of agents involved
and the coordinates of the gradient vector. Specifically, at iteration
t, we select t agents (while allowing overlaps) and aggregate their
corresponding gradient vectors. The selected agents are denoted by
it(1), ..., it(t). For the sampling of coordinates, we consider the fol-
lowing two schemes for a selected agent s:
• Random Coordinate Selection — Agent s selects the coordi-

nate i ∈ [n] := {1, ..., n} with probability p/n.
• Extremal Coordinate Selection — Agent s sorts∇fs(θt) and

selects the p/2 coordinates that correspond to the maximum
and minimum elements in the vector, respectively.

The second scheme is motivated by the fact that in the sFW algo-
rithm, we only select the coordinate it that has the maximum mag-
nitude in ∇̂F (θt). Under the above schemes, computing ∇̂tF (θt)
requires an expected communication cost of only pt.

We analyze the case when random coordinate selection is used
and demonstrate that a convergence rate as fast as O(log(t)/t) can
be obtained. The kth coordinate of the resultant ∇̂tF (θt) can be
modeled by the following random variable:

[∇̂tF (θt)]k = 1
t

∑t
s=1∇fit(s)(θt)ξ

k
it(s), (9)

where ξkit(s) is a Bernoulli random variable with P(ξkit(s) = 1) =
p/n. Assuming that ‖∇fi(θ)‖∞ ≤ B1 for all θ ∈ C and i ∈ [T ],
the gradient estimate error can be bounded as:

Proposition 1 With probability at least 1 − π2∆/6, the following
holds for all t ≥ 1 and θ ∈ C:

‖εt(θ)‖∞ ≤ n
p

√
2B2

1(log(2nt2)−log ∆)

t
, (10)

where εt(θ) := (n/p)∇̂tF (θ)−∇F (θ).

Proof. First observe that E[∇fit(s)(θt)ξ
k
it(s)] = (p/n)[∇F (θ)]k.

The kth coordinate of εt(θ) can be written as

[εt(θ)]k =
n

tp

t∑
s=1

(
∇fit(s)(θt)ξ

k
it(s) − E[∇fit(s)(θt)ξ

k
it(s)]

)
,

consequently εt(θ) is zero mean. As ‖∇fi(θ)‖∞ ≤ B1, we have
|∇fit(s)(θt)ξ

k
it(s) − (p/n)[∇F (θ)]k| ≤ B1 with probability one

for all k. Applying the Hoefding’s inequality [23] gives:

P
(
|[εt(θ)]k| ≥ x, ∀ k ∈ [n]

)
≤ 2ne−tx

2(p/n)2/(2B2
1), (11)
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for all x ≥ 0. Now, setting x = n
p

√
2B2

1(log(2nt2)−log ∆)

t
gives

∆/t2 on the right hand side of (11). Applying a union bound argu-
ment gives our desired result. Q.E.D.

Notice that the bound (10) applies on the scaled gradient esti-
mate (n/p)∇̂tF (θ) instead of ∇̂tF (θ). It remains relevant to the
DistFW algorithm as the linear optimization (4a) is scale invariant,
i.e., arg mina∈C〈a, ∇̂tF (θt)〉 = arg mina∈C〈a, α∇̂tF (θt)〉 for
any α > 0. Finally, Assumption 1 can be satisfied by the proposed
scheme with ‖εt(θt)‖∞ = O(

√
log(t)/t) and a convergence rate

as fast asO(log t/t) can be guaranteed by applying Theorem 1. The
communication cost per iteration is pt real numbers and T integers.

4. DECENTRALIZED FW ALGORITHM

In this section, we assume the agents are connected in a network
described by a connected, undirected simple graph G = (V,E),
where V = [T ] = {1, . . . T} and E ⊆ V × V .

Our goal is to mimic the sFW algorithm by restricting to local
communication. In particular, we apply the gossip average consen-
sus (GAC) routine [24] for computing averages over the network. To
describe the routine, let xs,0 be a vector stored at agent s at initial-
ization and ` be the index of recursion, we have:

GAC : xs,`+1 =
∑T
s′=1 Wss′xs′,`, ∀s ∈ [T ], (12)

whereW with [W ]ss′ = Wss′ is a non-negative, doubly stochastic
matrix that respects the structure of G, and we design W such that
|λ2(W )| < 1 as G is connected; see [25] for examples of the con-
struction algorithms. The GAC routine converges geometrically to
(1/T )

∑T
s=1 x

s,0 [26]:

Fact 1 For all ` ≥ 1 and s ∈ [T ] and using linear algebra, we have∥∥xs,` − 1
T

∑T
s=1 x

s,0
∥∥
∞ ≤ B2 · λ2(W )`, (13)

where B2 = maxk∈[n]

√∑T
s′=1([xs′,0]k)2 and λ2(W ) < 1 is the

second largest eigenvalue ofW .

Notice if we set ` = C1 log(t) for C1 ≥ −1/(2 log(λ2(W )), then
the above upper bound becomes O(1/

√
t).

We propose the following decentralized Frank-Wolfe (DeFW)
algorithm. At iteration t, the local parameter stored at the sth agent
is denoted as θst . We define θ̄t := (1/T )

∑T
s=1 θ

s
t as the instanta-

neous average. Initializing with θs0 = 0 for all s, the tth iteration of
DeFW algorithm can be described as:
DeFW Algorithm:

1. Compute gs,`tt ≈ ∇F (θ̄t) decentralizedly using (gs,0t :=

∇fs(θ̃st ))Ts=1 as the initialization to GAC routine (12) with
`t = C1 log(t) recursions.

2. Find ast using (5) and the gradient estimate gs,`tt at agent s
for all s ∈ [T ] locally.

3. Update θst+1 = (1− 1/t)θ̃st + (1/t)ast .

4. Compute θ̃st+1 ≈ θ̄t+1 decentralizedly using (θst+1)Ts=1 as
the initialization to GAC routine (12) with `t = C1 log(t)
recursions.

Suppose that the gradient∇fs(·) is L-Lipschitz continuous and
is bounded, the following corollary is easy to show using Fact 1.

Corollary 1 The gradient estimate gs,`t satisfies:

‖gs,`tt −∇F (θ̄t)‖∞ = O(1/
√
t) (14)

Proof. Using the triangular inequality,

‖gs,`tt −∇F (θ̄t)‖∞ ≤ ‖gs,`tt − 1
T

∑T
s′=1∇fs′(θ̃

s′
t )‖∞+

‖ 1
T

∑T
s′=1(∇fs′(θ̃s

′
t )−∇fs(θ̄t)‖∞

≤ ‖gs,`tt − 1
T

∑T
s′=1∇fs′(θ̃

s′
t )‖∞ + Lmaxs′∈[T ] ‖θ̃s

′
t − θ̄t‖∞

(15)
As `t = C1 log(t), applying Fact 1 shows that the right hand side of
(15) can be upper bounded by O(1/

√
t). Q.E.D.

Consequently, the DeFW algorithm can be analyzed as an sFW
algorithm operated on θ̄t where gs,`tt serves as an estimate of
∇̂tF (θ̄t). Theorem 1 shows that the objective value converges at a
rate that can be as fast as O(1/t).

4.1. Communication Efficient DeFW

We first show that the GAC routine applied in Step 4 of DeFW can
be implemented with low communication cost. This can be seen by
noting that θ̃t is at most t · T sparse, since each DeFW iteration will
add at most T new coordinates into θ̃t. As such, this step can be
completed by requiring each agent to exchange C1 log(t) · t · T real
numbers at iteration t.

On the other hand, the GAC routine applied in Step 1 of DeFW
requires exchanging of the gradient vector ∇fs(θt), which may
be dense in general. We consider the same coordinate selection
schemes in Section 3.1 to reduce communication cost by sampling
a subset of the coordinates. Notice that we now consider sampling
(an average of) min{pt, n} coordinates at each agent and the GAC
routine communicates on the union of the selected coordinates. This
can be realized in a decentralized algorithm as an agent will notice
the selected coordinates of its neighbors once they begin to com-
municate, after a fixed number of GAC recursions C2 (proportional
to the diameter of G) the union of the selected coordinates will be
acquired at all agents.

Let the set of coordinates selected by agent s be Sst . The follow-
ing sparse vector will serve as an input to the GAC routine (12):

ĝs,0t = ∇fs(θ̃st )� ξt, (16)

where � denotes the Hadamard’s product, [ξt]k = 1 if k ∈ ∪Ts=1Sst
and is zero otherwise. Note that ξt is a Bernoulli random vector.
The (expected) sparsity of ĝs,0t is upper bounded by min{ptT, n}.
This step can be completed with a communication cost of at most
(C1 log(t) + C2) ·min{ptT, n}.

We now analyze the case with randomized coordinate selection.
Notice that E[ξt] = ξmean1, ξmean = (1− (1−min{pt, n}/n)T )
and min{pt, n}/n ≤ ξmean ≤ min{ptT, n}/n. We obtain the
following error bound:

Proposition 2 With probability at least 1 − π2∆/6, the following
holds for all t ≥ 1 and θ ∈ C:

‖ξ−1
meanĝ

s,`t
t −∇F (θ̄t)‖∞ = O

(n√log(2nt2)− log ∆

pt

)
(17)

if pt < n, and ‖ξ−1
meanĝ

s,`t
t −∇F (θ̄t)‖∞ = O(1/

√
t) if pt ≥ n.

Proof. We begin by applying the triangular inequality:

‖ξ−1
meanĝ

s,`t
t −∇F (θ̄t)‖∞ ≤ ξ−1

mean‖ĝs,`tt −∇F (θ̄t)� ξt‖∞
+‖∇F (θ̄t)� (ξ−1

meanξt − 1)‖∞.

For the former term, from Corollary 1 it can be upper bounded by
O(ξ−1

mean/
√
t). For the latter term, we first apply the inequality
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‖∇F (θ̄t)� (ξ−1
meanξt − 1)‖∞ ≤ ‖∇F (θ̄t)‖∞‖(ξ−1

meanξt − 1)‖∞
of Hadamard’s product [27]. Then, applying the Hoefding’s inequal-
ity [23] and a union bound argument show that with probability at
least 1− (π2∆/6), we have:

‖∇F (θ̄t)� (ξ−1
meanξt − 1)‖∞

≤ ξ−1
mean‖∇F (θ̄t)‖∞

√
(log(2nt2)− log ∆)/2,

(18)

for all t ≥ 1. Using the upper bound ξ−1
mean ≤ n/min{pt, n} yields

the desired result. As a remark, we notice that when pt = n, the
error bound can be improved to O(1/

√
t) since ξ−1

meanξt − 1 = 0
in the latter case. Q.E.D.

As a consequence of Proposition 2, the error of gradient estimate
converges as O(

√
log(t)/pt). Setting pt = C3

√
t suffices to let us

apply Theorem 1. In particular, the DeFW algorithm can converge
at rate as fast as O(log(t)/t). Meanwhile, the communication cost
per iteration is O(t log t).

5. NUMERICAL RESULTS

This section performs numerical experiments to verify our findings
on the proposed Frank-Wolfe based algorithms. We focus on the
distributed LASSO problem where fs(θ) = (1/2)‖ys −Asθ‖22 is
the squared loss function.

Due to space limitation, we consider solving a small-scale prob-
lem of dimension n = 5 × 104 using synthetic data and we set
T = 20. For each s, the matrix As is generated with indepen-
dent N (0, 1) elements with dimension of 50 × 50000 and ys ∼
N (Asθtrue, σ

2I). The parameter θtrue ∈ R50000 is generated as a
sparse vector with sparsity 0.0005 and independent N (0, 1) entries
on the non-zeros. There are approximately 25 non-zeros elements in
θtrue. The noise variance σ2 is set to 0.01 and the constraint set is
C = {θ : ‖θ‖1 ≤ 1.5‖θtrue‖1}. Notice that δ > 0 in this case.

As the DistFW algorithm can be seen as a special case of the
DeFW algorithm, the following discussion focuses on the DeFW
algorithm. For benchmarking purpose, we compare the DeFW al-
gorithm with the distributed projected gradient (DPG) method in [8]
and the projected gradient exact first order algorithm (PG-EXTRA)
in [9]. The iterates of the latter algorithm is proven to converge at an
ergodic rate ofO(1/t), where t is the iteration number. A drawback
for these two algorithms is that they both require exchanging the lo-
cal parameter estimate θst during each iteration, which may not be
sparse during the intermediate steps. For instance, at the tth iteration
of the DPG algorithm, for all s ∈ [T ], we do

θst+1 = PC
(∑T

s′=1 Wss′θ
s′
t − αt∇fs(

∑T
s′=1 Wss′θ

s′
t

)
, (19)

where αt > 0 is a step size that satisfies
∑∞
t=1 αt = ∞ and∑∞

t=1 α
2
t <∞; and we repeat with t = t+ 1. As seen, the sparsity

of operands in (19) cannot be controlled and the DPG algorithm may
require a high communication cost.

We have implemented the tested algorithms in MATLAB. The
communication network G is generated as an Erdos-Renyi graph
with connectivity p = 0.3 and the doubly stochastic matrix W is
generated according to the Metropolis-Hastings rule described in
[25]. For the DeFW algorithms, we set pt = 2d

√
te and `t =

dlog(t) + 5e. For the DPG algorithm, we set αt = 0.8/t. For
the PG-EXTRA algorithm, we set a fixed step size α = 1/n ≈
O(1/L), where L is the Lipschitz constant for the gradient ∇fs,
and W̃ = (I +W )/21.

1Notice that we considered a scenario with n � 0, which forces us to
take a relatively small step size for PG-EXTRA.

Fig. 1: Comparing the primal objective value F (θt) = (1/T )
∑T

s=1 fs(θ
s
t ). (Left)

against the iteration number. (Right) against the number of real numbers communicated.

Fig. 2: Comparing the true θtrue and the estimated parameter θ1
t at agent 1 after 100

and 1000 iterations from DeFW.

The results of our numerical example can be found in Figure 1
and Figure 2. In the legend, ‘DeFW (extreme)’, ‘DeFW (random)’
and ‘DeFW (exact)’ denote the DeFW algorithm with extremal, ran-
dom and without coordinate selection, respectively. We first notice
from Figure 1 (left) that the DeFW algorithms converge at a rate of
O(1/t), corroborating with the analysis from Theorem 1. Secondly,
Figure 1 (right) compares the primal objective against the number
of real numbers exchanged during the algorithms, where the num-
ber of real numbers exchanged was obtained by precisely counting
the number of non-zeros in the vectors exchanged between agents.
We see that the proposed DeFW algorithms have outperformed DPG
and PG-EXTRA. This is because the proposed algorithm exploits the
sparse optimization structure in the sFW algorithm. Another inter-
esting observation is that the extremal coordinate selection scheme
has outperformed the random one for DeFW. This is possible as the
local extremal coordinates are likely to be the maximum magnitude
coordinate in∇F (θt) selected at iteration t. Lastly, Figure 2 shows
that the iterates in DeFW are sparse during the iteration.

6. CONCLUSIONS
In this paper, we have proposed two distributed algorithms for high-
dimensional convex optimization problems. Our algorithms are suit-
able for cases when the parameter to be learnt is sparse. In particular,
we explicitly exploit the structure in sFW algorithm to develop com-
munication cost saving schemes. The algorithms with communica-
tion cost reduction schemes are proven analytically and empirically
to converge at a comparable rate to existing algorithms, while requir-
ing a significantly lower communication cost.

Our future work include applying the Frank-Wolfe based dis-
tributed algorithms to problems with general constraint set C, and
the analysis of the DistFW / DeFW algorithm with the extremal co-
ordinate selection scheme.
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